AC21007: Haskell Lecture 7
Quick Sort, Monadic 10

Frantisek Farka

Recapitulation

» Tail recursion

» Sum
» Fibonacci numbers
» Tail recursion and folds

» Algebraic data types
» (Light introduction to) Typeclasses

Quick Sort: Intuition

Choose an element in a list as “pivot”
Move all the elements larger than pivot to its right.

Move all the elements smaller than pivot to its left.

B

Recursively sort elements on left and on right of the pivot

Quick Sort in Haskell

» Quick Sort has two nice aspects:

» Divide and Conquer
> In-place sort

Quick Sort in Haskell

» Quick Sort has two nice aspects:
» Divide and Conquer
> In-place sort
> In-place sort like quick sort requires mutable arrays and
mutable variables.

Quick Sort in Haskell

» Quick Sort has two nice aspects:

» Divide and Conquer
> In-place sort

> In-place sort like quick sort requires mutable arrays and
mutable variables.

» To get pure version of quick sort, we need to forget about
swapping, indexing, mutation.

Quick Sort in Haskell

v

Quick Sort has two nice aspects:

» Divide and Conquer
> In-place sort

v

In-place sort like quick sort requires mutable arrays and
mutable variables.

v

To get pure version of quick sort, we need to forget about
swapping, indexing, mutation.

v

Think in terms of creating new list based on input list.

Quick Sort in Haskell (cont.)

» How to pick a pivot?

Quick Sort in Haskell (cont.)

» How to pick a pivot? Take the first element.

Quick Sort in Haskell (cont.)

» How to pick a pivot? Take the first element.

» Sort a list:

quickSort [] = []
quickSort (x:xs) =
let (left, right) = partition xs x
in quickSort left ++ [x] ++ quickSort right
where
partition [] = (01,
partition (y:ys) =
let (vs, ws)
in if (y < 2)
then (y:vs, ws)
else (vs, y:ws)

N |

partition ys

Quick Sort in Haskell (cont.)

v

Quick Sort has two nice aspects:

» Divide and Conquer
» In-place sort

» Qur version only demonstrate the divide and conquer part.

Worst case time complexity: O(n?)

v

v

Average time complexity: O(nlog n)

Syntactic Intermezzo: case expression

> We saw ADTs
» How do we inspect values of ADTs?

» Pattern matching in function definition
> case expression

Syntactic Intermezzo: case expression

» We saw ADTs
» How do we inspect values of ADTs?

» Pattern matching in function definition
> case expression

» Syntax of case expression:
case <expr> of
<pati> -> <expry>
<pat,> => <exprp>

< expr; > to < exprp, > are of some type a, the case
expression has a value of the type a, e.g.:

case (safeHead somelist) of
Nothing -> "No head"
Just h -> "The head is: " ++ show h

Maybe as a monadic computation

> We saw the Maybe data type

» We saw that we can use it to enrich a range of a function
(e. g. to make a partial function total):

Maybe as a monadic computation

> We saw the Maybe data type

» We saw that we can use it to enrich a range of a function
(e. g. to make a partial function total):

VS.

head :: [a]
head []

head (x:_)
safeHead ::

safeHead []

safeHead (x:_

-> a
error "Empty list"

[a]

X

-> Maybe a
Nothing
Just x

Maybe as a monadic computation

> We saw the Maybe data type
» We saw that we can use it to enrich a range of a function
(e. g. to make a partial function total):
head :: [a] -> a
head [] error "Empty list"
head (x:_)

X

VS.

safeHead :: [a] -> Maybe a
safeHead [] Nothing
safeHead (x:_) Just x

» We will call Maybe is such a situation a context of a
computation

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

sqrtHead :: [Float] -> Float
sqrtHead xs = sqrt (head xs)

» head fails on an empty list
» sqrt fails on a negative number

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

sqrtHead :: [Float] -> Float
sqrtHead xs = sqrt (head xs)

» head fails on an empty list
» sqrt fails on a negative number

> We already have safeHead, can we provide safeSqrt?

safeSqrt :: Float -> Maybe Float
safeSqrt a = if a < 0

then Nothing

else Just (sqrt a)

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

sqrtHead :: [Float] -> Float
sqrtHead xs = sqrt (head xs)

» head fails on an empty list
» sqrt fails on a negative number

> We already have safeHead, can we provide safeSqrt?

safeSqrt :: Float -> Maybe Float
safeSqrt a = if a < 0

then Nothing

else Just (sqrt a)

> Let's compose these two into safeSqrtHead ...

