Lambda calculus

Part II
Lambda Calculi with Types

Based on materials provided by H. Barendregt

Lambda calculus I

Types

are certain objects, usually syntactic expressions
(e.g. boolean, integer, Char), that may be assigned to terms
denoting programs.

Types serve to classify the (objects denoted by the) terms.

Semantics.

Each type o has as semantics a set D, of ,,objects of type
c*“. There are several systems of type assignment with
different collections of types.

For more complicated type systems the semantics D; will in
general be not a set, but an object in some category.

Lambda calculus II 2

Type assignment is done for the following reasons.

Firstly, the type of a term F' gives partial specification of
what the function F is supposed to do. Usually
specification of this type is given before the term as program
is constructed.

Once this term has been constructed, the verification
whether this term is indeed of the required type provides
partial correctness proof for the program.

Secondly, types play a role in efficiency. If it is known that a
subterm S of a program has a certain type, then S may be
executed more efficiently by making use of the type
information.

Lambda calculus 11 3

To explain the idea of type assignment, we present type
systems of various strengths.

We start with the system A - of simply typed lambda
calculus. We shall distinguish between typing a la Curry and
a la Church by introducing A - in both ways.

Several other systems of typed lambda calculus exist in a Curry
and a Church version. However it is not so for all systems.

For example, for the Curry system A n of intersection types it is
not clear how to define its Church version and for the Church
system \(C (calculus of constructions) it is not clear how to
define a Curry version.

For the systems that exist in both styles there is a clear relation.

Lambda calculus 11 4

The system A — -Curry

1s assigning elements of a given set T of types to type free
lambda terms. For this reason the calculi a /a Curry are
sometimes called systems of type assignement.

The system A — -Curry consists of

(1) the set of fypes of A — , notation Type(A -). We
write T= Type(A -) for short.

(i1) the finite set of rules.

We shall start with a lot of definitions.

Lambda calculus I

Definition.(The set of types of A -)
The set of types T=Type(A -) is defined inductively,

a,a’,a”’,...0T (type variables)
o, TUT= (0 - 7)UT (function space types)

or in abstract syntax

T=V|T->T
where V is defined by

vV=a|V' (type variables)

Lambda calculus II

Notation.

1 If o,,...,0, 0T then
0,-0,-..-0

n

stands for
0, -(0,-...-(0,_, -0)..)),

hence , we use association to the right.

(i) a,B,V,... denote arbitrary type variables.

Lambda calculus 11

Definition (A _, -Curry).

A statement M:c is derivable from a basis I, notation

r | _)\—»—CurryM :0
(or
MN-.M:0
or
N-mM:o

if there is no danger of confusion) if I'|-M :0 can be
produced by the folowing rules

Lambda calculus 11

A —-Curry (version 0)

(x:0)UlN=>T|-x:0

MN-mM:0-1,lN-N:o=>TI|-(MN):1

Mx:0|-M:1=>T|-(Ax.M): (0 > 1)

Here [,x:0 stands for I O{x:0} and x 0 Dom ([)in
orderto M'J{x:0} be a basis.

If r={x,:0,...,x, :0,}we can write instead of ' |-M :0
X,:0,5...,x,:0,|—-M :0. If T is empty, we write | =M :O.

We pronounce |- as “yields” or ,,is derivable®.

Lambda calculus I 9

The rules given in Version 0 are usually expressed as follows.

A - _Curry (Version 1)

(axiom) M —=(x:0) if (x:o)dr

MN-M:o-1) l|-N:co
(~ -elimination) I —=(MN):1

MNx:0|-M:t1
MN-Ax.M):(c - 1)

(- -introduction)

The following is the natural deduction formulation

A = -Curry (Version 2)

Elimination rule

Introduction rule

M:(-1) N:O

xjo

M:t

(MN):1

Ax.M):(0 - 1)

Lambda calculus 11

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

X:0
M:1

Means that from the assumption X : O together with a set I" of other
statements, one can derive M : T.

Lambda calculus 11 12

The basic axiom of Versions 0 and 1 is considered here as implicit and
is not mentioned. The notation

M:T

Means that from the assumption X : O together with a set I" of other
statements, one can derive M : T.

The rule of — -introduction in the table states that
Ax.M):(0 - 1)
is derivable even without the assumption X :0 but still using I'.

This process is called cancellation of an assumption and is indicated
by the striking through the statement x-+-6-.

Lambda calculus I 13

Example.
(a) Using Version 1 of the system the derivation
X:0,y:T|—-x:0
x:0|=Ay.x):(T - 0)
|=(Axy.x): (0 > T - O)

Shows that| —(Axy.x):(0 - T - o) forall o,TOT.

Lambda calculus II

Example.
(a) Using Version 1 of the system the derivation
X:0,y:T|—x:0
x:0|=Ay.x):(T > 0)
|=(Axy.x): (0 - T -» O)

Shows that| —=(Axy.x): (0 - T » o) forall o,TOT.

(b) Using Version 2, a natural deduction derivation of the same type
assignment is

Ly S L
xX:0
Ay.x): (T - 0)
Axy.x):(0 - T - 0)°

The indices 1 and 2 are bookkeeping devices that indicate at which
application of a rule a particular assumption is being cancelled.

Lambda calculus 11

(c) For all gOT we have

| -(Ax.x): (0 > O)

Lambda calculus 11

(c) For all cOT we have

| -(Ax.x): (0 - O)

Indeed X:0|-x:0

| =(Ax.x): (0 > O)

Lambda calculus I

17

(¢) For all cOT we have

| -(Ax.x): (0 > O)

Indeed X:0|-x:0

| -(Ax.x): (0 > O)

(d) y:0|=-(Ax.x)y:0

Lambda calculus II

(c) For all cOT we have

| -(Ax.x): (0 > O)

Indeed x:0|-x:0

| —-(Ax.x): (0 - O)

(d) y:0|=-(Ax.x)y:0

It follows from (c) and Elimination rule that

| -(Ax.x): (0 - O)
y:0|—-(Ax.x)y:0

Lambda calculus 11 19

Properties of A - -Curry

Several properties of type assignment in A — are valid. First, we analyse
how much of a basis is necessary in order to derive a type assignment.

Definition.

(i)Let '={x,:0,,...,x,:0,} be a basis. We consider T as a partial
function from the set of term variables to the set of types.

(ii) Then dom(T') = {X,5 .., X, } is the domain of I' and we write

I'(x;) =0, for the value of T i.e. The type which is assigned to the
variable X;.

(iii) Let V"' be a set of term variables, the restriction of I'to "

is defined as follows [|V'={x:0|x0V'& =T (x)}.

Lambda calculus 11 20

(iv) For types o,tOT, and a type variable o, the substitution of =t
for @ in ¢ is denoted by ofa:=T1].

Basis lemma for A - -Curry

Let I' be a basis.

@M If r,ror' isanotherbasis, then [|-M :0=T"|-M : 0.
(1) T|-M :0= FV(M) O dom(I").

(i) F|-M:0=T |FV(M)|-M :0.

Lambda calculus I 21

Proof.

Since such proofs will occur frequently, we produce it in full only for the
first statement in order to be briefer later on.

(i) We proceed by induction on the derivation of I'|-M :0.

Case 1. M : 0 is x:o and this declaration is an element of I'. Then also
x:o0r" andthus M| -M :0.

Case2.M:0 is (M,M,):0 and it follows directly from two
assignments M, :(T - 0) and M,:T for some t. By
the Induction Hypothesis one has ['|-M,:(T - O)
and IM'|-M,:1.Thus I''|—-(M ,M,): 0.

Lambda calculus II 22

Case3.M:o0 is (Ax.M,):(0, - 0,) and it follows directly
from [,x:0,|-M,:0,. by the convention concerning
bounded variables, one may assume that the variable x does not
occur in the domain of ', Therefore by the Induction
Hypothesis one has r,x:o,|-M,:o, and thus

M -(Ax.M,): (G, - G,).

(i1) By induction on derivation of M :c. We prove only the case

that M:c is (Ax.M,):(0, - 0,) and follows directly from

the assumption I, x:0,|-M,:0,.

Let yOFV(Ax.M,), then yOFV(M,) and y EX. By
the Induction Hypothesis one has y Odom (', x:0,) and
hence yUOdomTl .

Lambda calculus 11

(ii1) By induction on the derivation of M :0c. We only treat the case
that M :c is (M, M,):0 and follows directly from

M-M,:(t-0) and T |-M,:T
for some I, 1. By the Induction Hypothesis one has

FEV(M)|-M,:(t -0) and T |FV(M,)|-M,:T.

