
BIOINFORMATICS Vol. 19 Suppl. 2 2003, pages ii149–ii155
DOI: 10.1093/bioinformatics/btg1072

Finding subtle motifs by branching from sample
strings

Alkes Price ∗, Sriram Ramabhadran and Pavel A. Pevzner

Department of Computer Science and Engineering, University of California at San
Diego, La Jolla, CA 92093-0114, USA

Received on March 17, 2003; accepted on June 9, 2003

ABSTRACT
Many motif finding algorithms apply local search tech-
niques to a set of seeds. For example, GibbsDNA
(Lawrence et al., 1993) applies Gibbs sampling to random
seeds, and MEME (Bailey and Elkan, 1994) applies the
EM algorithm to selected sample strings, i.e. substrings
of the sample. In the case of subtle motifs, recent bench-
marking efforts show that both random seeds and selected
sample strings may never get close to the globally optimal
motif. We propose a new approach which searches motif
space by branching from sample strings, and implement
this idea in both pattern-based and profile-based settings.
Our PatternBranching and ProfileBranching algorithms
achieve favorable results relative to other motif finding
algorithms.
Availability: http://www-cse.ucsd.edu/groups/
bioinformatics/software.html
Contact: aprice@cs.ucsd.edu

INTRODUCTION
The goal of motif finding is to find an unknown motif
with approximate occurrences at unknown positions in a
sample of DNA sequences. Some motif finding algorithms
carry out this search in the space of possible starting
positions of all motif occurrences in the sample, while
others search the space of all possible motifs described by
a given model.

Popular algorithms which search the space of starting
positions include the greedy CONSENSUS algorithm
(Hertz and Stormo, 1999), and the stochastic GibbsDNA
algorithm (Lawrence et al., 1993), which applies Gibbs
sampling to random seeds. However, the space of starting
positions is typically large, and in the case of subtle motifs,
greedily or randomly chosen points in this space may
never get close to the globally optimal motif.

The alternative is to search in the space of motifs.
Recently developed branch-and-bound techniques can find
rather subtle motifs by exhaustively searching the space
of motif patterns (Vanet et al., 2000; Marsan and Sagot,

∗To whom correspondence should be addressed.

2000; Pavesi et al., 2001; Apostolico et al., 2002; Eskin
and Pevzner, 2002). Though much more efficient than an
unbounded exhaustive search, these approaches still have
a high computational cost, particularly for longer motifs.

An advantage of searching in motif space is that,
because the globally optimal motif has approximate
occurrences in the sample, the search can be restricted to
small neighborhoods (in motif space) of sample strings.
This motivates a sample-driven approach in which se-
lected sample strings are used as seeds for a local search.
For example, MEME (Bailey and Elkan, 1994) uses a
heuristic to choose (profiles derived from) one or more
sample strings as seeds to the EM algorithm. However, in
the case of subtle motifs, the selected sample strings may
not be close to the globally optimal motif, and the sample-
driven approach may converge to local optima (Fig. 1a).
An alternative is the extended sample-driven approach,
which searches neighborhoods of all sample strings via
exhaustive search Waterman et al. (1984); Galas et al.
(1985); Sagot et al. (1995); Sagot (1998). Recently, Keich
and Pevzner (2002a) introduced a variant of the extended
sample-driven approach which uses multiprofiles to re-
strict this exhaustive search. These approaches find subtle
motifs, but have a high computational cost (Fig. 1b).
We propose to search by branching from sample strings
(Fig. 1c). Although our new technique is extremely
simple (some would say trivial), it finds subtle motifs
far more efficiently than previous methods. We note that
there are some similarities between our technique and
GibbsDNA (Lawrence et al., 1993), which branches
from random seeds. The difference is that we branch
deterministically in small subsets of motif space, while
GibbsDNA branches stochastically in the typically large
space of starting positions.

Motif finding algorithms model a motif either as a
pattern of l consensus nucleotides, representing the most
likely nucleotide for each position of the motif, or as
a profile, a 4 × l matrix of nucleotide probabilities for
each position of the motif. We refer to pattern-based and
profile-based models, respectively. Recently developed
algorithms, such as PROJECTION (Buhler and Tompa,

Bioinformatics 19(Suppl. 2) c© Oxford University Press 2003; all rights reserved. ii149

 at U
niverzita K

arlova v Praze on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

A.Price et al.

