
AC21007: Haskell Lecture 2
List functions, function polymorphism, non-strict

semantics

Frantǐsek Farka



Recapitulation

Haskell

I purely functional

I non-strict (also lazy) semantics

I (strong) static typing



Recapitulation (cont.)

I Data types (Bool, Int, String, . . . ) and data values
(True, False, . . . , -1, 0, 1, . . . , ”Hello World!”, . . . )

begin with an upper case letter

I Function and variable identifiers (power, neg, b, n)

begin with a lower case letter

I Variables in Haskell cannot be updated
I Function definition:

I a set of equations, LHS is a pattern, RHS is an expression
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I Data types (Bool, Int, String, . . . ) and data values
(True, False, . . . , -1, 0, 1, . . . , ”Hello World!”, . . . )
begin with an upper case letter

I Function and variable identifiers (power, neg, b, n)
begin with a lower case letter

I Variables in Haskell cannot be updated
I Function definition:

I a set of equations, LHS is a pattern, RHS is an expression
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I Data types (Bool, Int, String, . . . ) and data values
(True, False, . . . , -1, 0, 1, . . . , ”Hello World!”, . . . )
begin with an upper case letter

I Function and variable identifiers (power, neg, b, n)
begin with a lower case letter

I Variables in Haskell cannot be updated

I Function definition:
I a set of equations, LHS is a pattern, RHS is an expression
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I Data types (Bool, Int, String, . . . ) and data values
(True, False, . . . , -1, 0, 1, . . . , ”Hello World!”, . . . )
begin with an upper case letter

I Function and variable identifiers (power, neg, b, n)
begin with a lower case letter

I Variables in Haskell cannot be updated
I Function definition:

I a set of equations, LHS is a pattern, RHS is an expression
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I An example: logic and

myAnd :: Bool -> Bool -> Bool

myAnd True True = True

myAnd True False = False

myAnd False True = False

myAnd False False = False

I Recall:
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I An example: logic and

myAnd :: Bool -> Bool -> Bool

myAnd True True = True

myAnd True False = False

myAnd False True = False

myAnd False False = False

I Recall:
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I An example: logic and

myAnd :: Bool -> Bool -> Bool

myAnd True True = True

myAnd True False = False

myAnd False True = False

myAnd False False = False

I Recall:
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I An example: logic and

myAnd :: Bool -> Bool -> Bool

myAnd True True = True

myAnd a b = False

I Recall:
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value



Recapitulation (cont.)

I An example: logic and

myAnd :: Bool -> Bool -> Bool

myAnd True True = True

myAnd _ _ = False

I Recall:
I value matches only itself (True matches True)
I variable matches any value ... and binds the variable to the

matched value

I New:
I ’ ’ matches any value, no binding created



List Datatype

I data type [Int] – a list where each element is of the type Int

I list values created by constructors
I [] – constructs an empty list, and
I (:) – (cons) from a value and list of values constructs a new

list, prepends the value

I These are lists:

[]

(1 : [])

(2 : (5 : (3 : [])))

I There is a special syntax:

[1]

[2, 5, 3]



List Datatype

I data type [Int] – a list where each element is of the type Int

I list values created by constructors
I [] – constructs an empty list, and
I (:) – (cons) from a value and list of values constructs a new

list, prepends the value

I These are lists:

[]

(1 : [])

(2 : (5 : (3 : [])))

I There is a special syntax:

[1]

[2, 5, 3]



List Datatype

I data type [Int] – a list where each element is of the type Int

I list values created by constructors
I [] – constructs an empty list, and
I (:) – (cons) from a value and list of values constructs a new

list, prepends the value

I These are lists:

[]

(1 : [])

(2 : (5 : (3 : [])))

I There is a special syntax:

[1]

[2, 5, 3]



List Datatype

I data type [Int] – a list where each element is of the type Int

I list values created by constructors
I [] – constructs an empty list, and
I (:) – (cons) from a value and list of values constructs a new

list, prepends the value

I These are lists:

[]

(1 : [])

(2 : (5 : (3 : [])))

I There is a special syntax:

[1]

[2, 5, 3]



List Datatype (cont.)

I data type [Bool] – each element is of the type Bool

I yet again, constructors [] and (:)

I these are lists of booleans:

[]

True : (False : (True : []))

[False, True, True, False]



List Datatype (cont.)

I data type [Bool] – each element is of the type Bool

I yet again, constructors [] and (:)

I these are lists of booleans:

[]

True : (False : (True : []))

[False, True, True, False]



List Datatype (cont.)

