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Recapitulation

I Sorting algorithms
I Selection Sort
I Insertion Sort
I Bubble Sort



Tail recursion

I A recursive function is tail recursive iff the final result of the
recursive call is the final result of the function itself

I I.e. the outermost function applied in an RHS expression.

I Non-tail recursive sum:

sum : : [ Int ] −> Int
sum [ ] = 0
sum ( x : x s ) = x + (sum xs )

I A tail-recursive version - we use an additional accumulator
acc:

sumAux : : [ Int ] −> Int −> Int
sumAux [ ] acc = acc {− + 0 −}
sumAux ( x : xs ) acc = sumAux ( acc + x ) xs

sum : : [ Int ] −> Int
sum xs = sumAux xs 0
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Tail recursion - Fibonacci numbers

I Fibonacci numbers: Fn =


= 0 n = 0

= 1 n = 1

= Fn−1 + Fn−2 otherwise

0, 1, 1, 2, 3, 5, 8, 13, . . .

I Haskell implementation is straightforward:

f i b : : Integer −> Integer
f i b 0 = 0
f i b 1 = 1
f i b n = f i b ( n − 1) + f i b ( n − 2)

I Can we turn this into a tail-recursive function?
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Tail recursion - Fibonacci numbers (cont.)

I Observation: recursive step performs two recursive calls

I . . . in sum it performs one r.c. and uses one acc . . .

I . . . we are going to use two intermediate values!

I An implementation:

f i b H e l p e r : : Int −> Int −> Int −> Int
f i b H e l p e r 0 v a l 1 v a l 2 = v a l 1
f i b H e l p e r 1 v a l 1 v a l 2 = v a l 2
f i b H e l p e r n v a l 1 v a l 2 =

f i b H e l p e r ( n − 1) v a l 2 ( v a l 1 + v a l 2 )

f i b : : Int −> Int
f i b n = f i b H e l p e r n 0 1
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Tail recursion and folds

I We already saw folds - “schemes” of recursive functions

I We know that e.g. sum can be expressed as a fold:

sum : : [ Int ] −> Int
sum xs = f o l d l (+) 0 xs

or

sum ’ : : [ Int ] −> Int
sum ’ = f o l d r (+) 0

I Is either of these tail-recursive?



Tail recursion and folds (cont.)

I recall recursive steps of foldr and foldl:

f o l d r f z ( x : x s ) = f x ( f o l d r f z )

. . .

f o l d l f z ( x : x s ) = l e t z ’ = z ‘ f ‘ x
i n f o l d l f z ’ x s

I foldr is not tail-recursive but foldl is tail recursive!
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Algebraic Data Types

I We define our own data types by stating data type name and
it’s constructors – both identifiers types and constructors
begin with an uppercase letter

I We already know Bool:

data Bool = False | True

Bool is a type with two constructors: True and False.

I Similarly we can define e.g.:

data S u i t s = Spades
| H e a r t s
| Diamonds
| Clubs
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Algebraic Data Types (cont.)

I We also saw tuples and a constructor (,) – e.g.:

( 1 , ’ c ’ ) : : ( Int , Char )

I Constructors may contain fields of certain type, e.g.:

data MyPair = MyPair Int Char

Note that the name of a type and a name of it’s constructor
can be the same. A value of type MyPair:

myPairVal : : MyPair
myPairVal = MyPair 1 ’ c ’

I Values of algebraic data types are constructed in the same
way as values of lists and tuples.
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Algebraic Data Types (cont.)

I We can also pattern-match on data type values in function
definitions and let-bindings in the very same way as with lists
and tuples:

incMyPa i r : : MyPair −> MyPair
incMyPa i r ( MyPair i c ) = MyPair ( i + 1) c

I . . . but tuple type is more general – (a, b) for any types a

and b
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Algebraic Data Types (cont.)

I Data types may be polymorphic in fields of constructors,

data P a i r a b = P a i r a b

we can specify type variables after the name of type and use
them as types of constructor fields.