(a) Sample-driven approach

�
��

�

�
�
���

�

�

��
���

(b) Extended sample-driven approach

�

�

�
���
�
�	

���

����
�
���
�
��
�
��
����

�

�
���
�
��
�
��
�����
�
���
�
��

�
���

�

�

�
���
�
�	

�
����
�
���
�
��
�
��
����

�

�
���
�
��
�
��
�����
�
���
�
��

�
���

�

�

�
���
�
�	

�
����
�
���
�
��
�
��
����

�

�
���
�
��
�
��
�����
�
���
�
��

�
���

�

�

�
���
�
�	

�
����
�
���
�
��
�
��
����

�

�
���
�
��
�
��
�����
�
���
�
��

�
���

�

�

�
���
�
�	

�
����
�
���
�
��
�
��
����

�

�
���
�
��
�
��
�����
�
���
�
��

�
���

�

�

�
���
�
�	

�
����
�
���
�
��
�
��
����

�

�
���
�
��
�
��
�����
�
���
�
��

�
���

(c) Branching from sample strings

�

��

�

�

��
�!!

�
�

�

���
!!

�
�
�

��

""#

��
�

��

�""

��
�

��

�""

��

�

��
!!$

Fig. 1. Comparison of sample-driven, extended sample-driven and branching approaches to searching in motif space. Bullets • represent
sample strings, circled stars � represent the globally optimal motif. (a) Sample-driven algorithms often fail to find the global optimum.
(b) Extended sample-driven algorithms typically find the global optimum, but with high computational cost. (c) Branching from sample
strings efficiently finds the global optimum.

2001), MITRA (Eskin and Pevzner, 2002) and MULTI-
PROFILER (Keich and Pevzner, 2002a), can find subtle
motifs using the pattern-based model. However, biolog-
ical motifs do not always fit this model. In particular,
positions represented by a purine (R), pyrimidine (Y),
weak bond (W) or strong bond (S), with two likely nu-
cleotides instead of one, are common in biological motifs.
Pattern-based algorithms have difficulty finding motifs
with many degenerate positions of this sort. On the other
hand, profile-based algorithms have difficulty finding
subtle pattern-like motifs. We refrain from expressing
a preference between pattern-based and profile-based
algorithms, and implement our approach in each setting.

The paper is organized as follows: we begin by in-
troducing a pattern-based algorithm, PatternBranching.
Then, mindful of the greater generality of profiles, we

present a profile-based variant, ProfileBranching. In
each case, we compare results of our approach to other
algorithms in finding subtle implanted motifs. Finally, we
test our method on biological samples with known motifs.

THE PATTERNBRANCHING ALGORITHM
Pevzner and Sze (2000) stimulated interest in pattern-
based motif finding algorithms by observing that other
approaches were unable to solve the following Motif
Challenge Problem: given a sample of n = 20 sequences,
each N = 600 nucleotides long with an implanted pattern
of length l = 15 with k = 4 mutations, find the
pattern. Since then, various approaches have solved the
Motif Challenge Problem, and even harder implantation
problems, with increasing probability of success (Pevzner
and Sze, 2000; Buhler and Tompa, 2001; Eskin and

ii150

 at U
niverzita K

arlova v Praze on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Finding subtle motifs by branching from sample strings

Pevzner, 2002; Keich and Pevzner, 2002a). We will use the
PatternBranching algorithm to solve the Motif Challenge
Problem, and its harder versions, far more efficiently than
other algorithms.