I data type [Bool] – each element is of the type Bool

I yet again, constructors [] and (:)

I these are lists of booleans:

[]

True : (False : (True : []))

[False, True, True, False]



Programming with list datatypes

I The sum function computes the sum of a list of integers:

sum :: [Int] -> Int

sum [] = 0

sum (x : xs) = x + (sum xs)

I The all function determines whether all the elements of a list
of booleans are True:

all :: [Bool] -> Bool

all [] = True

all (True : xs) = all xs

all _ = False

I New patterns: list values can be matched against list
constructors: [] matches itself and (:) matches a non-empty
list, while matching both the patterns for the first element
and for the rest of the list



Programming with list datatypes

I The sum function computes the sum of a list of integers:

sum :: [Int] -> Int

sum [] = 0

sum (x : xs) = x + (sum xs)

I The all function determines whether all the elements of a list
of booleans are True:

all :: [Bool] -> Bool

all [] = True

all (True : xs) = all xs

all _ = False

I New patterns: list values can be matched against list
constructors: [] matches itself and (:) matches a non-empty
list, while matching both the patterns for the first element
and for the rest of the list



Programming with list datatypes

I The sum function computes the sum of a list of integers:

sum :: [Int] -> Int

sum [] = 0

sum (x : xs) = x + (sum xs)

I The all function determines whether all the elements of a list
of booleans are True:

all :: [Bool] -> Bool

all [] = True

all (True : xs) = all xs

all _ = False

I New patterns: list values can be matched against list
constructors: [] matches itself and (:) matches a non-empty
list, while matching both the patterns for the first element
and for the rest of the list



Programming with list datatypes (cont.)

I The lengthInt function computes the length of a list of
integers:

lengthInt :: [Int] -> Int

lengthInt [] = 0

lengthInt (_ : xs) = 1 + lengthInt xs

I The lengthBool function computes the length of a list of
integers:

lengthBool :: [Bool] -> Int

lengthBool [] = 0

lengthBool (_ : xs) = 1 + lengthBool xs

I The source code is nearly the same . . .

can we abstract over
Int and Bool?



Programming with list datatypes (cont.)

I The lengthInt function computes the length of a list of
integers:

lengthInt :: [Int] -> Int

lengthInt [] = 0

lengthInt (_ : xs) = 1 + lengthInt xs

I The lengthBool function computes the length of a list of
integers:

lengthBool :: [Bool] -> Int

lengthBool [] = 0

lengthBool (_ : xs) = 1 + lengthBool xs

I The source code is nearly the same . . .

can we abstract over
Int and Bool?



Programming with list datatypes (cont.)

I The lengthInt function computes the length of a list of
integers:

lengthInt :: [Int] -> Int

lengthInt [] = 0

lengthInt (_ : xs) = 1 + lengthInt xs

I The lengthBool function computes the length of a list of
integers:

lengthBool :: [Bool] -> Int

lengthBool [] = 0

lengthBool (_ : xs) = 1 + lengthBool xs

I The source code is nearly the same . . .

can we abstract over
Int and Bool?



Programming with list datatypes (cont.)

I The lengthInt function computes the length of a list of
integers:

lengthInt :: [Int] -> Int

lengthInt [] = 0

lengthInt (_ : xs) = 1 + lengthInt xs

I The lengthBool function computes the length of a list of
integers:

lengthBool :: [Bool] -> Int

lengthBool [] = 0

lengthBool (_ : xs) = 1 + lengthBool xs

I The source code is nearly the same . . . can we abstract over
Int and Bool?



List Datatype - [a]

I Haskell has type variables – identifiers beginning with a
lowercase letter

I Data type [a] – a list where each element is of type a

I Exactly two constructors:
I [] :: [a]
I (:) :: a -> [a] -> [a]

I A type with type variables is polymorphic, it is instantiated to
a monomorphic type

I A polymorphic length function:

length :: [a] -> Int

length [] = 0

length (_ : xs) = 1 + length xs



List Datatype - [a]

I Haskell has type variables – identifiers beginning with a
lowercase letter

I Data type [a] – a list where each element is of type a

I Exactly two constructors:
I [] :: [a]
I (:) :: a -> [a] -> [a]

I A type with type variables is polymorphic, it is instantiated to
a monomorphic type

I A polymorphic length function:

length :: [a] -> Int

length [] = 0

length (_ : xs) = 1 + length xs



List Datatype - [a]

I Haskell has type variables – identifiers beginning with a
lowercase letter

I Data type [a] – a list where each element is of type a

I Exactly two constructors:
I [] :: [a]
I (:) :: a -> [a] -> [a]

I A type with type variables is polymorphic, it is instantiated to
a monomorphic type

I A polymorphic length function:

length :: [a] -> Int

length [] = 0

length (_ : xs) = 1 + length xs



List Datatype - [a]