As FV(M,M,)=FV(M,)0FV(M,), by (i) one has that
FEVIMM,))|-M,: (T >0) and T [FV(M,M,)|-M,:1
and hence [|FV(M,M,)|-(M ,M,):0.

Lambda calculus 11

24

Now we show how terms of a certain form get typed. It
gives us new insight, among other things we can show
that certain terms have no types.

Generation lemma for A - -Curry
@) MN-x:0=(x:0)0r

@) M-MN):1=> o[l -M:(0 - D&IN|-N:0]
(i) |- Ax.M):p= o, T[M,x:0|-M :T&P=(0 - T)]

Proof. By induction on the length of derivation.

Lambda calculus I 25

Typability of subterms in A —-Curry

Let M' be a subterm of M. Then
[-M:o=T|-M"g'

for some M and @'

In other words: if M has a type which means that for some
F|-=M :0 thenevery subterm M'of M has a type as well. Note
that the subterm may be typed from a different basis.

Proof. By induction on the complexity of M.

Lambda calculus II

26

Substitution lemma for A - -Curry.

() r-M:o=r[a:=1]|-M:0fa:=1]
where o is a type variable.

(1) If Mx:0|-M:Tandl|-N:g, then |- M[x:=N]:t

Proof.
(1) By induction on derivation of ' |- M : 0.

(11) By induction on generation of [,x:0|—=M : 1

Lambda calculus 11

27

Subject reduction theorem for A - -Curry

Let M ->; M'. Then
N-M:0 = rr|-m":o.
Proof.

By induction on generation of ->, using Generation lemma and
Substitution lemma. We shall treat the prime case 7 _, . M.
Assume that M =(Ax.P)Q, M'= P[x:=Q] and

M -Ax.P)0:0

Then it follows by the Generation lemma that for some 1 one has

MN-Ax.P):(t -0) and IN|-Q:1

Lambda calculus 11

28

Using once more the Generation lemma, we get

MNx:1T|—-P:0 and I|-Q:1

And therefore by the Substitution lemma, we have

MN-Plx:=0]:0

Lambda calculus I

29

Using once more the Generation lemma, we get

MNx:1t|—P:0 and I|-Q:1

and therefore by the Substitution lemma, we have
MN-Plx:=0]:0

Exercises.

Let T=(Ax.x), K=(Axy.x) and S =Axyz.xp(yz)).

Show that for all o,T,p0T, one has
(@)[-8:(0-T-p - (0-T)-(0-p)
(®)|-SK:(0 - T) -0 -0
(©)|-KI:(T - 0 - 0)

Lambda calculus II 30

Type assignments.

(@ S=Axyz.xz(yz)

—xHe=T=p) yiHe=T) z:0
(2):1 (x2):(T - p)
(xz)(yz):p
Az.(x2)(y2): (0 - p)’
Myz.(x2)(y2): (0 - T) - (0 - p)’

Axyz(x2)(y2) (0 » T - P) » (0 - T) - (O - p)’

Lambda calculus 11 31

(b) SK = (Axyz.xz(yz))(Axy.x) = (Axyz.xz(yz))(Auv.u)

We have N vt
A (T - o)

5 by — —introduction
AUV . (0‘ N 0')

Hence

[-K=Axy.x:(0 - T - O)
It follows from (a) and _, —elimination that

|-SK:(0—>T) - 0 - 0.

Lambda calculus 11 32

The set of Typable terms is not closed under expansion.

Wehave |-1:(0 - 0), but |#+KI(Ax.xx):(0 - O).
A stronger failure of subject expansion has shown van Bakel.

Observation. (van Bakel 1991)

There are M,M'0A and 0,0'UT such that M —>; M'

and |- M :a0,

|I-M'":a',

but
|+ M': 0.

Lambda calculus I 33

Proof. Take M =Axy.y, M'=SK, 0=a - (B - B) and
a=@B-a)-P-P).

Then use the fact that |+#SK:a - (B - PB).

Exercises.

Show that

(@) |+SK:(T - 0 - 0) forall oO,T.
(b) (Ax.xx) and KI(Ax.xx) havenotypein A - .

Lambda calculus II

34

Proof.
(a) If |-SK =Axyz.xz(yz))(Axy.x): (T - 0 - O)
Then by the generation lemma

o [| —~(Axyz.xz(yz)) :p - (T » 0 - 0) & | —(Axy.x): p]

using the Generation lemma again, we obtain

(PO, v [x:

| =Ayz.xz(yz)): V&P - (T - 0 - O) = (U - V)& | —(Axy.x): p]

Lambda calculus 11 35

It follows that

HEP&LE(T - 0 - 0)
hence

p[x:p|-(Ayz.xz(y2)): (T - 0 - 0)&|-(Axy.x): p].

using the Generation lemma repeatedly, we have
[PLE,¢[x:p,y:€
|-Az.xz()2)): 0 & (€ - $)=(T - 0 - 0)& | —(Axy.x):p]

Lambda calculus 11

36

thus

EST&P=0-0

hence, we have

ox:p,y:T|=(Az.xz(y2)) : T & | =(Axy.x) : p]

now

olx:p,y:T|—(Azxz(yzij: T & =(Axy.x):(p - T - p)]

a contradiction.

(b) Assume that for some I',0, holds I' | — (Ax.xx) : . It follows from

the Generation lemma that
o, T[M,x:p|—xx:T& (P - T)=0]

then
o, T [Myx:p|—xx:T&x:({ -)& x:{]

Lambda calculus I 37

hence

o, t O [Mx:p|=x:(l - D& x:{ & (p > T)=0]
p,TMx:pl=-x:(p > D& (P - T)=0]
o, T[Mx:p|=x:(p - DI

a contradiction. Thus (Ax.xx) hasnotypein A —» —Curry.

KI(Ax.xx) has no type by the Typability of subterms lemma.

Lambda calculus II

38

The system A - —Church A digression.

At the first sight, the main difference between the Curry systems of
type assignment and Church typing systems consists in the fact that
in the Curry system, the bounded variables are typed implicitely by
the system while in the Church typing system, the bounded
variables are typed explicitely.

But there is in it more than that:
one has

| =y Ax.X) 2 (0 O) for every typea,
while

| = chren AX 1 0.X) (O - O).

Lambda calculus 11 39

The term (Ax.x) is annotated in the Church sustem by ,:c°, in fact it is
not a lambda term in the strict sense.

The intuitive meaning is that (Ax:c.x) takes the argument x from the
domain of the type o. The explicit mention of types in terms make it
possible the type checking i.e. to decide whether a term has a certain type.
For some Curry systems this question is undecidable.

Definition. (pseudoterms)

Let T be some set of types. The set of T-annotated A-terms (also called

pseudoterms), denoted by A, is defined as follows:

Ay =V [AA; [Ax:TA,

where V is the set of term variables.

Lambda calculus 11 40

The same syntactic conventions are used for A, asfor A, e.g.
)\)C] H G])\xn :O'n.M = ()\x] H 01()\X2 N 02 (Axn H Gn.M)))
=Ax:0.M

Remark.

Several systems of typed A-calculi ‘a la Church resemble to the
Curry systems of type assignments since they consist of a choice of

the set T of types and of an assignment of types oOT to terms
MOAN,.

However, this is not the case in all systems ‘a /a Church. In some
such systems the sets of terms and types are defined simultaneous-

ly.

Lambda calculus I

41

Anyway, for A . —Church the separate definition of the sets of types
and and (pseudo)terms is possible and one may have the same set of
types T =Type(A —) as for A - —Curry.

Definition.

The typed lambda calculus A — —Church consists of

(i) the set of types T =Type (A ») defined by
T=V|T->T
where V is the set of type variables.

(ii) statements of the form M :0 with M O and cOT.

Lambda calculus II 42

(iii) bases which are again sets of statements with only distinct
(term) variables as subjects.

(iv) axioms and rules A - —Church

(axiom) MN-x:0 if (x:0)0l

N-M:(c-1) IN|-N:o
MN-(MN):t

(- -elimination)

MNx:0|-M:1

— -introducti
(= -ntro ucwn)ﬂ-()\x:c.M):(G—»T)

Definition.

A statement M :c is derivable from the basis I, notation I |- M :c,

if M :c can be produced using the above axioms and rules.
Lambda calculus 1II

As we have seen, derivations can be given in several styles. We will not
repeat it here, although we slightly prefere the Gentzen (natural deduct-
ion) style.

Definition.
The set of legal A — —terms, denoted by A(A -), is defined by

AN -)=MOA,|O0,0 |-M:a}.
To refer specifically to A — —Church, one uses the notation

r | _A—»—ChurchM :0.