Let M be a motif, viewed as a pattern of length l, and
let A0 be an occurrence of M in the sample with exactly
k mutations. Given A0, how do we determine M? Since
the Hamming distance d(M, A0) = k, we have M ∈
D=k(A0), defined as the set of patterns of distance exactly
k from A0. The extended sample-driven approach scores
each of the

(l
k

) · 3k patterns in D=k(A0) (Waterman et al.,
1984; Galas et al., 1985; Sagot et al., 1995; Sagot, 1998),
or in a carefully selected subset of D=k(A0) (Keich and
Pevzner, 2002a). However, since we will ultimately need
to apply this procedure to all sample strings A0 of length
l, this is somewhat slow. We propose instead to construct
a path of patterns

A0 −→ A1 −→ . . . −→ Ak

by iteratively applying the BestNeighbor function,
which maps a pattern A to its best neighbor in D=1(A),
thus changing a single nucleotide of A. We then score
Ak as a guess of M . More generally, if A0 is a putative
occurrence of M in the sample with at most k mutations,
as opposed to exactly k mutations, we score A j as a guess
of M at each iteration j . This branching approach greatly
reduces the number of neighbors to analyze, as compared
to extended sample-driven approaches.

Two questions must be addressed: given a pat-
tern A, how do we score it, and how do we define
BestNeighbor(A)? First, we score the pattern A
using its total distance from the sample. For each
sequence Si in the sample S = {S1, . . . , Sn}, let
d(A, Si) = min{d(A, P) | P ∈ Si }, where P denotes an
l-mer (i.e. a pattern of length l). Then the total distance
of A from the sample is d(A,S) = ∑

Si ∈S d(A, Si).
Second, we define BestNeighbor(A) to be the pattern
B ∈ D=1(A) with lowest total distance d(B,S). The
resulting algorithm is shamefully simple, but extremely
powerful:

PatternBranching(S, l, k)

Motif ← arbitrary motif pattern
For each l-mer A0 in S

For j ← 0 to k
If d(A j ,S) < d(Motif,S)

Motif ← A j
A j+1 ← BestNeighbor(A j)

Output Motif

If we wish to conduct a more thorough search of D=k(A0),
we can keep a set A of r patterns at each iteration instead
of a single pattern, defining BestNeighbors(A) to be
the set of r patterns B ∈ D=1(A), i.e. B ∈ D=1(A) for

some A ∈ A, with lowest total distance d(B,S). Letting
A0 = {A0}, we thus have |A0| = 1 and |A j | = r for
j > 0.

We now describe two algorithmic details which speed
up the algorithm. First, letting n be the number of
sequences in the sample and N be the length of each
sequence, we compute d(A0,S) in time O(nN), instead
of time O(nNl), by sharing computations across dif-
ferent sample strings A0. Second, in the computation
of BestNeighbor(A j), we efficiently approximate the
total distance d(B,S) of each pattern B ∈ D=1(A j)

by estimating d(B, Si) = min{d(B, P) | P ∈ Si } using
only patterns P ∈ Si which satisfy two conditions:
d(A j , P) ≤ 2k − j , which will be satisfied in the impor-
tant case where P is an occurrence of the correct motif M
with at most k mutations and the path of best neighbors
A j → . . . → Ak leads to M ; and P agrees with B at the
nucleotide changed from A j , which will likely be true for
the pattern P ∈ Si minimizing d(B, P). By storing the
values d(A j , P), we can quickly compute this estimate of
d(B, Si) for all B ∈ D=1(A j) with a single loop through
l-mers P ∈ Si .

We have also implemented the following optional
speedups to the PatternBranching algorithm, typically
reducing the running time by about a factor of 5. First,
at iteration j , instead of fixing the number of patterns
to keep, we can define GoodNeighbors(A j) to be the
set of all patterns B ∈ D=1(A j) with d(B,S) ≤ β j for
some threshold β j . Modeling β j as a linear function of j ,
appropriate values of β j can be heuristically determined
in negligible computation time relative to the running time
of the algorithm. Because the set GoodNeighbors(A j)

is often empty, this approach is faster. Second, following
CONSENSUS (Hertz and Stormo, 1999) and MUL-
TIPROFILER (Keich and Pevzner, 2002a), instead of
performing the above branching steps for each l-mer A0
in the sample S , we can branch only from l-mers A0 in
selected reference sequences of the sample. This approach
should be avoided in the case of corrupted samples unless
we can choose reference sequence(s) which are known to
contain a motif occurrence.

