
AC21007: Haskell Lecture 7
Quick Sort, Monadic IO

Frantǐsek Farka

Recapitulation

I Tail recursion
I Sum
I Fibonacci numbers
I Tail recursion and folds

I Algebraic data types

I (Light introduction to) Typeclasses

Quick Sort: Intuition

1. Choose an element in a list as “pivot”

2. Move all the elements larger than pivot to its right.

3. Move all the elements smaller than pivot to its left.

4. Recursively sort elements on left and on right of the pivot

Quick Sort in Haskell

I Quick Sort has two nice aspects:
I Divide and Conquer
I In-place sort

I In-place sort like quick sort requires mutable arrays and
mutable variables.

I To get pure version of quick sort, we need to forget about
swapping, indexing, mutation.

I Think in terms of creating new list based on input list.

Quick Sort in Haskell

I Quick Sort has two nice aspects:
I Divide and Conquer
I In-place sort

I In-place sort like quick sort requires mutable arrays and
mutable variables.

I To get pure version of quick sort, we need to forget about
swapping, indexing, mutation.

I Think in terms of creating new list based on input list.

Quick Sort in Haskell

I Quick Sort has two nice aspects:
I Divide and Conquer
I In-place sort

I In-place sort like quick sort requires mutable arrays and
mutable variables.

I To get pure version of quick sort, we need to forget about
swapping, indexing, mutation.

I Think in terms of creating new list based on input list.

Quick Sort in Haskell

I Quick Sort has two nice aspects:
I Divide and Conquer
I In-place sort

I In-place sort like quick sort requires mutable arrays and
mutable variables.

I To get pure version of quick sort, we need to forget about
swapping, indexing, mutation.

I Think in terms of creating new list based on input list.

Quick Sort in Haskell (cont.)

I How to pick a pivot?

Take the first element.

I Sort a list:

quickSort [] = []

quickSort (x:xs) =

let (left, right) = partition xs x

in quickSort left ++ [x] ++ quickSort right

where

partition [] _ = ([], [])

partition (y:ys) z =

let (vs, ws) = partition ys

in if (y < z)

then (y:vs, ws)

else (vs, y:ws)

Quick Sort in Haskell (cont.)

I How to pick a pivot? Take the first element.

I Sort a list:

quickSort [] = []

quickSort (x:xs) =

let (left, right) = partition xs x

in quickSort left ++ [x] ++ quickSort right

where

partition [] _ = ([], [])

partition (y:ys) z =

let (vs, ws) = partition ys

in if (y < z)

then (y:vs, ws)

else (vs, y:ws)

Quick Sort in Haskell (cont.)

I How to pick a pivot? Take the first element.

I Sort a list:

quickSort [] = []

quickSort (x:xs) =

let (left, right) = partition xs x

in quickSort left ++ [x] ++ quickSort right

where

partition [] _ = ([], [])

partition (y:ys) z =

let (vs, ws) = partition ys

in if (y < z)

then (y:vs, ws)

else (vs, y:ws)

Quick Sort in Haskell (cont.)

I Quick Sort has two nice aspects:
I Divide and Conquer
I In-place sort

I Our version only demonstrate the divide and conquer part.

I Worst case time complexity: O(n2)

I Average time complexity: O(n log n)

Syntactic Intermezzo: case expression

I We saw ADTs
I How do we inspect values of ADTs?

I Pattern matching in function definition
I case expression

I Syntax of case expression:

case <expr> of

<pat1> -> <expr1>

...

<patn> -> <exprn>

< expr1 > to < exprn > are of some type a, the case

expression has a value of the type a, e.g.:

case (safeHead someList) of

Nothing -> "No head"

Just h -> "The head is: " ++ show h

Syntactic Intermezzo: case expression

I We saw ADTs
I How do we inspect values of ADTs?

I Pattern matching in function definition
I case expression

I Syntax of case expression:

case <expr> of

<pat1> -> <expr1>

...