If there is little danger of ambiguity one uses also

[=r. > |=Chuen OF [|—

Lambda calculus 11 44

Exercises.
(@)= (Ax:0.x):(0 - 0)
®|-Ax:0Ay:1.x): (0 > T > 0)
©)]|=-Ay:1.x):(T > 0)

Similarly as for the type-free theory, one can define reduction and
conversion on the set of pseudoterms A,.

Definition.

The binary relations -, —>5 and =, denoting one-step

P-reduction, many-steps P-reduction and p-convertibility on A;.

respectively, are generated by the contraction rule
(Ax:0.M)N - M[x:=N].

Lambda calculus I

45

Examples.
(@) Ax:0.x)Ay : T.)y) -5 Ay :T.p)
(D) Ax:0Ay : T.xp)(Az:TLz) > (Ay:T.y)
(©(Ax:0Ay:T.2p)(Az: TLZ)z - >, (22)

Remarks.

(i) It can be shown that the Church-Rosser theorem for —>; also
holds on A,.

(ii) The following results for A - —Church are essentially the
same as the corresponding propositions for A - —Curry.

Lambda calculus II 46

Basis lemma for A - —Church.

Let T" be a basis, we have
(i) If I’,r O T is another basis, then ' |-M :0=T"|-M :0.

(i) F|-M:0= FV(M)Odom(I).
(ir|-M:0=>T |FV(M)|-M :0.

Generation lemma for A — —Church.
() M=-x:0=(x:0)0T.

(i) [|=MN:1= o[l |-M : (0 -)& |- N:0].

() F|-=Ax:0.M):p=> [p=(0 -)& ,x:0|—-M :1].

Lambda calculus 11 47

Typability of subterms in \ _, —Church.
If M’ isasubterm of M and M hasatype ie.if | =g M :O
for some I and 0, then M” has a type as well, i.e. [=, M:0

for some ["ando’.

Substitution lemma for A — —Church.

(i) T|-M:o=>T[a:=1]|-M[a:=1]:0[a:=T].

(i1) Suppose [,x:0|-M:Tand I|-N:0O.
Then MN-Mlx:=N]:1,

where o, x are a type and a term variable respectively and o, T are
types.

Lambda calculus 11 48

Subject reduction Theorem for \ _, —Church.
Let M ->,M'.Then T |-M:0=Tl|-M"o0.

Remark.

This theorem implies that the set of legal expressions is closed under
reduction. It is not closed under expansion and conversion.

Take 1=, KIQ annotated with appropriate types. It follows from
the Typability of subterms lemma that KIQ has no type.

On the other hand convertible /egal terms have the same type with
respect to a given basis.

Lambda calculus I 49

Lemma on uniqueness of types for A —. —Church.
() Let r|-M:0and M|-M:0. Then C=0.
() Let[-M:0,[|-M":0" and M =3 M’. Then 0=0".

Proof.
(i) By induction on the structure of M.

(i1) Use the Church-Rosser Theorem for A, the subject
reduction theorem for A » —Church, and (i).

We have seen that this proposition does not hold for A —» —Curry.

Lambda calculus II 50

Relating the Curry and Church systems

For typed lambda calculi that can be described in both ways d /a Curry
and d la Church, often a simple relations can be defined between the
two versions. We shall show it for the simplest calculus A - .

Definition

There is a ,,forgetful” mapping ‘ ‘ : Ay - A defined as follows
X =x
MN|=[M|N
‘)\x : G.M‘ =)\x.‘M‘
The mapping just erases all annotations of a term in A .

Lambda calculus 11 51

The following results show that legal pseudoterms in the Church
version of A — ‘project’ to legal terms in the Curry version of

)
On the other hand, legal terms in)\ — —Curry can be
lifted” to legal terms in A — —Church.

Theorem.
(i) (projection) Let M OA;. Then

C] =cpwes M 10T | =, [M|:0.

(ii) (lifting) Let A7 OA. Then
M-

Proof.
By induction on the derivation of the respective type assignment.

M :0= OM ONT | =g M:0 & M| = M].

Curry

Lambda calculus 11

Corollary.

For an arbitrary type oOT, we have
O is inhabited in N - —Curry = O isinhabited in N - -Church.

Lambda calculus I 53

Bohm trees and Approximation. A digression.

To the rule A we need to introduce Bohm trees which are
a kind of ’“infinite normal forms’.

Lemma.
Each A7 OA is in one of the following forms.
(i) M =Xx,...x,.yN,...N,,, with n,m =20, and y a variable.

(i) M =Ax,...x,.(Ay.N,)N,...N, ,withn 20,m 2 1.

Lambda calculus II 54

Proof.

By the definition a A-term is either a variable, or of the form of application
PQ or an abstraction Ax.P. We have to analyze three cases:

(a)if M is a variable, then M is of the form (i) with n =m = 0.
(b) if M is an application, then

M =PP ... P, with P, notan application. Then M isof the form (i) or (ii)

with n =0, depending on whether P, isa variable(giving (i)) or an abstraction
giving (ii).

Lambda calculus 11 55

(c)if M =Ax.P,where P=MAxAx,...Ax,.Q, k=0 and Q is not
an abstraction. Then @ is a variable or an application and it follows
from the Induction hypothesis that Q is in one of forms (i) or (ii)

forn = 0. Adding the prefix AxAx Ax, ... Ax, does not change the
form.

Lambda calculus 11

56

The following definition deals with the two forms of A-terms from the
above lemma.

Definition. (head normal form, head redex)

(i) AA-term M isin head normal form (hnf) if M is in the form (i) of
the above lemma. In that case y is called the head variable of M.

(i) We say that M has an head normal form if there is N in hnf such
that s = N.

(iii) If M is in the form (ii), we call (Ay.N,)N, the head redex of M.

Lambda calculus I 57

Lemma. (convertibility of head normal forms)
If M=;M" and
M hashnf A7 =Ax,...x,.yN,...N,,

M’ hashnf M, =Ax,..x,..y’N,...N,’,

then n:n',yEy',mzm' and Nl:BN’],""N =BN’ .

m m

Lambda calculus II 58

Proof.

By the Church-Rosser theorem M, and M, have a common reduct
L. But then the only possibility is that

L=Ax,..x,.y" " N, ...N"" ..

m

where

n=n"=n,y=y"'=y,m=m’=m" and N, =, N =, N'},...

Lambda calculus 11 59

AO-calculus a digression.

Definition.

AO—calculus is the extension of the lambda calculus defined as
follows. One of the (term) variables is selected for use as a constant
and is given the name L.

(i) two contraction rules are added:

)\X.D—»D
oM - O

(i) A BO—normal form issuch that it cannot be B0 -reduced.

Lambda calculus 11

60

We are going to introduce the notion of Bohm tree. The definition is not
complete, because it does not specify the ordering of the direct
successors of a node. However this ordering is displayed in the pictures
of the trees. This suffices for our purposes.

The precise definition of the order can be found in (Barendregt 1984).

Definition.

Let M OA. The Bohm tree of M, denoted by BT(M), is the

labelled tree defined as follows

AX,...X,.y if the hnf of Mis
Ax,...x,.yN,...N,,

BT(M)=<BT(N,) ... BT(N,)

g if M has no hnf »

. Lambda calculus I

Bohm trees for A(J- calculus are defined under condition
thata AO-term Ax,...x,.yN,...N,,

is in BD—head normal form only if V¥ Oorn=m=0.

Note that if M has B-hnf, then M hasa BO-hnf, too.
This is because an hnf Ax,...x,.yN,...N,,
isalso PBO-hnf unless y =L0L. Ifitis the case, then

Ax,...x, . yN,...N, —>5, 0

and hence M has a B0- hnf.

Lambda calculus II 62

Examples.

(a)

(b)

BT (Aabc.ac(bc)) = Aabc.a

BT ((Ax.xx)(Ax.xx)) =0

Lambda calculus 11

63

(c) Recall that the Fixed point operator Y is defined by
Y =Af.(Ax. f(xx)) (Ax. [(xx)).

Wy Wy

It follows that Yy =)\/.« S0, =N f(w,0,) and we have

BT(Y)=M\.f
BT(w, ®,) Now @, = f(W,W,)
thus Br(w,w,)= f

|

Br(w,w,) f
|

S

Lambda calculus 11 ’ 64

Hence BT(Y)=Af.f

Lambda calculus I 65

Remark.

The definition of the Bohm tree is not an inductive definition
of BT(M), although it seems to be according to presented
examples. The terms N,,..., NV,

m

in the tail of an hnf of M may be more complex than the
term M itself. [Barendregt 1984, Chapter 10]

Lemma. (Correctnost of the definition of Bohm trees)
(1) Bohm trees are well defined,

(i) M =, N= BT(M)=BT(N).
Proof.
The definition is correct as it is independent of the

choice of the head normal forms. This and (ii) follows

from the lemma on convertibility of hnfs.
Lambda calculus II 66

Definition. Approximate normal forms.