THE PROFILEBRANCHING ALGORITHM
The ProfileBranching algorithm is similar to Pattern-
Branching, but since we will search in the space of motif
profiles instead of the space of motif patterns, we make
the following changes:

1. convert each sample string A0 to a profile X (A0)

2. generalize the scoring method to score profiles

3. modify the branching method to apply to profiles

4. use the top-scoring profile we find as a seed to the
EM algorithm

ii151

 at U
niverzita K

arlova v Praze on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

A.Price et al.

To convert each sample string A0 to a profile X (A0),
we follow MEME (Bailey and Elkan, 1994). Let
A0 = a1 . . . al , where aw ∈ {A, C, G, T }. Then X (A0)

is defined to be the 4 × l profile matrix (xvw) which in
column w has probability xvw = 1

2 for nucleotide v = aw

and xvw = 1
6 for each other nucleotide v. The probability

1
2 for nucleotide v = aw reflects both the uncertainty in
how well the pattern A0 describes the correct motif, and
the fact that the correct motif itself is stochastic.

We replace the total distance score for patterns
with the following entropy score for profiles: given
a profile X = (xvw) and a pattern P = p1 . . . pl ,
let e(X, P) be the log probability of sampling P
from X , i.e. e(X, P) = ∑l

w=1 log(x pww). For each
sequence Si in the sample S = {S1, . . . , Sn}, let
e(X, Si) = max{e(X, P) | P ∈ Si }. Then the entropy
score of X is e(X,S) = ∑

Si ∈S e(X, Si). Intuitively,
e(X,S) describes how well X matches its best occur-
rence in each sequence of the sample. For a pattern
A, e(X (A),S) is equivalent to the total distance score
d(A,S), up to a linear transformation.

For a pattern A, the set D=1(A) is a natural choice of
candidates for branching. For a profile X = (xvw), we
define D=1(X) to be the set of profiles obtained from X
by amplifying a single nucleotide in a single position w of
X to create a profile X̄ = (x̄vw) with relative entropy equal
to ρ, where ρ is an implicit parameter. The relative entropy
is defined as

∑
v xvw log(x̄vw/xvw), and we use the value

ρ = −0.3. (We have made no effort to optimize the
parameter ρ). For example, given nucleotide probabilities
(1

2 , 1
6 , 1

6 , 1
6), by amplifying the second nucleotide we

obtain (0.27, 0.55, 0.09, 0.09). At a given position w, we
will only amplify a nucleotide v if xvw < 0.5.

The algorithm proceeds as follows. For each l-mer A0
in the sample S , we let X0 = X (A0) and construct a path
of profiles

X0 −→ X1 −→ . . . −→ Xk

by iteratively applying the BestNeighbor function for
profiles, which maps a profile X to a local improvement
of its best neighbor in D=1(X). The best neighbor is the
profile Y ∈ D=1(X) with highest entropy e(Y,S), and we
locally improve Y using its close matches in the sample
in order to gain further information from the choice of Y .
After branching for k iterations from each l-mer A0 in the
sample, we run the EM algorithm to convergence on the
top-scoring profile we have found:

ProfileBranching(S, l, k)

Motif ← arbitrary motif profile
For each l-mer A0 in S

X0 ← X (A0)

For j ← 0 to k

If e(X j ,S) > e(Motif,S)

Motif ← X j
X j+1 ← BestNeighbor(X j)

Run EM algorithm with Motif as seed

We now address the issue of running time. For a
given sample string A0, we can compute d(A0, P)

for all P ∈ Si , Si ∈ S in time O(nN), which is a
lower bound on the work which must be done by
any sample-driven algorithm. In the computation of
BestNeighbor(X j), we efficiently approximate the en-
tropy e(Y,S) of each profile Y ∈ D=1(X j) by estimating
e(Y, Si) = max{e(Y, P) | P ∈ Si } using only patterns
P ∈ Si which satisfy two conditions: d(A0, P) ≤ K ,
for a fixed parameter K ; and P agrees with Y at the
nucleotide which was amplified from X j . The overall
proportion of l-mers P which satisfy d(A0, P) ≤ K is
equal to the binomial probability B[l, l − K , 0.25];† we
typically choose K so that B[l, l − K , 0.25] ≈ 0.05. By
storing the values e(X j , P), we can quickly compute this
estimate of e(Y, Si) for all Y ∈ D=1(X) with a single
loop through l-mers P ∈ Si . Finally, we note that the
time to run the EM algorithm to convergence on a single
profile is very small. Thus, our algorithm takes time
O(n2 N 2) · (1 + O(kl B[l, l − K , 0.25])), versus a lower
bound of O(n2 N 2) for any sample-driven algorithm. For
example, for l = 15, k = 4, K = 8 we have roughly an
extra factor of 5 in running time. We admit that this is
somewhat slow, but we believe that the optional speedups
described at the end of the previous section, which we
have implemented in PatternBranching but have not yet
implemented in ProfileBranching, would alleviate some
of the increase in running time.