<patn> -> <exprn>

< expr1 > to < exprn > are of some type a, the case

expression has a value of the type a, e.g.:

case (safeHead someList) of

Nothing -> "No head"

Just h -> "The head is: " ++ show h

Maybe as a monadic computation

I We saw the Maybe data type

I We saw that we can use it to enrich a range of a function
(e. g. to make a partial function total):

head :: [a] -> a

head [] = error "Empty list"

head (x:_) = x

vs.

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (x:_) = Just x

I We will call Maybe is such a situation a context of a
computation

Maybe as a monadic computation

I We saw the Maybe data type

I We saw that we can use it to enrich a range of a function
(e. g. to make a partial function total):

head :: [a] -> a

head [] = error "Empty list"

head (x:_) = x

vs.

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (x:_) = Just x

I We will call Maybe is such a situation a context of a
computation

Maybe as a monadic computation

I We saw the Maybe data type

I We saw that we can use it to enrich a range of a function
(e. g. to make a partial function total):

head :: [a] -> a

head [] = error "Empty list"

head (x:_) = x

vs.

safeHead :: [a] -> Maybe a

safeHead [] = Nothing

safeHead (x:_) = Just x

I We will call Maybe is such a situation a context of a
computation

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

sqrtHead :: [Float] -> Float

sqrtHead xs = sqrt (head xs)

I head fails on an empty list
I sqrt fails on a negative number

I We already have safeHead, can we provide safeSqrt?

safeSqrt :: Float -> Maybe Float

safeSqrt a = if a < 0

then Nothing

else Just (sqrt a)

I Let’s compose these two into safeSqrtHead . . .

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

sqrtHead :: [Float] -> Float

sqrtHead xs = sqrt (head xs)

I head fails on an empty list
I sqrt fails on a negative number

I We already have safeHead, can we provide safeSqrt?

safeSqrt :: Float -> Maybe Float

safeSqrt a = if a < 0

then Nothing

else Just (sqrt a)

I Let’s compose these two into safeSqrtHead . . .

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

sqrtHead :: [Float] -> Float

sqrtHead xs = sqrt (head xs)

I head fails on an empty list
I sqrt fails on a negative number

I We already have safeHead, can we provide safeSqrt?

safeSqrt :: Float -> Maybe Float

safeSqrt a = if a < 0

then Nothing

else Just (sqrt a)

I Let’s compose these two into safeSqrtHead . . .

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

sqrtHead :: [Float] -> Float

sqrtHead xs = sqrt (head xs)

safeSqrtHead :: [Float] -> Maybe Float

safeSqrtHead xs = case safeHead xs of

Nothing -> Nothing

Just x -> safeSqrt x

I Note the type signatures:

safeHead :: [a] -> Maybe a

safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

sqrtHead :: [Float] -> Float

sqrtHead xs = sqrt (head xs)

safeSqrtHead :: [Float] -> Maybe Float

safeSqrtHead xs = case safeHead xs of

Nothing -> Nothing

Just x -> safeSqrt x

. . . the explicit case is verbose

I Note the type signatures:

safeHead :: [a] -> Maybe a

safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

safeSqrtHead :: [Float] -> Maybe Float

safeSqrtHead xs = safeHead xs ‘bind‘ safeSqrt

bind :: Maybe Float -> (Float -> Maybe Float)

-> Maybe Float

bind mval func = case mval of

Nothing -> Nothing

Just val -> func val

I Note the type signatures:

safeHead :: [a] -> Maybe a

safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

safeSqrtHead :: [Float] -> Maybe Float

safeSqrtHead xs = safeHead xs ‘bind‘ safeSqrt

bind :: Maybe Float -> (Float -> Maybe Float)

-> Maybe Float

bind mval func = case mval of

Nothing -> Nothing

Just val -> func val

. . . What is the most generic type of bind?

I Note the type signatures:

safeHead :: [a] -> Maybe a

safeSqrt :: Float -> Maybe Float

Maybe as a monadic computation (cont.)