I And we can combine all of the above:

data CrazyType a b c
= NoParamCtor
| MonoMorphicCtor1 Int
| MonoCtor2 Str ing [ Char ] Bool
| MonoCtor3 MyPair
| P o l y C t o r 1 a b
| P o l y C t o r 2 a Int
| P o l y C t o r 3 ( P a i r c Int )
| P o l y C t o r 4 ( c −> a , Int )

I We call these data types Algebraic Data Types (ADT’s)
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Some old ADT’s . . .

I The list type is just an ordinary type, the only special thing is
syntactic sugar for “[]” and “(:)”:

data L i s t a = N i l | Cons a ( L i s t a )

length ’ : : L i s t a −> Int
length ’ N i l = 0
length ’ ( Cons xs ) = 1 + length ’ x s

I And the same for tuples, as we already saw:

data P a i r a b = P a i r a b

f s t ’ : : P a i r a b −> a
f s t ’ ( P a i r x ) = x

snd ’ : : P a i r a b −> b
snd ’ ( P a i r y ) = y
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. . . and some new

I Sometimes, we need an extra value:

data Maybe a = Nothing | Just a

sa feHead : : [ a ] −> Maybe a
sa feHead [ ] = Nothing
sa feHead ( x : ) = Just a

I ADT representing binary trees (values are only in leafs):

data BinTree a
= L e a f a
| Node ( BinTree a ) ( BinTree a )

myTree : : BinTree Char
myTree = Node ( L e a f ’ a ’ ) ( L e a f ’ b ’ )
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Type Classes

I So far we saw monomorphic functions, e.g. neg, and, and
polymorphic functions, e.g. fst, head.

I What if we want a function, that is polymorphic only for some
types (ad-hoc polymorphism), e.g. sort for Int, Integer,
and Float?

sort :: [a] -> [a]

sort = ...

We need to constrain type variable a to types, that can be
ordered.

I Ord a is a type class constraint.
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Type Classes (cont.)

I We can define a class of types and specify which functions
(called class methods) are available for types of this class (i.e.
type class behaves as an interface), e.g.:

c l a s s Ord a where
(<=) : : a −> a −> Bool

I We can specify, that a type is and instance of a class – we
provide an implementation of class functions for this type:

instance Ord Int where
x <= y = p r i m i t i v e I n t C o m p a r i s o n x y

instance Ord Float where
x <= y = p r i m i t i v e F l o a t C o m p a r i s o n x y
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Type Classes (cont.)

I Instance definitions can itself be constrained and do
recursively compose. Recall our ADT List:

instance Ord a => Ord ( L i s t a ) where
N i l <= = True
( L i s t x xs ) <= ( L i s t y ys ) =

i f ( x <= y )
then i f ( x == y )

then xs <= ys
e l s e True

e l s e False

I And there is a similar instance for [a]

I That means that if we provide instance Ord OurData we get
Ord [OurData] for free.
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Type Classes (cont.)

I Some standard Haskell type classes:
I Eq a – types with equality, (==)
I Ord a – ordered types, (<), (<=)
I Show a – types that can be pretty printed using show
I Num a – numeric types - (+), (-), (*), abs, signum
I And many more . . .

I Now we can fully understand type of e.g. (+):

GHCi, version 7.10.3:

Prelude> :t (+)

(+) :: Num a => a -> a -> a
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Strong Static Typing

I So far, we always provided a type of top-level definitions
(functions)

I . . . we did not provide a type of functions in e.g. where blocks

I Compiler infers the most generic type of any expression
automatically and in fact we do not need to provide even
types of top level definitions, e.g. for

-- mySum :: ???

mySum = foldr (+) 0 xs

compiler infers the following type:

GHCi, version 7.10.3:

Prelude> :t mySum

mySum :: (Num b, Foldable t) => t b -> b

I Best Practice: Do provide top-level types – types document
functions, and help compiler produce simpler error messages
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Next time

I Monday the the 22th of February, 2-3PM, Dalhousie 3G05 LT2
I More sorting algorithms

I Quick Sort
I Merge Sort

I IO in Haskell (Monads)