RESULTS ON IMPLANTED MOTIFS
We begin by presenting results on the Motif Challenge
Problem introduced by Pevzner and Sze (2000), who
solved it using the WINNOWER and SP-STAR algo-
rithms. However, those algorithms were unable to solve
slightly harder implantation problems in reasonable time.
This motivated the more powerful algorithms PRO-
JECTION (Buhler and Tompa, 2001), MITRA (Eskin
and Pevzner, 2002) and MULTIPROFILER (Keich and
Pevzner, 2002a), which are able to solve much harder
implantation problems. In Table 1, we list the success
rate and running time of PatternBranching on the Motif
Challenge Problem, versus each of these algorithms. We
define success to mean that the algorithm outputs the
implanted motif pattern. We omit from this comparison
the algorithms from Pevzner and Sze (2000), for which
results were not reported in this form. For each algorithm
except MITRA, the choice of parameters leads to a trade-

† B[n, m, p] = ∑n
i=m

(n
i
)

pi (1 − p)n−i .

ii152

 at U
niverzita K

arlova v Praze on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Finding subtle motifs by branching from sample strings

Table 1. Results of various algorithms on the Motif Challenge Problem

Algorithm Success Rate Running Time

PROJECTION about 100% 2 minutes
MITRA 100% 5 minutes
MULTIPROFILER 99.7% 1 minute
PatternBranching 99.7% 3 seconds

PROJECTION results from Buhler and Tompa (2001), MITRA results
from Eskin and Pevzner (2002), MULTIPROFILER results from our own
experiments‡. The success rate of about 100% for PROJECTION is
estimated, based on 20 trials (more trials are required to estimate the
success rate more accurately). The success rate of 100% for MITRA
reflects the fact that MITRA is an exhaustive search algorithm.
PROJECTION run on 667 MHz processor (Buhler and Tompa, 2001),
MITRA on 750 MHz processor (Eskin and Pevzner, 2002),
MULTIPROFILER and PatternBranching on 1.0 GHz processor.
PatternBranching results incorporate the optional speedups described above

off between success rate and running time, and results in
the table reflect selected parameter choices.

The Motif Challenge Problem can be made harder in
two ways: first, one can increase the sequence length N ;
second, one can reduce the motif length l from 15 to
14, which increases the mutation rate. However, a very
subtle implanted motif may be dim with respect to the
total distance score d(M,S), i.e. random motifs M
may score better than the implanted motif (Keich and
Pevzner, 2002b). Following PROJECTION and MULTI-
PROFILER, in these cases we instead use the sequence
count score SQ(M,S), which counts the number of
sequences Si ∈ S with d(M, Si) > k. Examples of very
subtle motifs include (15, 4)-motifs with N = 2000,
and (14, 4)-motifs with N = 800. On these very hard
implantation problems, PROJECTION’s success rate
drops to 80% or lower (Buhler, 2001), MITRA results
were not reported in Eskin and Pevzner (2002), and
MULTIPROFILER succeeds, with success rate arbitrarily
close to 1 depending on parameter choices; for example,
on (15, 4)-motifs with N = 2000, Keich and Pevzner
(2002a) report that MULTIPROFILER achieves a suc-
cess rate above 99% in 1.25hr on a 500Mz processor.
PatternBranching succeeds much more quickly than
MULTIPROFILER, taking a few minutes or less on a
1.0GHz processor to achieve a success rate above 99% on
each of these problems. In summary, PatternBranching
solves these pattern implantation problems much more
quickly than any other algorithm we are aware of.