I Lets see how composable this approach is:

safeSqrtHead :: [Float] -> Maybe Float

safeSqrtHead xs = safeHead xs ‘bind‘ safeSqrt

bind :: Maybe a -> (a -> Maybe b) -> Maybe b

bind mval func = case mval of

Nothing -> Nothing

Just val -> func val

. . . What is the most generic type of bind?

I Note the type signatures:

safeHead :: [a] -> Maybe a

safeSqrt :: Float -> Maybe Float

Monad typeclass

I We can abstract this technique over different data types using
a typeclass (think of data types being “bindable” in the same
way as being “orderable” and Ord typeclass)

I The Monad t.c. as an interface for binding computations:

class Monad m where

-- an operator instead of our ‘bind‘

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

instance Monad Maybe where

Nothing >>= _ = Nothing

(Just a) >>= f = f a

return a = Just a

The return fnct to embed a pure value into a context
I And our previous use case:

safeSqrtHead xs = safeHead xs >>= safeSqrt

sqrtOfTwo = return 2 >>= safeSqrt

Monad typeclass

I We can abstract this technique over different data types using
a typeclass (think of data types being “bindable” in the same
way as being “orderable” and Ord typeclass)

I The Monad t.c. as an interface for binding computations:

class Monad m where

-- an operator instead of our ‘bind‘

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

instance Monad Maybe where

Nothing >>= _ = Nothing

(Just a) >>= f = f a

return a = Just a

The return fnct to embed a pure value into a context

I And our previous use case:

safeSqrtHead xs = safeHead xs >>= safeSqrt

sqrtOfTwo = return 2 >>= safeSqrt

Monad typeclass

I We can abstract this technique over different data types using
a typeclass (think of data types being “bindable” in the same
way as being “orderable” and Ord typeclass)

I The Monad t.c. as an interface for binding computations:

class Monad m where

-- an operator instead of our ‘bind‘

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

instance Monad Maybe where

Nothing >>= _ = Nothing

(Just a) >>= f = f a

return a = Just a

The return fnct to embed a pure value into a context
I And our previous use case:

safeSqrtHead xs = safeHead xs >>= safeSqrt

sqrtOfTwo = return 2 >>= safeSqrt

Unit Data type - ()

I In Haskell all functions return a value

I Sometimes, we are not interested in the actual value

I There is a data type for this — () (unit) — that has a single
constructor—also ().

Monadic IO

I In Haskell all IO happens in a context of type IO a

I IO encapsulates a state of the real world, you cannot
construct or inspect values of this type directly

I There are functions that take or return IO values:

I putStr, putStrLn :: String -> IO ()
I getLine :: IO String

I And there is a Monad IO instance—IO computation can be
sequenced using bind (>>=), a pure value can be injected
into an IO context using return:

helloYou = getLine >>= \x ->

putStrLn ("Hello " ++ x)

I We also say that there is an effect, which is performed in a
monadic context (in general, not only IO).

Monadic IO

I In Haskell all IO happens in a context of type IO a

I IO encapsulates a state of the real world, you cannot
construct or inspect values of this type directly

I There are functions that take or return IO values:

I putStr, putStrLn :: String -> IO ()
I getLine :: IO String

I And there is a Monad IO instance—IO computation can be
sequenced using bind (>>=), a pure value can be injected
into an IO context using return:

helloYou = getLine >>= \x ->

putStrLn ("Hello " ++ x)

I We also say that there is an effect, which is performed in a
monadic context (in general, not only IO).

Monadic IO

I In Haskell all IO happens in a context of type IO a

I IO encapsulates a state of the real world, you cannot
construct or inspect values of this type directly

I There are functions that take or return IO values:

I putStr, putStrLn :: String -> IO ()
I getLine :: IO String

I And there is a Monad IO instance—IO computation can be
sequenced using bind (>>=), a pure value can be injected
into an IO context using return:

helloYou = getLine >>= \x ->

putStrLn ("Hello " ++ x)

I We also say that there is an effect, which is performed in a
monadic context (in general, not only IO).

