
AC21007: Haskell Lecture 5
Selection Sort, Insertion Sort, and Bubble Sort

Frantǐsek Farka

Recapitulation

I Function type a -> b

I Anonymous functions

I Currying
I Higher order functions

I map, filter
I Folds: foldr, foldl

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:
↓

[] [7, 5, 2, 4]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:
↓

[] [7, 5, 2, 4]

[2]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

↓
[2] [7, 5, 4]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

↓
[2] [7, 5, 4]

[2, 4]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

[2, 4] [7, 5]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

↓
[2, 4] [7, 5]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

↓
[2, 4] [7, 5]

[2, 4, 5]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

[2, 4] [7, 5]

[2, 4, 5] [7]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

[2, 4] [7, 5]

↓
[2, 4, 5] [7]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

[2, 4] [7, 5]

↓
[2, 4, 5] [7]

[2, 4, 5, 7]

Selection Sort

Goal: We must devise an algorithm that sorts a collection of
elements

Solution: From those elements that are currently unsorted, find the
smallest and place it next in the sorted collection.

Example:

[] [7, 5, 2, 4]

[2] [7, 5, 4]

[2, 4] [7, 5]

[2, 4, 5] [7]

[2, 4, 5, 7] []

Selection Sort - C version

I Implementation in C:

void sel_sort(int* a, size_t n) {

for (size_t i = 0, j; i < (n - 1); ++i) {

j = i;

for (size_t k = i + 1; k < n; ++k) {

if (a[k] < a[j])

j = k;

/* int t = a[i]; a[i] =a[j]; a[j] = t; */

swap(a, i, j);

}

}

}

Selection Sort - Haskell version

Goal: . . . an algorithm that sorts a list of elements

Solution: . . . from unsorted, find the smallest and place it next in the
sorted list.

Empty list is trivially sorted!

Function: selSortImpl :: [Int] -> [Int] -> [Int]

selSortImpl sorted [] = sorted

selSortImpl sorted xs =

selSortImpl (sorted ++ [x]) (removeFirst x xs)

where

x = minimum xs

removeFirst _ [] = []

removeFirst a (x:xs) = if x == a

then xs

else x : removeFirst a xs

Selection Sort - Haskell version

Goal: . . . an algorithm that sorts a list of elements

Solution: . . . from unsorted, find the smallest and place it next in the
sorted list. Empty list is trivially sorted!

Function: selSortImpl :: [Int] -> [Int] -> [Int]

selSortImpl sorted [] = sorted

selSortImpl sorted xs =

selSortImpl (sorted ++ [x]) (removeFirst x xs)

where

x = minimum xs

removeFirst _ [] = []

removeFirst a (x:xs) = if x == a

then xs

else x : removeFirst a xs

Selection Sort - Haskell version

Goal: . . . an algorithm that sorts a list of elements

Solution: . . . from unsorted, find the smallest and place it next in the
sorted list. Empty list is trivially sorted!

Function: selSortImpl :: [Int] -> [Int] -> [Int]

selSortImpl sorted [] = sorted

selSortImpl sorted xs =

selSortImpl (sorted ++ [x]) (removeFirst x xs)

where

x = minimum xs

removeFirst _ [] = []

removeFirst a (x:xs) = if x == a

then xs

else x : removeFirst a xs

Selection Sort - Haskell version

Goal: . . . an algorithm that sorts a list of elements

Solution: . . . from unsorted, find the smallest and place it next in the
sorted list. Empty list is trivially sorted!

Function: selSortImpl :: [Int] -> [Int] -> [Int]

selSortImpl sorted [] = sorted

selSortImpl sorted xs =

selSortImpl (sorted ++ [x]) (removeFirst x xs)

where

x = minimum xs

removeFirst _ [] = []

removeFirst a (x:xs) = if x == a

then xs

else x : removeFirst a xs

selSort :: [Int] -> [Int]

selSort = selSortImpl []

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7] [2, 5, 4]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7] [2, 5, 4]

↓
[2, 7]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7] [2, 5, 4]

↓
[2, 7] [5, 4]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7] [2, 5, 4]

↓
[2, 7] [5, 4]

↓
[2, 5, 7]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7] [2, 5, 4]

↓
[2, 7] [5, 4]

↓
[2, 5, 7] [4]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7] [2, 5, 4]

↓
[2, 7] [5, 4]

↓
[2, 5, 7] [4]

↓
[2, 4, 5, 7]

Insertion Sort

Goal: The same . . .

Solution: From those elements that are currently unsorted, take the first
and place it correctly in the sorted list.

Example:

[] [7, 2, 5, 4]

↓
[7] [2, 5, 4]

↓
[2, 7] [5, 4]

↓
[2, 5, 7] [4]

↓
[2, 4, 5, 7] []

Insertion Sort - Haskell version

Function: insSortImpl :: [Int] -> [Int] -> [Int]

insSortImpl sorted [] = sorted

insSortImpl sorted (x:xs) =

insSortImpl (insert x sorted) xs

where

insert y [] = [y]

insert y (z:zs) = if y <= z

then y : (z : zs)

else z : (insert y zs)

insSort :: [Int] -> [Int]

insSort = insSortImpl []

Syntactic intermezzo: let ...in expression

I We know where syntax

I The let ...in epression

let <pat1> = <expr1>

<patn> = <exprn> in <expr>

is a “local” version – variables that are bound in patterns pat1
to patn after evaluating expressions expr1 to exprn are in
scope in expr

I . . . and in expr1 to exprn – bindings may by recursive!