We now present results of ProfileBranching on the Motif
Challenge Problem, versus other profile-based algorithms.
Because profile-based algorithms output a profile instead
of a pattern, success rate is not an appropriate figure

‡ Appropriate parameters settings for MULTIPROFILER were verified
through personal correspondence with Uri Keich.

Table 2. Results of various profile-based algorithms on the Motif Challenge
Problem

Algorithm Perf. Coeff. Running Time

CONSENSUS 0.20 40 seconds
GibbsDNA 0.32 40 seconds
MEME 0.14 5 seconds
ProfileBranching 0.57 80 seconds

Benchmarking of CONSENSUS, GibbsDNA and MEME kindly provided
by Neil Jones. Performance coefficients averaged over 100 trials. All
algorithms run on 1.0GHz processor

of merit, and we instead use the performance coefficient
of Pevzner and Sze (2000). Let K be the set of n · l
implanted motif positions in the sample, and let P be
the set of predicted motif positions. Then the performance
coefficient is defined to be |K ∩ P|/|K ∪ P|. In Table 2,
we list the performance coefficient and running time of
ProfileBranching on the Motif Challenge Problem, versus
CONSENSUS (Hertz and Stormo, 1999), GibbsDNA
(Lawrence et al., 1993) and MEME (Bailey and Elkan,
1994), which also model motifs using profiles. We admit
that our algorithm is much slower than MEME. However,
we believe that thorough software optimization would
bring us closer to the factor of 5 in running time described
above, and that the optional speedups which we have not
yet implemented in ProfileBranching would reduce the
running time further.

PatternBranching clearly outperforms ProfileBranching
on pattern-like motifs as represented by the Motif Chal-
lenge Problem. However, pattern-based algorithms have
difficulty finding motifs with many degenerate positions.
To demonstrate the greater generality of the profile-based
approach, we implant (15, 5)-motifs in n = 20 sequences
of length N = 600, with the further restriction that all
mutations of a given motif position mutate to a fixed sec-
ondary nucleotide value, so that each motif position has
only two possible nucleotide values. This implanted motif
is dim with respect to pattern-based total distance or se-
quence count scores (Buhler and Tompa, 2001), thus this
implantation problem cannot be solved by pattern-based
algorithms. Indeed, the average performance coefficient is
only 0.10 for PatternBranching, versus 0.63 for MEME
and 0.99 for ProfileBranching. As we gradually make the
implanted motif more subtle, ProfileBranching continues
to outperform MEME. For example, if in each occurrence
of the motif we allow 1 of 5 mutations to mutate to a third
nucleotide value for that motif position, average perfor-
mance coefficients decline to 0.03 for PatternBranching,
0.03 for MEME and 0.62 for ProfileBranching. In sum-
mary, ProfileBranching is very successful in finding sub-
tle implanted motifs where motif positions are dominated

ii153

 at U
niverzita K

arlova v Praze on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

A.Price et al.

Table 3. Results of PatternBranching on biological samples

Sample Sample size (bp) PatternBranching motif Reference motif Ref.

E.coli CRP 1890 TGTGAAATAGATCACATTTT TGTGANNNNGNTCACA (A)
preproinsulin 7689 GCAGACCCAGCACCAGGGAA AGACCCAGCA (B)

GAAATTGCAGCCTCAGCCCC CCTCAGCCCC (B)
CCCTAATGGGCCAGGCGGCA CCCTAATGGGCCA (B)

DHFR 800 TGCAATTTCGCGCCAAACTT TTCGCGCCAAACT (B)
metallothionein 6823 CTCTGCGCCCGGCCCGGTTC TTGCGCCCGG (B)

GGGAGCTCTGCACACCGCAC AGCTCTGCACTC (B)
c-fos 3695 CCATATTAGGACATCTGCGT CCATATTAGGACATCTG (C)
Yeast ECB 5000 GTATTTCCCGTTTAGGAAAA TTTCCCNNTNAGGAAA (C)

We list the motif(s) from PatternBranching output which match the reference motif(s), underlining the areas which match. References: (A) (Stormo and
Hartzell III, 1989), (B) (Blanchette, 2001), (C) (Buhler and Tompa, 2001). Running times ranged from less than 1 second for DHFR to 6 seconds for
preproinsulin on a 1.0GHz processor

by two frequently occurring nucleotide values, a feature of
many biological motifs.