(1) Let A and B be Bohm trees of some AO- terms. We
say that A is included in B and write 40 B, if 4
results from B by cutting of some subtrees, leaving an
empty subtree L.

(i) Let P, O be AO-terms. We say that P
approximates (and write p [0, if BT(P) O BT(Q).

(ii1)) Let P bea AO-term. The set of approximate
normal forms (anf's) of P, is defined as follows

A(P)={00OP|Q isa BO-nf}.

Lambda calculus 11

67

Aabc.a O Aabc.a = BT (Aabc.ac(bc))

N

O b c b

Example.

The set of approximate normal forms for the fixed point
operator Y is

ACY)={0, M./O, M.f°0, M0, .}

Lambda calculus 11

68

Typing a la Curry

The basic system A - —Curry can be extended in
various ways to stronger systems by adding new types
and by adding new rules. Some of the new rules are
related to combinatorial properties of the trees
representing the terms.

The systems to be discussed are A —,A2,Al andA n.
To each of these can be added one of the extra derivation
rules £Q and A.

Lambda calculus I 69

A2

+EQ

A

-
T

AN

+ A4

The systems 4 la Curry

Lambda calculus II

70

Definition. Rules of equality (EQ) and approximation (A).

(1) The equality rule EQ

M:o M= N
N:o

(1) The approximation rules A

MN-P:0 forall POA(M)

MN-M:co

MN-d:o

Lambda calculus 11

71

Remark. (Side conditions)

Note that in these rules the assumptions M =, N and POA(M)
are not type assignments. We call them side conditions. The
last rule states that O has any type.

Notation.

Let A- be any of the systems A —,A2,AH or An.
We denote by

(i) A=", thesystem A — extended by the rule EQ.

(i) A=A, thesystem A — extended by the rule A.

So for example
A2 =A2+EQ and AJA =AU +A.

Lambda calculus 11 72

Examples.

(a) One has

| =, _+ Apq.(Ar.p)(gp)): (0 - T - 0)

It follows from the equality Apg.(Ar.p)(gp) =Apq.p
Note that this statement is not provable in general in A -

itself. The term has in A - only types of the form
0 - (0 - 1) - 0, as follows from the generation lemma.

Lambda calculus I 73

(b) Let Y =Af.(Ax.f (xx))(Ax. f(xx)) be the fixed point
operator. Then
|=».aY:((0 - 0) - 0)

Indeed, the set of approximate normal forms of Y is

(O SOALD, N D

And all these terms have type ((0 - 0) - 0). Again, this
statement is not derivable in A - itself. (In A - all
typable terms have a normal form as we shall see later on.)

Lambda calculus II 74

We are going to show that the rule A is stronger than the rule EQ.
Proposition.
Let A- be one of the systems A2,Ap or A n of type
assignments. In all systems A-A, we have
i) MN-M:0 and POAM)=>T|-P:0
(i) Let BT(M)=BT(M’). Then
N-M:0=>r|-M:o
(i) Let M =g M’. Then
N-M:0=>r|-M:o

Note that (iii) is the rule EQ.

Lambda calculus 11 75

Proof.

(i) If P is an approximate normal form of M, then P
results from BT(M) by replacing some subtrees by [0 and
writing the result as a A-term by one of the rules A.
Therefore P has the same type as M. (see an Example
below).

(i1) Suppose BT (M)=BT(M’). Then AM) =A(M"), and,
consequently
F-M:0= OPOAM)=AM)T |-P:al], by (i),

=>I|-M":0, byrule A.

Lambda calculus 11 76

(i) If M =, M’, then BT(M)=BT(M), by the
lemma on the correctness of the definition of B6hm
trees. The result then follows by (ii).

Example.
Let M =Y, the fixed point combinator and let P =Af. f (1)
be an approximant. We have

| -Y :(G — 0) - 0
By choosing ¢ as a type for o, one obtains

|—P:(0'—>0‘)—>0'

Lambda calculus I 77

System A2

Polymorphic typed lambda calculus
Second-order typed lambda calculus
Second-order polymorphic typed A-calculus
System F

— Girard (1972)

— Reynolds (1974)

Lambda calculus II

78

Motivation.

(1) Usually these names refer to A2-Church, we shall
introduce the Curry version of A2 to discuss the Church
version later.

(1) The 1dea of polymorphism: while in A -, we have
Ax.x):(a - a)
for arbitrary (type) variable a (and for arbitrary type o as

well), one stipulates in A2
(Ax.x): (0o.(0 - a))

to indicate that Ax.x has all types 0 — @ or that the type

of Ax.x depends uniformly on a.

As we shall see later, the mechanism is rather powerful.

Lambda calculus 11 79

Definition. The set of types of A2.

The set T =Type()\2) is defined by the following
abstract grammar

T=V|T - T|OVT
Notation.
(1) The parentheses by quantifiers cumulate to the right, so
we have 0d,...a,.0 asashorthand for (Oa,(Oa, ... (da,(0))...))

(i1) If there are no parentheses, (I binds more strongly than — .

Hence

Oao - 1=(Hao) - 1, but Ja.o - t=0a(0 - T).

Lambda calculus 11 80

Definition. Type assignment in A2-Curry.

A2

(start rule)

(- elimination)

(- introduction)

(U —elimination)

(0 —1introduction)

(x:q)r
MN-x:0
MN-m:(0-1 N-~N:o

M|-(MN):1

Mx:o|-M:1
MN-AxM):(c - 1)

MN-M:0ao)
M-M:(cla:=1]))
MN-M:o

M -M :(0a.0)

Lambda calculus I

81

Exercises.
(a) |- (Ax.x)
(b) [- Axy.y)
(©) [= Afx.f"x)
(d) |- (Ax.xx)
(e) | = (Ax.xx)
(® | = (Ax.xx)

(Oa.a - a)
(DGB.G —»B—»a)
(Ooa(a-a)-0a - 0a)

(OB.Oaa - B)

(OB.0oa - (B - B))
(Uaa) - (Haa)

Lambda calculus II

82

Remarks.

(1) Exercise (c) shows that the Church numerals

c, =(Afx.f"x) havetype (Da.(a - a) - a - a) which
is sometimes called “polynat”.

(ii) One reason for the strength of A2 is that the Church
numerals may be used as iterators for functions of types ¢ - ¢
for arbitrary ¢ and not only for functions of a fixed type

a - a.

(iii) We shall show later that the typable terms in A2 have
a normal form, in fact they are strongly normalizing.

Lambda calculus 11 83

The system Ap

It is the system of recursive types.

The recursive types come together with an equivalence
relation = .

The type assignment rules consist of the rules of A -
and the following rule

N-M:o o=0
MN-mM:o

Lambda calculus 11 84

Motivation

A typical example of a recursive type is a type O,
g,=0, - 0, (1
This particular type can be used to type arbitrary terms M OA.

As an example, we shall show that Q = (Ax.xx)(Ax.xx)

has ¢, asatype
’ x:0,|-x:0, - 0,

X:0,|—xx:0,
|- Ax.xx:0, - O,
| = Ax.xx:0,

| = (Ax.xx)(Ax.xx): 0,
%,—/
Q
Lambda calculus I 85

Here is the proof of the same statement in a natural
deduction setting

1
x5
x:0, -0, x:0,

(xx):0,
(Ax.xx):0, - O,

1

(Ax.xx):0, - O, (Ax.xx):0,
Ax.xx)(Ax.xx): 0,
0

Lambda calculus II 86

Remarks.

(1) The equation (1) is similar to a recursive domain equation
D O[D - D]

that enables to interpret elements of A in denotational
semantics.
(i1) In order to construct atype O, satisfying (1), there is an

operator p such that putting ¢, =pa.a - a implies (1).

Lambda calculus 11 87

Definition. The set T=Type(Ap), trees of types of Ap.

(i) The set of types of Ap, T = Type(ip), is defined by the following
abstract grammar.

T=V|T - T|pV.T

where V is the set of type variables.

Lambda calculus II 88

(i1)) Let gOT beatype. The tree of o, (o) is defined by
induction on the structure of ¢ as follows:

I(a) = a if O is atype variable
T(G - T) = /—> \

T(0) Q)

O If o=pB,...B,.a for
T(na.o) = some 520

T(ola :=pa.qa]) else

Lambda calculus I

89

(ii1) The equivalence relation = on trees is defined as follows:

0=T-T(0)=T(7)
Exercises.