I Haskell has type variables – identifiers beginning with a
lowercase letter

I Data type [a] – a list where each element is of type a

I Exactly two constructors:
I [] :: [a]
I (:) :: a -> [a] -> [a]

I A type with type variables is polymorphic, it is instantiated to
a monomorphic type

I A polymorphic length function:

length :: [a] -> Int

length [] = 0

length (_ : xs) = 1 + length xs



List Datatype - [a]

I Haskell has type variables – identifiers beginning with a
lowercase letter

I Data type [a] – a list where each element is of type a

I Exactly two constructors:
I [] :: [a]
I (:) :: a -> [a] -> [a]

I A type with type variables is polymorphic, it is instantiated to
a monomorphic type

I A polymorphic length function:

length :: [a] -> Int

length [] = 0

length (_ : xs) = 1 + length xs



List Datatype [a] - some functions

I head - access the first element:

head :: [a] -> a

head (x : _) = x

I tail - access the rest of a list:

tail :: [a] -> [a]

tail (_ : xs) = xs

I What about a head of an empty list head []?

Error: Non-exhaustive patterns in function head



List Datatype [a] - some functions

I head - access the first element:

head :: [a] -> a

head (x : _) = x

I tail - access the rest of a list:

tail :: [a] -> [a]

tail (_ : xs) = xs

I What about a head of an empty list head []?

Error: Non-exhaustive patterns in function head



List Datatype [a] - some functions

I head - access the first element:

head :: [a] -> a

head (x : _) = x

I tail - access the rest of a list:

tail :: [a] -> [a]

tail (_ : xs) = xs

I What about a head of an empty list head []?

Error: Non-exhaustive patterns in function head



List Datatype [a] - some functions

I head - access the first element:

head :: [a] -> a

head (x : _) = x

I tail - access the rest of a list:

tail :: [a] -> [a]

tail (_ : xs) = xs

I What about a head of an empty list head []?

Error: Non-exhaustive patterns in function head



List Datatype [a] - some functions

I head - access the first element:

head :: [a] -> a

head [] = ???

head (x : _) = x

I tail - access the rest of a list:

tail :: [a] -> [a]

tail [] = ???

tail (_ : xs) = xs

I What is the RHS? We don’t know anything about the type a.



List Datatype [a] - some functions

I head - access the first element:

head :: [a] -> a

head [] = error "Empty list"

head (x : _) = x

I tail - access the rest of a list:

tail :: [a] -> [a]

tail [] = error "Empty list"

tail (_ : xs) = xs

I Haskell has special functions for run-time errors:

I error :: String -> a

prints a specified error and terminates evaluation (program)
I undefined :: a

print a generic error and terminates evaluation



Syntactic intermezzo – functions and operators

I Sometimes we do not want functions (e.g. power, sum) but
operators (e.g. *, ++)

I Consider the following list index function:

at :: [a] -> Int -> a

at 0 (x : _) = x

at i (_ : xs) = at (i - 1) xs

at i [] = error "out of bound"

-- usage: at [1,2,3] 1 ==> 2

I We can use an operator:

(!!) :: [a] -> Int -> a

xs !! i = at xs i

-- usage: [1,2,3] !! 1 ==> 2



Syntactic intermezzo – functions and operators

I Sometimes we do not want functions (e.g. power, sum) but
operators (e.g. *, ++)

I Consider the following list index function:

at :: [a] -> Int -> a

at 0 (x : _) = x

at i (_ : xs) = at (i - 1) xs

at i [] = error "out of bound"

-- usage: at [1,2,3] 1 ==> 2

I We can use an operator:

(!!) :: [a] -> Int -> a

xs !! i = at xs i

-- usage: [1,2,3] !! 1 ==> 2



Syntactic intermezzo – functions and operators

I Sometimes we do not want functions (e.g. power, sum) but
operators (e.g. *, ++)

I Consider the following list index function:

at :: [a] -> Int -> a

at 0 (x : _) = x

at i (_ : xs) = at (i - 1) xs

at i [] = error "out of bound"

-- usage: at [1,2,3] 1 ==> 2

I We can use an operator:

(!!) :: [a] -> Int -> a

xs !! i = at xs i

-- usage: [1,2,3] !! 1 ==> 2



Syntactic intermezzo – functions and operators (cont.)

I Function identifiers
I consist of a lowercase letter followed by zero or more letters,

digits, underscores, and single quotes
I prefix applications (e.g. at [1,2,3] 0)

I Operators
I consist of symbols – %!#$%&*+./<=>?^|-~
I infix application (e.g. [1,2,3] !! 0)

I Special syntax for using an operator in the prefix notation

(!!) [1,2,3] 2

I Special syntax for using a function in the infix notation

[1,2,3] ‘at‘ 2



Syntactic intermezzo – functions and operators (cont.)