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

sqrtHead :: [Float] -> Float
sqrtHead xs = sqrt (head xs)

safeSqrtHead :: [Float] -> Maybe Float
safeSqrtHead xs = case safeHead xs of

Nothing -> Nothing
Just x -> safeSqrt x

> Note the type signatures:

safeHead :: [a]l -> Maybe a
safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

sqrtHead :: [Float] -> Float
sqrtHead xs = sqrt (head xs)

safeSqrtHead :: [Float] -> Maybe Float
safeSqrtHead xs = case safeHead xs of

Nothing -> Nothing
Just x -> safeSqrt x

... the explicit case is verbose
> Note the type signatures:

safeHead :: [a]l -> Maybe a
safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

safeSqrtHead :: [Float] -> Maybe Float
safeSqrtHead xs = safeHead xs ‘bind‘ safeSqrt

bind :: Maybe Float -> (Float -> Maybe Float)
-> Maybe Float
bind mval func = case mval of
Nothing -> Nothing
Just val -> func val

> Note the type signatures:

safeHead :: [a]l -> Maybe a
safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

safeSqrtHead :: [Float] -> Maybe Float
safeSqrtHead xs = safeHead xs ‘bind‘ safeSqrt

bind :: Maybe Float -> (Float -> Maybe Float)
-> Maybe Float
bind mval func = case mval of
Nothing -> Nothing
Just val -> func val

... What is the most generic type of bind?
> Note the type signatures:

safeHead :: [a]l -> Maybe a
safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

> Lets see how composable this approach is:

safeSqrtHead :: [Float] -> Maybe Float
safeSqrtHead xs = safeHead xs ‘bind‘ safeSqrt

bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind mval func = case mval of

Nothing -> Nothing

Just val -> func val

... What is the most generic type of bind?
> Note the type signatures:

safeHead :: [a]l -> Maybe a
safeSqrt :: Float -> Maybe Float

Monad typeclass

» We can abstract this technique over different data types using
a typeclass (think of data types being “bindable” in the same
way as being “orderable” and Ord typeclass)

Monad typeclass

» We can abstract this technique over different data types using
a typeclass (think of data types being “bindable” in the same
way as being “orderable” and Ord typeclass)

» The Monad t.c. as an interface for binding computations:
class Monad m where

-- an operator instead of our ‘bind‘
(>>=) ::ma->(a->mb) >mb
return :: a ->m a

instance Monad Maybe where

Nothing >>= _ = Nothing
(Just a) >>= f =f a
return a = Just a

The return fnct to embed a pure value into a context

Monad typeclass

» We can abstract this technique over different data types using
a typeclass (think of data types being “bindable” in the same
way as being “orderable” and Ord typeclass)

» The Monad t.c. as an interface for binding computations:
class Monad m where

-- an operator instead of our ‘bind‘
(>>=) ::ma->(a->mb) >mb
return :: a ->m a

instance Monad Maybe where

Nothing >>= _ = Nothing
(Just a) >>= f =f a
return a = Just a

The return fnct to embed a pure value into a context
» And our previous use case:

safeSqrtHead xs = safeHead xs >>= safeSqrt
sqrt0fTwo = return 2 >>= safeSqrt

Unit Data type - ()

» In Haskell all functions return a value
» Sometimes, we are not interested in the actual value

» There is a data type for this — () (unit) — that has a single
constructor—also ().