Monadic IO

I In Haskell all IO happens in a context of type IO a

I IO encapsulates a state of the real world, you cannot
construct or inspect values of this type directly

I There are functions that take or return IO values:

I putStr, putStrLn :: String -> IO ()
I getLine :: IO String

I And there is a Monad IO instance—IO computation can be
sequenced using bind (>>=), a pure value can be injected
into an IO context using return:

helloYou = getLine >>= \x ->

putStrLn ("Hello " ++ x)

I We also say that there is an effect, which is performed in a
monadic context (in general, not only IO).

Do Notation
I There is a syntax for monadic computations — do notation

I We call a single call to a function that returns monadic value
an action. We either bind a value in this context to a variable:

varn <- actionn

or we ignore this value (we are interested only in the effect)

actionn

and we sequence such actions in a block, while using bound
variables as arguments of other actions (following the action
that binds the variable):

do

var1 <- action1
var2 <- action2
...

actionn vari varj

the result of a do block is the result of last action (this action
must not be a binding of a variable)

Do Notation
I There is a syntax for monadic computations — do notation
I We call a single call to a function that returns monadic value

an action. We either bind a value in this context to a variable:

varn <- actionn

or we ignore this value (we are interested only in the effect)

actionn

and we sequence such actions in a block, while using bound
variables as arguments of other actions (following the action
that binds the variable):

do

var1 <- action1
var2 <- action2
...

actionn vari varj

the result of a do block is the result of last action (this action
must not be a binding of a variable)

Do Notation
I There is a syntax for monadic computations — do notation
I We call a single call to a function that returns monadic value

an action. We either bind a value in this context to a variable:

varn <- actionn

or we ignore this value (we are interested only in the effect)

actionn

and we sequence such actions in a block, while using bound
variables as arguments of other actions (following the action
that binds the variable):

do

var1 <- action1
var2 <- action2
...

actionn vari varj

the result of a do block is the result of last action (this action
must not be a binding of a variable)

Do Notation
I There is a syntax for monadic computations — do notation
I We call a single call to a function that returns monadic value

an action. We either bind a value in this context to a variable:

varn <- actionn

or we ignore this value (we are interested only in the effect)

actionn

and we sequence such actions in a block, while using bound
variables as arguments of other actions (following the action
that binds the variable):

do

var1 <- action1
var2 <- action2
...

actionn vari varj

the result of a do block is the result of last action (this action
must not be a binding of a variable)

IO – A Simple Example

I A simple example of IO:

−− | Prompts a u s e r f o r a number
getNumber : : Str ing −> IO Int
getNumber username = do

putStrLn (” H e l l o ” ++ username ++ ” ! ”
++ ” Choose your f a v o u r i t e number : ”)

x <− getLine
putStrLn ”Thank you ! ”
return (read x)

An overview of IO functions

putChar :: Char -> IO ()

Write a character to the standard output device

putStr :: String -> IO ()

Write a string to the standard output device

putStrLn :: String -> IO ()

The same as putStr, but adds a newline character.

getChar :: IO Char

Read a character from the standard input device

getLine :: IO String

Read a line from the standard input device

type FilePath = String

readFile :: FilePath -> IO String

Returns the contents of the file as a string.

writeFile :: FilePath -> String -> IO ()

Writes a string to a file.

getArgs :: IO [String] Returns a list of the program’s command line
arguments (in System.Environment)

IO – A More Complex Example
I Read file name from the input, sort it, write it to the output

import System . Env i ronment (getArgs)

main = do
a r g s <− getArgs
i f n u l l a r g s

then p r i n t ” P r o v i d e a f i l e n a m e ”
e l s e do

f i l e C n t <− r eadF i l e (head a r g s)
l e t cn t : : [Int]

cn t = map read (l i n e s f i l e C n t)
putStrLn (show (q u i c k S o r t c nt))
wr i t eF i l e

(mkName (head a r g s))
(”#s o r t e d : ” ++ show (length cn t))

where
mkName name = takeWhile (/= ’ . ’) name

++ ” . out ”

I For more detailed description of functions use Hoogle

Last lecture

I This was the last lecture

I Thank you for you patience

I Please send me a feedback or any comments to
frantisek@farka.eu

frantisek@farka.eu