(a) Assume T SUA.O > Y, then
@ oy /<\\«
/ \ V
Y

Lambda calculus II 90

rm=

(b) Assume T=(Ma.00 — y) — MSUB.B, then
\ Y
VA

(1) =

Lambda calculus 11

91

(© (Ha.a - y)=(a(d - y) - Y).

(d) Ha.0=0[a:=pa.o] forall o, evenif G =pPa.

Definition.

The type assignment system Ap is defined by the natural
deduction system presented in the following picture

Lambda calculus 11

92

Al

(start rule)

(- —elimination)

(- —introduction)

(= —rule)

(x:0)dr
MN-x:0

MN-M:(0-1) MN-~N:o

M| —-(MN):1

Mx:o|-M:t
MN-Ax.MmM):(c - 1)

MN-™m:o o=T
M-M:t

Lambda calculus I

93

Proposition. (Coppo 1985)
For an arbitrary type o, we have in Ap
NH|-Y:(c-0)->0
(i)|-Q:0o
Proof.
(1) If we put T=EpO.0 - A, then T=T —» 0. We will derive

Y =Af . (Ax. f(xx))(Ax.f(xx)): (0 - O) > O

Lambda calculus II 94

f(xx):0
Ax.f(xx):T > O
Ax.f(xx):T > O Ax.f(xx):T

Ax.f(x))(Ax.f(xx)): O

1

Y = A (Ax. f(xx))(Ax. f(xx)): (0 - 0) - O

Lambda calculus 11

2

95

(ii)) Note that YI - > Q the result follows from the fact that

I=(Ax.x):(0 - 0), (- —elimination) and the subject reduction
theorem. It is possible to prove (ii) directly.

Lambda calculus 11 96

The system A N

It is called the system of intersection types or Torino
system.

Barendregt, Coppo, Dezani, Honsell and Longo (1981 -
1987)

The system makes it possible that a (term) variable x has
exactly two types ¢ and 1 at the same time.

Lambda calculus I 97

The set of types of the system)\ n comes together with a preorder
on the set of types.

Definition. The set of types.

(i) The set of types T =Type(An), is defined by an abstract
grammar as follows:

T=V|T-T|TnT

where V is the set of type variables.

(i1) We select one of the type variables as a constant and name
itas o.

Lambda calculus II 98

Definition. The preorder on T.

(i) The relation < is defined on T by the following axioms and
rules

0<Oo

OST,TSP=>0<p

o<W

WSW - W

(0-pP)N(O->T)=<(0 - (PNT))

ONT<O0,0NTS<T

O<T,0SpP=>0<0NT

OO0, TST=>0-5>T<0->T

(i) O<~T < (ST&T<O0)

Lambda calculus 11

99

Exercises.
@ w=<-(k -)

(b) (0-Dn(@->T1)=((ON0C) - T)

Lambda calculus 11

100

Exercises.

@ w<-(w - w)

b (6-T)n(@-T1)<(0Nn0) -1
Proof.

(a) obvious

(b) Weknow o no’<ac thus
0-T12((0Nn0) 1) ()

trivially
OC-DDNO@ >0 ->T))

Then (b) follows from (1) and (2) by transitivity.

Lambda calculus I

101

Definition. The system of type assignment A n .

(start rule)

(- —elimination)

(- —introduction)

(n —elimination)

(n —introduction)

(w—introduction)

(< —rule)

(x:0)0r
MN-x:0
MN-M:(0-1 MN-nN:o
M-(MN):1
Mx:o|-M:t1

MrN-Ax.mM):(c -1

MN-mM:(on1)
MN-M:o M-Mm:t
N-m:o M-M:t

MN-M:on7
N-M:w

N-M:0 o<t
Lambda calculus 1[0 |-M:1

102

Exercises.
@ |-Axxx:((0->TN) > T

(b) [-Q:u

(©) | = (pg.(Ar.p)(gp)): (0 - (T - 0)).

Lambda calculus 11

103

Proof.
*xHe=vno/
X:0 T X:0
(xx):1
Axoxx):((0->T)N0O) > T

(@)

(b) Obvious, it can be shown that M has no head normal form
iff o is the only possible type for M. (Barendregt 1983)
T pred rra]
() (Ar.p):(w - 0) (9p): w
(Ar.p)(gp): 0 ,
(Aq.(Ar.p)(gp)): (T - O)
(Apq.(Ar.p)(gp)): (0 - (T - 0))

Lambda calculus 11

104

Combining the systems 4 la Curry

(1) there are some variants of the system An. in one of
them the rule (axiom) that assigns ® to any term.

(i1) The systems A —,A2,Au and A n are all extensions of A - .
They can be combined into other systems, an extreme case is
A2un which includes all these systems. It can be extended
by cartesian products and direct sums in order to fall into the

cartesian closed category.

Lambda calculus I 105

Basic properties.

The Curry systems A\ —,A2,Al and A n enjoy several properties

Common to all systems:

*Basis lemma
*Subterm lemma

*Substitution lemma

*Subject reduction Theorem

Each system has a proper variant

*Generation lemma

*Strong normalization
does not hold for all

Lambda calculus II

In the following |- refers to one of Curry systems A —,A2, A and A N .

The following three common properties are proved in the same way as we
have done for \ - .

Basis lemma for the Curry systems.

Let T" be a basis.

M) If r,rar isanotherbasis, thenl' |- M :0=>T"|-M:0

(i) T |- M : 0= FV(M) O dom(I)

(i) |[-M:6=T |[FV(M)|-M :G

Lambda calculus 11 107

Subterm lemma for the Curry systems.

Let M’ be a subterm of M. Then
MN-mM:0=>r'-m":a

Forsome " and o".
Substitution lemma for the Curry systems.
O r-M:o0=rla:=1]|-M:0[a:=1]

(i)(F,x:0|-M:1&lF|-N:0)=>T|-M[x:=N]:1

Lambda calculus 11

108

Exercise.

Show that for each of the systems A —,A2,Al and A n

one has

in that system.

Lambda calculus I 109

Subject reduction and subject conversion.
Subject reduction
MN-M:0 and M ->,M' = T|-M"q

holds for the main systems of type assignment & la Curry, namely

A -,A2, Al and AN, with or without the additional rules EQ and A.

Subject conversion

M-M:0 and M=, M' = [|-M'"c

Holds only for the systems including A n or rule A or if the rule EQ
is included.

Lambda calculus II 110

Subject reduction.

We have already proved the Subject reduction theorem for the basic
system A\ -, and we are going to prove it for A2, We need some
definitions and throughout the proof T = Type(A2).

Definition.

(i) Write 0> T if one of the following conditions is satisfied

T=0a.0, forsome 0,
or

o=la.0, &

T=0,[a:=1, forsome T

(i1) The relation = is the reflexive and transitive closure of > .

Lambda calculus 11 111

(iii)) Amapo:T - T is defined as follows

a’ =qa if d isa type variable
O0-1)=0-T1
(Oa.0)’ =0

Remark.

Note that the [J-introduction and [TJ-elimination rules are the
only ones in which the subject does not change. Several instances of
these rules may be applied consecutively, giving

M:

M:T

In this case g > 1. By this reasoning, one obtains the following:
Lambda calculus 11 112

Lemma.

Let 0 = T an assume that no free type variable in 6 occurs in T
Then

MN-mM:0=>r|-M:t
Proof.

Suppose [|-M :0 and g=T1. Then 0=0,>-->0, =1
for some O0,, --,0,. if necessary, by renaming some bound
type variables, we may assume that for i, / <i <n, we have

0., =0a.0,=>aUFV ()
By the definition of the relation > and the rules of A2, it
follows that we have

N-mM:0,=>r|-mM:o,,

forall i<n. Hence N-m:0,=1.

Lambda calculus I 113

Generation lemma for A2-Curry.

) FMN—-x:0=>0020((x:0)0dr

(i) [|-(MN): 1= =1 |-M:0 - T & |- N:0]

(i) M -Ax.M):p=> o [[,x:0|-M:T& 0 > 12p]

Proof.
By induction on derivations.

Lambda calculus II

114

Lemma on preorder of types.

(i) Given types o, T, there exists a type 1’ such that

(i)

(iif)

(ola:=1])°’=0’[a:=11]

0,20,= Ml (o) =oj[a:=T]

(0-p)2(0 - p)=>M (0 - p)=(0 - p)la:=T]

Lambda calculus 11

115

Proof.

(1) By induction on the structure of o.
(ii) It suffices to prove it for 0, 20,. We have to consider two cases

Case 1. 0, =0a.0,. Then 0} =07.