Monadic 1O

» In Haskell all 10 happens in a context of type I0 a

» I0 encapsulates a state of the real world, you cannot
construct or inspect values of this type directly

Monadic 1O

» In Haskell all 10 happens in a context of type I0 a

» I0 encapsulates a state of the real world, you cannot
construct or inspect values of this type directly

» There are functions that take or return I0 values:

» putStr, putStrln :: String -> I0 ()
» getlLine :: IO String

Monadic 1O

» In Haskell all 10 happens in a context of type I0 a

» I0 encapsulates a state of the real world, you cannot
construct or inspect values of this type directly
> There are functions that take or return I0 values:
» putStr, putStrln :: String -> I0 ()
» getlLine :: IO String

» And there is a Monad IO instance—I0 computation can be
sequenced using bind (>>=), a pure value can be injected
into an I0 context using return:

helloYou = getLine >>= \x —->
putStrLn ("Hello " ++ x)

Monadic 1O

» In Haskell all 10 happens in a context of type I0 a

» I0 encapsulates a state of the real world, you cannot
construct or inspect values of this type directly
» There are functions that take or return I0 values:

» putStr, putStrln :: String -> I0 ()
» getlLine :: IO String
» And there is a Monad IO instance—I0 computation can be
sequenced using bind (>>=), a pure value can be injected
into an I0 context using return:

helloYou = getLine >>= \x —->
putStrLn ("Hello " ++ x)

» We also say that there is an effect, which is performed in a
monadic context (in general, not only I0).

Do Notation

> There is a syntax for monadic computations — do notation

Do Notation

> There is a syntax for monadic computations — do notation
» We call a single call to a function that returns monadic value
an action. We either bind a value in this context to a variable:
var, <- action,
or we ignore this value (we are interested only in the effect)

action,

Do Notation

> There is a syntax for monadic computations — do notation
» We call a single call to a function that returns monadic value
an action. We either bind a value in this context to a variable:
var, <- action,
or we ignore this value (we are interested only in the effect)
action,
and we sequence such actions in a block, while using bound
variables as arguments of other actions (following the action
that binds the variable):
do
var; <- actiong
vars <- actionp

action, var; var;

Do Notation

> There is a syntax for monadic computations — do notation
» We call a single call to a function that returns monadic value
an action. We either bind a value in this context to a variable:

var, <- action,

or we ignore this value (we are interested only in the effect)
action,

and we sequence such actions in a block, while using bound

variables as arguments of other actions (following the action
that binds the variable):

do
var; <- actiong
vars <- actionp

action, var; var;

the result of a do block is the result of last action (this action
must not be a binding of a variable)

IO — A Simple Example

> A simple example of 10:

— | Prompts a user for a number
getNumber :: String — 10 Int
getNumber username = do
putStrLn (" Hello." ++ username ++ "!”
++ " Choose_your_favourite_number:")
x <— getline
putStrLn " Thank_you!”
return (read x)

An overview of 10 functions

putChar ::

putStr ::

putStrLn

getChar ::

getline ::

type

readFile ::

writeFile ::

getArgs ::

Char -> 10 ()
Write a character to the standard output device

String -> I0 O
Write a string to the standard output device

String -> I0 ()
The same as putStr, but adds a newline character.

I0 Char
Read a character from the standard input device

I0 String
Read a line from the standard input device

FilePath = String

FilePath -> I0 String
Returns the contents of the file as a string.

FilePath -> String -> I0 O
Writes a string to a file.

I0 [String] Returns a list of the program’s command line
arguments (in System.Environment)

IO — A More Complex Example
» Read file name from the input, sort it, write it to the output

import System.Environment (getArgs)

main = do
args <— getArgs
if null args
then print "Provide_a_filename”

else do
fileCnt <— readFile (head args)
let cnt :: [Int]

cnt = map read (lines fileCnt)
putStrLn (show (quickSort cnt))
writeFile

(mkName (head args))

("#sorted :." ++ show (length cnt))

where
mkName name = takeWhile (/= '.') name

++ " .out”

> For more detailed description of functions use Hoogle

Last lecture

» This was the last lecture
» Thank you for you patience

» Please send me a feedback or any comments to
frantisek@farka.eu

frantisek@farka.eu