RESULTS ON BIOLOGICAL SAMPLES
We tested PatternBranching on the following biological
samples with known motifs: a sample containing CRP
binding sites in E.coli (Stormo and Hartzell III, 1989);
four samples of upstream regions in a variety of organisms
of each of the following eukaryotic genes: preproinsulin,
dihydrofolate reductase (DHFR) and metallothionein
(Blanchette, 2001), and c-fos (Buhler and Tompa, 2001);
and a sample of promoter regions from yeast which are
known to contain a shared promoter (Buhler and Tompa,
2001). These samples are also analyzed in Keich and
Pevzner, 2002a. We set l = 20 and k = 5, and modified
the algorithm to save 20 motifs with lowest total distance
score. Table 3 shows that PatternBranching finds the
known reference motif(s) in each sample. We note that,
for the preproinsulin sample, some of the motifs returned
by PatternBranching have a better total distance score
than any of the reference motifs.

We also tested the ProfileBranching algorithm on these
biological samples, again using l = 20 and k = 5. For
each sample, the consensus pattern of the motif profile
returned by ProfileBranching similarly matches one of
the reference motifs from Table 3. Running times ranged
from less than 1 second for DHFR to 18 seconds for
preproinsulin on a 1.0GHz processor. We have not yet
modified the algorithm to output more than one motif;
this modification would be necessary to find all reference
motifs in the preproinsulin and metallothionein samples.

We admit that the motifs in these biological samples
have all been found by popular motif finding algorithms
such as MEME (Bailey and Elkan, 1994). We are not
aware of any experimentally verified motifs which are
sufficiently subtle to demonstrate the advantage of our
approach.

DISCUSSION
We have described a new method of finding motifs by
branching from sample strings. This approach restricts the
search to small neighborhoods (in motif space) of sam-
ple strings, and searches these neighborhoods with great
efficiency. The PatternBranching and ProfileBranching al-
gorithms implement this idea in pattern-based and profile-
based settings, respectively. Both algorithms achieve fa-
vorable results in finding subtle implanted motifs, and suc-
ceed in finding known motifs in biological samples.

The next step is to apply these algorithms to more
challenging biological samples. Our efficient approach
is well suited to the analysis of larger samples. A
separate question is how it will fare on corrupted samples
containing many sequences without a motif occurrence.
Preliminary results on implanted motifs indicate that
we can find subtle motifs in large samples where most
sequences do not contain a motif occurrence.

An intriguing idea which we have not yet explored is
to extend the PatternBranching algorithm to an alphabet
of motif letters which contains not only the nucleotides
A,C,G,T but also letters corresponding to purine (R),
pyrimidine (Y), weak bond (W) and strong bond (S),
which each represent two likely nucleotide values. This
would address the main weakness of the PatternBranching
algorithm, namely its inability to find motifs containing
many such degenerate positions.

An advantage of the ProfileBranching algorithm which
we have not yet mentioned is that, like MEME (Bailey
and Elkan, 1994), it can apply a prior distribution on
the nucleotide probabilities in each position of the motif
profile (Bailey and Elkan, 1995). Preliminary results
indicate that imposing a Dirichlet mixture prior in this
fashion greatly improves the results of ProfileBranching
on the Motif Challenge Problem, but does not improve
the results of MEME; this merits further investigation.
Following MEME, the ProfileBranching algorithm can

ii154

 at U
niverzita K

arlova v Praze on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Finding subtle motifs by branching from sample strings

also be extended to incorporate models of the underlying
background distribution (for example, to handle genomes
with different base compositions), and to output mul-
tiple motifs by probabilistically erasing occurrences of
previously discovered motifs.

ACKNOWLEDGEMENTS
We are grateful to Neil Jones for benchmarking CON-
SENSUS, GibbsDNA and MEME on the Motif Challenge
Problem, and to Uri Keich for helpful discussions and
verifying appropriate parameter settings for MULTIPRO-
FILER.