I The expresion has a value of expr .

I E.g.:

\ x -> let (y, z) = x in y + z

let x = 1 : x in x

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!

In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:
↓
[5,2,7,4]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:
↓

[5,2,7,4] → [2,5,7,4]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:
↓

[5,2,7,4] → [2,5,7,4] → [2,5,7,4]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:
↓

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

↓
[2,5,4,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

↓
[2,5,4,7] → [2,5,4,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

↓
[2,5,4,7] → [2,5,4,7] → [2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

↓
[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7] → [2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7] → [2,4,5,7] → [2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7] → [2,4,5,7] → [2,4,5,7] → [2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

[2,4,5,7] → [2,4,5,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

[2,4,5,7] → [2,4,5,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7] → [2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

[2,4,5,7] → [2,4,5,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7] → [2,4,5,7] → [2,4,5,7]

Bubble Sort

Goal: The same . . .

Intuition: In each iteration bubble up the greatest element. But which
one is it?

Solution: Start with the first element and bubble up as long as it is the
greates so far, once we saw greater, continue with that one!
In each iteration, one element is placed (the greates), after n
iterations - n elements placed!

Example:

[5,2,7,4] → [2,5,7,4] → [2,5,7,4] → [2,5,4,7]

[2,5,4,7] → [2,5,4,7] → [2,4,5,7] → [2,4,5,7]

[2,4,5,7] → [2,4,5,7] → [2,4,5,7] → [2,4,5,7]

↓
[2,4,5,7] → [2,4,5,7] → [2,4,5,7] → [2,4,5,7]

Bubble Sort - Haskell version

Function: bubbleSortImpl :: Int -> [Int] -> [Int]

bubbleSortImpl 0 xs = xs

bubbleSortImpl n xs =

bubbleSortImpl (n - 1) (bubble xs)

where

bubble [] = []

bubble (x : []) = x : []

bubble (x : y : ys) = if x <= y

then x : (bubble (y : ys))

else y : (bubble (x : ys))

bubbleSort :: [Int] -> [Int]

bubbleSort xs = let n = length xs

in bubbleSortImpl n xs

Time complexity

I Not that easy as with Turing Machine, RAM, or C

I Abstract, non-mutable structures, no (out-of-box) direct
indexing:

I In C, for ar array, and n index

ar[n]

is a “primitive” action, O(1)!

I In Haskell, for lst list, and n index

lst !! n

is a function call to

(!!) :: Int -> [a] -> a

(x:_) !! 0 = x

(_:xs) !! i = xs !! (i - 1)

in time O(n)

Time complexity

I Not that easy as with Turing Machine, RAM, or C
I Abstract, non-mutable structures, no (out-of-box) direct

indexing:
I In C, for ar array, and n index

ar[n]

is a “primitive” action, O(1)!

I In Haskell, for lst list, and n index

lst !! n

is a function call to

(!!) :: Int -> [a] -> a

(x:_) !! 0 = x

(_:xs) !! i = xs !! (i - 1)

in time O(n)

Time complexity

I Not that easy as with Turing Machine, RAM, or C
I Abstract, non-mutable structures, no (out-of-box) direct

indexing:
I In C, for ar array, and n index

ar[n]

is a “primitive” action, O(1)!
I In Haskell, for lst list, and n index

lst !! n

is a function call to

(!!) :: Int -> [a] -> a

(x:_) !! 0 = x

(_:xs) !! i = xs !! (i - 1)

in time O(n)

Time complexity

I Not that easy as with Turing Machine, RAM, or C

I Lazy evaluation
I In C

int dummy_minimum(int* ar, size_t n)

{

sel_sort(ar, n); // runs in O(n^2)

return arr[0]; // runs in O(1)

}

runs in O(n2)

I In Haskell

dummyMinimum :: [Int] -> Int

dummyMinimum xs =

head (-- runs in O(1)

selSort xs -- only first selection

-- evaluated - in O(n) !

)

runs in O(n)

Time complexity

I Not that easy as with Turing Machine, RAM, or C
I Lazy evaluation

I In C

int dummy_minimum(int* ar, size_t n)

{

sel_sort(ar, n); // runs in O(n^2)

return arr[0]; // runs in O(1)

}

runs in O(n2)

I In Haskell

dummyMinimum :: [Int] -> Int

dummyMinimum xs =

head (-- runs in O(1)

selSort xs -- only first selection

-- evaluated - in O(n) !

)

runs in O(n)

Time complexity

I Not that easy as with Turing Machine, RAM, or C
I Lazy evaluation

I In C

int dummy_minimum(int* ar, size_t n)

{

sel_sort(ar, n); // runs in O(n^2)

return arr[0]; // runs in O(1)

}

runs in O(n2)
I In Haskell

dummyMinimum :: [Int] -> Int

dummyMinimum xs =

head (-- runs in O(1)

selSort xs -- only first selection

-- evaluated - in O(n) !

)

runs in O(n)

Time complexity

I Not that easy as with Turing Machine, RAM, or C

I Abstract, non-mutable structures, no (out-of-box) direct
indexing

I Lazy evaluation

I Some algorithms are naturally imperative, other are functional!

Next time

I Monday the the 15th of February, 2-3PM, Dalhousie 3G05 LT2

I Defined data types

I Ad-hoc polymorphism: Typeclasses