Case2. 0, =0a.p and 0, =pla:=T]

Then by (i) we have 0% =p°[a:=T]=0gj[a:=T]
(ii1) By (ii), we have

(0~ p)=(0'~ p) =(0 - p)la:=T1]=(0 - p)la - T]

Lambda calculus 11 116

Subject reduction theorem for A2-Curry.

If M ~>, M’, then we have

MN-M:0=>r|-M:o

Lambda calculus I

117

Proof.

By induction on the derivation of As >, M. We will treat only
the case of B-reduction i.e. the case that A/ = (Ax.P)Q and M’'= P[x:=Q].

By the generation lemma, we obtain

M-(Ax.P)Q):0
>pozol-Ax.P):(p - 0)&I|-0:p]
> zolNx:p|-P:07 &P -0)2(pP-0)&I|-0:p]

From (iii) of the lemma on preorder of types, it follows

(Pp-0)=(p'~0)a:=T]

Lambda calculus II 118

and hence by (i) of the the Substitution lemma

=>lMx:p|-P:0,|-Q:pand 0’20
=TIl |-Plx:=0]:0'and 0’20 by (ii) of the Substitution lemma
= |—- P[x:=0Q]:0 by the lemma stating that assignment of a bigger type to a term

implies the assignment of a smaller type.

Lambda calculus 11 119

Subject reduction theorem for Ap.

Let s > M, then for Ap one has

MN-mM:0=>r|-mM:o

Lambda calculus 11

120

Proof.

The proof of the subject reduction theorem for Ap is
somewhat easier than that for A2. It follows similar steps
but using the relation = insted of 2.

Lambda calculus I 121

Remark.

The subject reduction theorem holds also for A n.This
system is also closed under the rule EQ as we will show
later on. We will see that in the systems A —,A2 and Ap.
and A-A the subject conversion theorem holds. This is
not so for A n.

Lambda calculus II 122

Example. What makes A n closed under f-expansion.

Let
M =(Ax.P)Q be theredex and M= P[x := (] its contractum.

To show that B-expansion holds for this pair assume that
M-,,M":o.

Now Q occurs 720 times in M’, each occurence having its
proper type T, for /<i<n. Define

= T,N-NT, if n>0
o if n=0
Then MrM-90:t

MNx:1|—-P:0

Hence MN-Ax.P):(t - 0)and | -(Ax: P)Q:0.

Lambda calculus 11

123

In A -,A2 and Ap.itis not guaranteed that there is a common type
for the different occurrences of Q. Note that the type @ is essential in
case when @ has no occurrence in P[x:= Q].

Subject conversion theorem for An.

Let M= M, then for A n one has
N-mM:0 = rN-mM:o

Without proof

Lambda calculus 11 124

Strong normalization

Definition

A lambda term M is called strongly normalizing iff all reduction
sequences starting with M terminate.

KIK is strongly normalizing, while KI€ is not.

We are going to show that every term typable in)\ _, and A2 is
strongly normalizing. This is not true for Ay and A n since in these
systems, all terms are typable.

Lambda calculus I

125

We start with the proof of strong normalization for A - .

Definition.

(i) SN={MOA|M isstrongly normalizing}

(i) Let 4,BOA. Defineasubset 4 -, B of A as follows:

Ao B={FOA|0a0A(FaOB)}

(iii) For every ¢ OType(A —), we define a set HGH OA as
follows

HO(H =SN if a isatype variable

o~ 1=lo -1

Lambda calculus II

126

Definition.

(i) We call asubset X [0 SN saturated if
(a) (On20)OR,,...,R, OSN)[xROX]

where x is any term variable.

(b) (Qn20)TR,,...,R, OSNYOQDOSN)
[Plx:=QJROX = (Ax.P)ORO X]

(i) SAT ={X OA|X issaturated }

Note that saturated sets are non-empty, as they contain all term
variables, and that they are closed under a particular type of
expansion.

Lambda calculus 11 127

Lemma on saturated sets.

(i) SN OSAT
(ii) 4,BOSAT = A - BOSAT

(111) Let {4,},;, bea collection of members of SAT', then
N 4 0SAT

(iv) Forall cO0Type(A —) one has HGH OSAT

Lambda calculus 11 128

Proof.

(i) Obviously SN [0 SN and it satisfies the condition (a). As to the
condition (b), suppose

Plx:=QJROSN & O, ROSN ()

We claim that also
(Ax.P)ORTSN)

Note that the reductions inside P,Q orthe R must terminate
since these terms are strongly normalising by assumption. The term

Plx:=0]
is a subterm of a term in SN by (1) hence it is itself in SN and,
consequently, P isin SN. So after finitely many reduction steps
applied to the term in (2), we obtain
Ax.P)Q'R" & P —>, P’ etcetera
Lambda calculus II 129

Then the contraction of (Ax.P)Q R’ gives
Plx=Q1R)

This is a reduct of P[x:=Q]R and since this term is SN, then
(3) and the term (Ax.P)Q are SN.

(i1) Let 4, BOSAT. Then by definition x[J A for all variables x.

Hence FOA - B= FxOB

= FxOSN

= FOSN
Soindeed A — B O SN. We prove the condition (i) (a) of

saturation, let B[SN. We must show for a variable x that
xR A - B which means

0004 (xRQOB)

which is true since 4 0 SN and B is saturated.

Lambda calculus II

130

(iii) Similarly

(iv) By induction on the generation of o, using (i) and (ii).

In order to prove the key Soundness Theorem, we need the folowing
Definition.

(1) A valuationin A isamap p:V - A, where V is the set of term
variables.

(ii) Let p be a valuation in A. We define
M, = MLx, 2= p(x,)s..ox, 2=,

where X =Xx,,...,x, isthe set of free variables in M.

Lambda calculus 11 131

(iii) Let p be a valuation in A. We say that p satisfies M : ¢ and write
pl=M:o, if |M| Ol

If T is a basis, we say that p satisfies I' and write P|=T, if pl=x:0
for all (x:0)0Or.

(iv) A basis I' satisfies M :c andwrite '|=M :0, if
Uplpl=T =pl=M :a]

Lambda calculus 11 132

(iii) Let p be a valuation in A. We say that p satisfies M : ¢ and write
pI=M:o, if |M| Ol

If T is a basis, we say that p satisfies T and write P[=T, if p|=x:0
for all (x:0)0T.

(iv) A basis I' satisfies M :c andwrite '|=M :0, if
Uplp|=T = pl=M :0]

Soundness Theorem.

MN-,.M:0=>r=M:o

Lambda calculus I 133

Proof.

By induction on derivation of M : 0.

Casel. If M =x and I |- M : o follows from (x:0)0r, then
trivially T'|=x:0.

Case2.If M=M,M, and I'|-M :0 isadirect consequence of
MN-M;:1>0and I'|=M,:T, In orderto show P|=M,M,:0,
We suppose p|=T. Then Pp|=M,:T -0 and p|=M,:T which

means
M|, Ot ~ o =[] ~ o and [M,], Ol

But then

HM,MZHp =HM,HPHM2Hp I:IHGH which means p|=M ,M,:0

Lambda calculus II 134

Case3.Let M =Ax.M',I|-M :0 and let 0=0, - 0, be a direct
consequence of ,x:0,|-M":0,.

By the induction hypothesis, we have

rx:0,|=M":o0, ()

In order to show P|=Ax.M":0, - 0,, suppose PI=T- We have to

show
Ax.M7| NDOo,| forall NO|g|
p

Let N DHGIH' Then p(x:=N)|=T,x:0,, and hence

M’

Olo|

p(x:=N)
by (1).

Lambda calculus 11

Since

H)\x.M'HpN

Ax.M)y = p(R)IN
g M[y:=p(7),x = N]

M

p(x:=N)

it follows from the saturation of HO‘ZH that H)\x.M 'HpN DH02H-

Lambda calculus 11

136

Strong normalization theorem for A - -Curry

Suppose
MN-,.M:o

then M is strongly normalizing.

Lambda calculus I

137

Proof.

Suppose I'|-M :0. Then [|=M :0 according to the Soundness
Theorem. If we put P,(x)=x forall x, then p,|=T. Note
that xDHTH since HT is saturated.

Therefore P, |=M :0, hence M EHMHp EIHGH 0 SN.

Lambda calculus II

138

Proof.

Suppose '|-M :0. Then T'|=M :0 according to the Soundness
Theorem. If we put P,(x)=x forall x, then p,|=r. Note
that xDHTH since HT‘ is saturated.

Therefore P,|=M :0, hence M = HMHp’7 DHGH 0 SN.

Remark.

A simple generalization of the method proves the Strong
Normalization Theorem for A2.

Lambda calculus 11 139

Definition.

