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Recapitulation

I Data type List ([], (:))

I Function definition:

I a set of equations:
<identifier> <pat1> ... <patn> = <expr>

I patterns:
I a value (True, False, 0, ...)
I a variable (x, xs, myVariable, ...)
I – wildcard, ”don’t care” pattern
I list constructors, i.e.: [], (<pathead> : <pattail )

Demo . . .
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Non-strict (lazy) semantics

I In Haskell, expressions are evaluated lazily – not evaluated
until needed

I Consider a variant of our power function:

power’ :: Int -> Int -> Float -> Int

power’ b 0 _ = 1

power’ b n x = b * (power b (n - 1) x)

I Consider the following function call:

power’ 7 2 (1.0 / 0)

==> 7 * (power’ 7 (2 - 1) (1.0 / 0))

==> 7 * (power’ 7 1) (1.0 / 0)

==> 7 * (7 * (power’ 7 (1 - 1) (1.0 / 0)))

==> 7 * (7 * (power’ 7 0 (1.0 / 0)))

==> 7 * (7 * (1))

...

==> 49
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Non-strict (lazy) semantics - infinite lists

I Consider the following function:

repeat :: a -> [a]

repeat x = x : (repeat x)

this function defines an infinite list of elements, e.g:

repeat 1 ==> [1, 1, 1, 1, 1, 1, ... ]
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Non-strict (lazy) semantics - infinite lists (cont.)

I A more useful example – powers of an integer:

powersof :: Integer -> [Integer]

powersof b = pow b 1

where

pow b p = b : pow b (b * p)

this function defines an infinite list, e.g.:

powersof 2 ==> [1, 2, 4, 8, 16, 32, ... ]

I Our power function:

power :: Integer -> Integer -> Integer

power b n = (powersof b) !! n

I Note:
I Int is machine integer (32/64 bits), Integer is arbitrary

precision integer
I where block allows for local-scope definitions
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Tuple Datatype – (a, b)

I Data type (a, b) – type of pairs of values, polymorphic in
both of its components a and b

I One constructor (a, b) :: a -> b -> (a, b)

I E.g. (True, "hello") :: (Bool, String)

I Functions (projections) fst and snd:

fst :: (a, b) -> a

fst (x, _) = x

snd :: (a, b) -> b

snd (_, y) = y

I Note: tuple constructor may be used as a pattern

I There are also triples (a, b, c), quadruples (a, b, c, d),
etc. (no genertic fst and snd though)
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Combining lists and tuples – zip

I zip takes two lists and returns a list of corresponding pairs

I If one input list is short, excess elements of the longer list are
discarded

zip :: [a] -> [b] -> [(a,b)]

zip [] _ = []

zip _ [] = []

zip (a:as) (b:bs) = (a,b) : zip as bs
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Syntactic intermezzo: if then else

I Haskell has a conditional expression:

if <cnd

:: Bool

> then <x

:: a

> else <y

:: a

>

:: a

I <cnd> is an expresion that evaluates to Bool

I Both branches are expressions that evaluates to a value of a
type a

I The whole expression evaluates to the appropriate value of a
type a

I then and else branches may be indented by whitespace

I E.g.:

max :: Int -> Int -> Int

max x y = if x > y then x

else y
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Anonymous (lambda) functions

I Functions without a name

I Syntax:

\<var1> ... <varn> -> <expr>

I Variables var1 to varn in scope in the expression expr

I Anonymous functions:

I can be applied to an argument:
(\x -> 2 + x) 3 ==> 5

I can be passed as an argument . . . functions are values

I E.g.:

2 + 3 :: Int

\x ->

2 + x ::

Int ->

Int

Not in scope: ‘x‘
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Anonymous (lambda) functions (cont.)

I filter, applied to a predicate and a list, returns the list of
those elements that satisfy the predicate

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter pred (x:xs) = if (pred x)

then x : filter pred xs

else filter pred xs

I E.g:

filter (\x -> x ‘mod‘ 2 == 1) [1, 2, 3, 4, 5, 6]

==> [1, 3, 5, 7]

filter (\x -> x ‘mod‘ 2 == 0) [1, 2, 3, 4, 5, 6]

==> [2, 4, 6]
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Anonymous (lambda) functions (cont.)
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First-class functions

I All functions can be passed as arguments, e.g standard
functions even and odd:

filter even [1, 2, 3, 4, 5, 6]

==> [1, 3, 5, 7]

filter even [1, 2, 3, 4, 5, 6]

==> [2, 4, 6]



First-class functions (cont)

I Function type a -> b (right-associative)

I Values of this type are constructed by

I usual function definitions
I lambda constructions

I The following definitions of max are equivalent:

max ::

(

Int ->

(

Int -> Int

))

--

max x y = if x > y then x else y

-- max x = \y -> if x > y then x else y

max = \x y -> if x > y then x else y

I Haskell compiler will figure out types from LHS patterns and
type of RHS expression

I Note: In a function definition all equations must have the
same number of LHS patterns
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I Note: In a function definition all equations must have the
same number of LHS patterns
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Next time

I Monday the the 1st of February, 2-3PM, Dalhousie 3G05 LT2

I More (higher-order) list functions (map, . . . )

I Recursion, folds over lists