I Function identifiers
I consist of a lowercase letter followed by zero or more letters,

digits, underscores, and single quotes
I prefix applications (e.g. at [1,2,3] 0)

I Operators
I consist of symbols – %!#$%&*+./<=>?^|-~
I infix application (e.g. [1,2,3] !! 0)

I Special syntax for using an operator in the prefix notation

(!!) [1,2,3] 2

I Special syntax for using a function in the infix notation

[1,2,3] ‘at‘ 2



Syntactic intermezzo – functions and operators (cont.)

I Function identifiers
I consist of a lowercase letter followed by zero or more letters,

digits, underscores, and single quotes
I prefix applications (e.g. at [1,2,3] 0)

I Operators
I consist of symbols – %!#$%&*+./<=>?^|-~
I infix application (e.g. [1,2,3] !! 0)

I Special syntax for using an operator in the prefix notation

(!!) [1,2,3] 2

I Special syntax for using a function in the infix notation

[1,2,3] ‘at‘ 2



Syntactic intermezzo – functions and operators (cont.)

I Function identifiers
I consist of a lowercase letter followed by zero or more letters,

digits, underscores, and single quotes
I prefix applications (e.g. at [1,2,3] 0)

I Operators
I consist of symbols – %!#$%&*+./<=>?^|-~
I infix application (e.g. [1,2,3] !! 0)

I Special syntax for using an operator in the prefix notation

(!!) [1,2,3] 2

I Special syntax for using a function in the infix notation

[1,2,3] ‘at‘ 2



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49



Non-strict (lazy) semantics - infinite lists

I Consider the following function:

repeat :: a -> [a]

repeat x = x : (repeat x)

this function defines an infinite list of elements, e.g:

repeat 1 ==> [1, 1, 1, 1, 1, 1, ... ]



Non-strict (lazy) semantics - infinite lists

I Consider the following function:

repeat :: a -> [a]

repeat x = x : (repeat x)

this function defines an infinite list of elements, e.g:

repeat 1 ==> [1, 1, 1, 1, 1, 1, ... ]



Non-strict (lazy) semantics - infinite lists (cont.)

I A more useful example – powers of an integer:

powersof :: Integer -> [Integer]

powersof b = pow b 1

where

pow b p = b : pow b (b * p)

this function defines an infinite list, e.g.:

powersof 2 ==> [1, 2, 4, 8, 16, 32, ... ]

I Our power function:

power :: Integer -> Integer -> Integer

power b n = (powersof b) !! n

I Note:
I Int is machine integer (32/64 bits), Integer is arbitrary

precision integer
I where block allows for local-scope definitions



Non-strict (lazy) semantics - infinite lists (cont.)

I A more useful example – powers of an integer:

powersof :: Integer -> [Integer]

powersof b = pow b 1

where

pow b p = b : pow b (b * p)

this function defines an infinite list, e.g.:

powersof 2 ==> [1, 2, 4, 8, 16, 32, ... ]

I Our power function:

power :: Integer -> Integer -> Integer

power b n = (powersof b) !! n

I Note:
I Int is machine integer (32/64 bits), Integer is arbitrary

precision integer
I where block allows for local-scope definitions



Non-strict (lazy) semantics - infinite lists (cont.)

I A more useful example – powers of an integer:

powersof :: Integer -> [Integer]

powersof b = pow b 1

where

pow b p = b : pow b (b * p)

this function defines an infinite list, e.g.:

powersof 2 ==> [1, 2, 4, 8, 16, 32, ... ]

I Our power function:

power :: Integer -> Integer -> Integer

power b n = (powersof b) !! n

I Note:
I Int is machine integer (32/64 bits), Integer is arbitrary

precision integer
I where block allows for local-scope definitions



Non-strict (lazy) semantics - infinite lists (cont.)

I A more useful example – powers of an integer:

powersof :: Integer -> [Integer]

powersof b = pow b 1

where

pow b p = b : pow b (b * p)

this function defines an infinite list, e.g.:

powersof 2 ==> [1, 2, 4, 8, 16, 32, ... ]

I Our power function:

power :: Integer -> Integer -> Integer

power b n = (powersof b) !! n

I Note:
I Int is machine integer (32/64 bits), Integer is arbitrary

precision integer
I where block allows for local-scope definitions



Next time

I Monday the the 25th of January, 2-3PM, Dalhousie 3G05 LT2

I More list functions

I Tuples

I First-class functions

I Folds over lists