(1) A valuation in SAT is a map
E:V 5 S4AT
Where V is the set of type variables.

(i1) Given a valuation & in SAT one defines a set HoﬂE OA for every
type o in A2 as follows:

HGHE =&(a), where a0V
0 - 1, =g, - 1,

HDG'GHE =N XIZISATHO-HE(GFX)

Lambda calculus 11 140

Lemma.

Given a valuation & in SAT and atype o in A2, then HGHE 0SAT.

Proof.

As the proof of (iv) in lemma on saturated sets using the fact that
SAT is closed under arbitrary intersections.

Lambda calculus I 141

Definition.

Let p be avaluationin A and & be a valuation in SAT.

(i) We write p,&|=M : g iff [M] Ofo,

(ii) If T is a basis, we write
p,& =T iff p,§|=x:0 forall x:oin I
(i) We write

F=M:o iff Op,&[p,&|=T = p,&|=M :0]

Lambda calculus II 142

Soundness Theorem for 22.

MN-,,M:0 => IN=Mm:o

Lambda calculus 11 143

Soundness Theorem for A2.
N-,,M:0 => IN=m:o
Proof.

By induction on the derivation of I'|— M :0 as in the proof
of Soundness Theorem for)\ _, . There are two more cases
corresponding to [1-rules.

Case4. [|—M:0 where 0=0,[0:=T1] isa direct
consequence of |- M :0a.o ,» BY the Induction
Hypothesis, we have
=M™ :0a.0, ()
In order to show
P,&|=M:0,la:=T1]
suppose

P.EI=T.

Lambda calculus 11 144

It follows from (1) that

§(a:=X)

M|, 0000, = [|0

XOSAT

Hence

M Hp O HO-OHE(QFHTHE)

By induction on 0, OType(A2) (some care is needed in case O, =0PB.T,)

we prove

HGOHE(0==HTHE) =|o,la:=1]

which completes the proof of the Case 4.

Lambda calculus I 145

Case 5. Let I | -M:0 with o= DC(.O'O and O DFV(F) is a direct
consequence of ' | =M :0,. By the Induction Hypothesis, we have

MN=M:ao,)
In order to show P,&|=M :0a.o,, we suppose p,&|=T.Since a OFV (),

we have p,&(a:=X)|=T forall X OSAT. Therefore

HMHp | HGOHEW:X) forall X 0SAT
It follows from (2) that
(M|, 0[0a.a, |,
Hence p,&|=M :0a.o,
_

g

Lambda calculus II 146

Strong Normalization Theorem for A2-Curry

MN-,,M:0 = M isstrongly normalizing

Lambda calculus 11 147

Strong Normalization Theorem for A2-Curry

MN-,,M:0 = M isstrongly normalizing

Proof of the theorem is similar to the proof of Strong
Normalizing Theorem for A - —Curry.

Lambda calculus 11

148

Decidability of type assignment.

Note that for arbitrary base " ={ X,:10,,...,x,:0,} one has
MN-mM:0 - |-(Ax,...Ax,.M):(0, - ...0, - 0)
Consequently, analysing the type assignment, we may
assume that the base is always empty. Typical questions are
*Given M and o, does it hold |- M : 0 ?
*Given M, does there exista ¢ suchthat |- M :0?

*Given o, does there exist an M such that |— M :0?

These three problems are called type checking, typability and
inhabitation respectively and we shall denote them Af : g2,
M:?, and ?:0.

Lambda calculus I

149

We shall examine the decidability of these three problems for the
various systems of type assignments. The results can be summarized
in the following table

M:0? M:? ?:0

A |yes yes yes

A2 ” ” no

Al yes yes, always yes, always
AN no yes, always ?7?

AT |no no yes

b no no no

AL no yes,always yes, always
A-A4 (o no yes, always
N4 |no 1no yes, always
M no yes, always yes, always
AnAd |mo yes, always yes, always

Lambda calculus II 150

We first show decidability of the three questions for A - —Curry. In
what follows T denotes Type(A —) and |- denotes | =, _ ¢,

We define some operations on the set of types: substitutor, unifier,
unification and some concepts concerning type assignments: pricipal
pair and principal type.

Definition.

(1) A substitutor is an operation [J: T _ T on the set of types such

that
o -)=o) - U1

Lambda calculus 11 151

Notation.

a) We write @” for [J0).

b) In cases that are of interest for us, a substitutor [] has a finite
support, which means that for all but finitely many type variables o
one has 0" =a, thesupport of O being sup(D={a|a”#a}.

In that case we write
(o) =ola, :=a’,...,a, :=a’]

Where {0,,...,0,} is the support of [l We also write
O=[a,:=af...,a, :=a"].

n

Lambda calculus 11 152

Definition. Unifiers.

(i) Let o and 1 be two types. A unifier forc and t is a substitutor [
such that g =Tt",

(i1) The substitutor [is a most general unifier for 6 and t if

(a) Oisaunifier foro and t

(b) if O an arbitrary unifier for 6 and 7, then there is a
substitutor [J, suchthat 0O =00

(iii) Let £={0,=T1,,...,0, =T,} be a finite set of equations
between types. The equations do not need to be valid. A unifier for E
is a substitutor [J such that O 1D = T1D,- ey O'E = T,Elo In that case one
writes O=E. Similarly one defines the notion of a most general
unifier for E.

Lambda calculus I 153

Examples.

The types
B~ (a~P Y-y)-30

have unfiers
O=[B:=y - V¥,0:=a - (Y - y)]
O=IB:=y~Y,0:=¢ - &3:=(€ ~ &) - (Y~ V)]

The unifier 7 is most general, the unifier [J is not.

Lambda calculus II

154

Definition. Variants.
The type o is a variant of the type T if there are substitutors [J, 0
such that

o=1" and 1=0"

Examples.
o ->B->P and y - & » & are variants of each other

o - B - B isnotavariantof o - B - a

Note thatif [and [J are two most general unifiers of
types 6 and 1 then oY and o are variants of each
other and similarly for .

Lambda calculus 11 155

Unification Theorem.

(i) There is a recursive function U with input (after coding) a
pair of types and with output which is either a substitutor or fail
such that

a most general unifier for 0 and T

vuo,1)= if 0 and T havea unifier

fail if 0 and T have no unifier

(i) There is a recursive function U with input (after coding) finite
sets of equations between types and with output either a substitutor
or fail such that
a most general unifier for E
U(E)= if E hasa unifier
fail if E hasno unifier

Lambda calculus 11 156

Proof.

Note that 0, -0,=T, -1, < O0,=7,&0,=T,

(i) Define U(0,T) by the following recursive loop with case
distinction.

[a:=T1] if adFV (1)
U(a,t)=41d (theidentity) if T=a
fail else

U, - 0,,0)=U(a,0, - 0,)

U@, - 0,1, -T1,) =U(G?(Gz’rz)sT?(onz))oU(strz)

Where the last expression is considered to be fail if one of its parts is.

Lambda calculus I 157

Proof.

(1) By induction on the lexicografic order of pairs of natural numbers
defined as follows:

4ar (0, T) = the number of variablesin ¢ - t and # _(0,T) =
the number of arrows in g _, T.

By induction on pairs (#,,,(0,T) ,# _(0,T)) ordered lexicograph-
ically, one can show that U/(g,T) 1is always defined. Moreover U
satisfies the specification.

(i) If E={0, =T1,,...,0, =T, }then define U(E)=U(0,1),
Where
G=01 — Gn and =T, -1

n*

Lambda calculus II 158

Proposition on substitutors and equations.

Let I' beabasis, MOA atermand g[T a type such that
FV(M)UOdom(I"). Then there is a finite set of equations
E=E([,M,0) such that for all substitutors [] one has

O=ET,M,0) = I -M:qd" ()
r’'l-m:o” = 0OFFET,M,0) 2

Forsome L[] suchthat [0 and [have the same effect on

type variablesin [and o.

Lambda calculus 11

159

Proof.

Define the set E(I',M,0) by induction on the structure of M:

E(I',x,0)

{o0=T(x)}

ET,MN,0) = E(I',M,a - o)UE(,N,)

where o is a fresh variable

E(T,Ax.M,0)

ETOf{x:0},M,p)0{a - B=0}

where a, B are fresh variables

By induction on M one can show (using generation lemma) that (1)
and (2) hold.

Lambda calculus 11 160

Definition. Principal pair, principal type.

(i) Let M OA. Then (T',0) is a principal pair (pp) for M if

() T|-M:o
(2 IM-M:0° = 0Or°or'&c’=g]

Here {X,:0,,...,x,:0,}"={x,:0%...,x,: a"}.

(i1)) Let M OA be closed. Then o is a principal type (pt) for M if

() |-M:o
2 |-M:0° = 0Odc"=0]

Lambda calculus I 161

Remarks.

Note that if (I',o) is a principal pair for M, then every variant
(I'",6") of (I',0), in the obvious sense, is a principal pair for M.

Conversely, if (I,o) and (I'",6") are both principal pairs for M,
then (I'",6") is a variant of (I',0) .

Moreover, if (I',0) is a principal pair for M, then FV(M)=dom(I).

Lambda calculus II 162

Principal Type Theorem for) _, —Curry.

(1) There exists (after coding) a recursive function pp such that

(I',0) aprincipal pair for M if a type for M exists

M)=
ppi) {fail if M hasno type

(i1) There exists (after coding) a recursive function pt such that for
closed terms M one has

0 a principal type for M if a type for M exists

t(M) =
Pt {fail if M hasno type

Lambda calculus 11 163

Proof.
() Let FV(M)={x,,...,x,} and define [, ={x,:0,,...,x,:0,}.

If we put 0, =P, we have

M hasatype - O blN|-M:o
- OOr]|-M:a}
< oo |:||=E(F(,,M,00)

Define
ry,o) if UET,,M,0,)=0

M) =
M) {fail it UGE(T,,M,0,)) = fail

Then pp(M) satisfies the statement (i) of the theorem. Indeed, if
M has a type, then U(E(T,,M,0,))=0 and I)|-M : 0}
follows from (i) in the proposition on substitutors and equations.

Lambda calculus 11 164

To show that (I'[,05) is a principal pair, suppose that also I"|- M : 0.

Let F=F|Fy(M), write F=[2 and o'= g . Then also
Y |-M:ay

Hence by (ii) in the proposition on substitutors and equations, there is
0. acting in the same way as [] on r,,0, suchthat O |= E(,,M,0,).

By the Unification Theorem [] is a most general unifier, hence
thereisa [, suchthat [=0} o[l

Now

(rH?=rj}=r}=r=r
and

0H* =0} =0 =0

This completes the case when M has a type.

Lambda calculus I 165

If M has no type, then there is no substitutor satisfying E(I),M,0,),

hence

U(E(T,,M,a,)) =fail = pp(M)

(ii) Let M be closed and pp(M)=(T,0). Then I = 0 and we
can put

pt(M)=0

Lambda calculus II 166

Proof.
(a) Type checking: given M and o, we have

|-M:0 o 0O0o=pt(M)7

This is decidable by a pattern matching algorithm similar to the
unification algorithm.

(b) Typability: given M, then M has a type iff pt(M) # fail.

Lambda calculus 11

167

Decidability of the inhabitation problem for A\ _ —is shown
equivalent to provability of ¢ in the minimal intuitionistic
proposition calculus PROP with only _, as connective and o
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of ¢ is decidable.

Theorem.
the inhabitation problem for A - —, thatis W/ OA|-, M:0o
is a decidable property of o.

Lambda calculus 11

168

Decidability of the inhabitation problem for)\ _, — is shown
equivalent to provability of ¢ in the minimal intuitionistic
proposition calculus PROP with only _, as connective and o
considered as an element of PROP. Using finite Kripke models it
can be shown that provability of ¢ is decidable.

Theorem.
the inhabitation problem for A —, thatis OM OA|-,_ M :0
is a decidable property of G.

Proof.
0 isinhabitedin A - -Curry « O isinhabitedin A — -Church
= O is provable in PROP

Lambda calculus I 169

Now, we consider A2. The question whether type checking and
typability is open. There is only a result showing that the problem of
typability in A2 can be reduced to that of type checking.

Proposition.
{(M :0)||—,,M :0} isdecidable = {M | o |—,, M : 0} is decidable

Proof.

One has
Io|-M:0 = |-(Axy.y)M : (0 - a)

The implication = is obvious, since

|-(Axy.y): (0 - a - a) forall o

The other implication follows from the lemma on typability of

subterms.
Lambda calculus II 170

Theorem.

The inhabitation problem for A2 is undecidable.

Proof.

As for A -, one can show the first equivalence

0 isinhabitedin A2—Curry « 0 isinhabitedin A2—Church
= 0 isprovable in PROP2

where PROP2 is the constructive second-order propositional
calculus. Lob (1976) proved that the last property is undecidable.

Lambda calculus 11 171

Theorem.

For Au one has the following:
(i) Type checking is decidable.

(11) Typability is trivially decidable, we showed that
every A-term has a type.

(i11)) The inhabitation problem for Ap is trivially
decidable: all types are inhabited.

Lambda calculus 11 172

Proof.

(i) Use the same method as for A -, and the fact that 7(c) = T(1) is
decidable.

(i1) In a motivation example for Ay, we have shown that every A-term
has atype g,, where 0,= pa.a - Q.

(iii) All types are inhabited by the term Q.

Lambda calculus I 173

Lemma. Systems with subject conversion

Let A~ be a system of type assignment satisfying subject conversion
i.e.

M--M:0&M=,N=>T|-_N:0

(i) Suppose that some closed terms have the type O — O and
others not. Then the problem of type checking is undecidable.

(i1) Suppose that some terms have a type and others not. Then the
problem of typability is undecidable.

Lambda calculus II 174

Proof.

(1) Ifthe set {(M,0)|| |-M :0} isdecidable, then so is the set
M| |-M:a - a}.

This set is by assumption closed under = and non-trivial, hence
by the Scott’s theorem is not recursive, a contradiction.

(i1) Similarly.

Lambda calculus 11

175

Proposition.

For A n one has the following
(1) Type checking problem is undecidable.
(1) Typability is trivially decidable: all terms have a type.

Proof.

(1) Using the subject conversion for A n, the statement (i) of
the previous lemma applies and there are facts

|-I:0 - a and |+K:0 - a

(i) Forall A/ onehas M : .

It is not known whether inhabitation in A n is decidable.

Lambda calculus 11

176

Lemma on reduction.
Let A— be one of the systems 4 la Curry. Then we have
0 M-_.M:0 = MM ->M &I|-,_M"0]
(ii) oisihabitedin A=* < o isinhabited in A -
Proof.
(i)(O) is trivial since M —>; M" implies M =, M".
(=) by induction on the derivation of M : 0.
The only interesting case is when the last applied rule is an
application of rule EQ. Suppose
M,:0 M,5 M

M:o

The induction hypothesis says that there is M,” such that M, —>; M’

and one has I'|—,_M,": 0. By the Church-Rosser theorem, M, and M
have a common reduct, say M ". But by the subject reduction theorem,
we have ['|—,_M":0 and the proof is complete.

Lambda calculus II 177

(i) By (D).

Proposition. The systems A —* .

For the systems A —* one has the following:

(i) Type checking is undecidable

+

(i) Typability is undecidable for A »* and A2", but trivially

decidable for AU* and An™.

(iii) The status of the inhabitation problem is the same for both
A="and A-.

Lambda calculus II

178

Proof.

(i) Subject conversion holds for the systems A = by definition. In
all systems I:0 — d. It follows from (i) of the lemma on reduction
and the fact that |+K :a — a that type checking is undecidable by (i)
of the lemma on systems)\ —.

(i1) We have already shown that terms without a normal form have no
typein A\ o and A2. Hence by the reduction lemma these terms
have notypein A - or A2*. Since for these systems there are
terms that have a type by (ii) of lemma on systems with subject
conversion the undecidability of typability for A _, and A2
follows.

(ii1) By (ii) of the reduction lemma.

Lambda calculus 11 179

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

|=\-aM:0 = |—,_M:0

Lambda calculus 11

180

Lemma. Typing of normal forms.

Let M be a term in normal form. Then

|=poaM:0 = |—,_M:0

Proof.

By induction on the given derivation, using the fact that A7 O A(M).

Lambda calculus I 181

Proposition. Systems A —A.
For systems A—A, we have the following:

(i) The problem of type checking is undecidable for the systems A — A,
A2A, AMA and A n A.

(ii) The problem of typability is undecidable for the systems A - A,
and A2A, but it is trivially decidable for the systems AMA and A n A
(all terms are typable).

(ii1) The problem of inhabitation is trivially decidable for all four systems
includin the rule A (all types are inhabited).

Lambda calculus II 182

Proof.

(i) By lemma on typing normal forms and the fact that | K:a - a
in all four basic Curry systems and (i) of subject conversion systems
lemma, we get undecidability.

(i1) similarly.

(iii) The inhabitation problem becomes trivial: in all four systems
one has |-Q:a forall types o. This follows from the facts that
|=2-aY:((0~0)>0), YI=;Q and A-A isclosed
under the rule EQ.

Lambda calculus 11 183