REFERENCES
Apostolico,A., Bock,M. and Lonardi,S. (2002) Monotony of sur-

prise and large-scale quest for unusual words. Proceedings of the
Sixth Annual International Conference on Research in Computa-
tional Molecular Biology (RECOMB-02). ACM Press, Washing-
ton, DC, pp. 22–31.

Bailey,T. and Elkan,C. (1994) Fitting a mixture model by expec-
tation maximization to discover motifs in biopolymers. Pro-
ceedings of the Second International Conference on Intelligent
Systems for Molecular Biology (ISMB-94). AAAI Press, Menlo
Park, CA, pp. 28–36.

Bailey,T. and Elkan,C. (1995) The value of prior knowledge in
discovering motifs with MEME. Proceedings of the Third
International Conference on Intelligent Systems for Molecular
Biology (ISMB-95). AAAI Press, Cambridge, England, pp. 21–
29.

Blanchette,M. (2001) Algorithms for phylogenetic footprinting.
Proceedings of the Fifth Annual International Conference on
Research in Computational Molecular Biology (RECOMB-01).
ACM Press, Montreal, Canada, pp. 49–58.

Buhler,J. (2001) Search Algorithms for Biosequences Using Ran-
dom Projection, Ph.D. Thesis, University of Washinton.

Buhler,J. and Tompa,M. (2001) Finding motifs using random
projections. Proceedings of the Fifth Annual International
Conference on Research in Computational Molecular Biology
(RECOMB-01). ACM Press, Montreal, Canada, pp. 69–76.

Eskin,E. and Pevzner,P. (2002) Finding composite regulatory
patterns in DNA sequences. Bioinformatics, Proceedings of
the Tenth International Conference on Intelligent Systems for

Molecular Biology(ISMB-02), S1, pp. 354–363.
Galas,D., Eggert,M. and Waterman,M. (1985) Rigorous pattern-

recognition methods for DNA sequences. Analysis of promoter
sequences from Escherichia coli. J. Mol. Biol., 186, 117–128.

Hertz,G. and Stormo,G. (1999) Identifying DNA and protein
patterns with statistically significant alignments of multiple
sequences. Bioinformatics, 15, 563–577.

Keich,U. and Pevzner,P. (2002a) Finding motifs in the twilight zone.
Bioinformatics, 18, 1374–1381.

Keich,U. and Pevzner,P. (2002b) Subtle motifs: defining the limits
of motif finding algorithms. Bioinformatics, 18, 1382–1390.

Lawrence,C., Altschul,S., Boguski,M., Liu,J., Neuwald,A. and
Wootton,J. (1993) Detecting subtle sequence signals: a Gibbs
sampling strategy for multiple alignment. Science, 262, 208–214.

Marsan,L. and Sagot,M. (2000) Algorithms for extracting structured
motifs using a suffix tree with an application to promoter and
regulatory site consensus identification. J. Comput. Biol., 7(3-4),
345–362.

Pavesi,G., Mauri,G. and Pesole,G. (2001) An algorithm for finding
signals of unknown length in DNA sequences. Bioinformatics,
Proceedings of the Ninth International Conference on Intelligent
Systems for Molecular Biology (ISMB-01), S1, pp. 207–214.

Pevzner,P. and Sze,S. (2000) Combinatorial approaches to finding
subtle signals in DNA sequences. Proceedings of the Eighth
International Conference on Intelligent Systems for Molecular
Biology (ISMB-00). AAAI Press, San Diego, California, pp. 269–
278.

Sagot,M. (1998) Spelling approximate or repeated motifs using a
suffix tree. Lecture Notes in Computer Science, 1380, 111–127.

Sagot,M., Escalier,V., Viari,A. and Soldano,H. (1995) Searching
for repeated words in a text allowing for mismatches and gaps.
Proceedings of the Second South American Workshop on String
Processing. Valparaiso, Chile, pp. 87–100.

Stormo,G. and Hartzell III,G. (1989) Identifying protein-binding
sites from unaligned DNA fragments. Proc. Natl Acad. Sci. USA,
86, 1183–1187.

Vanet,A., Marsan,L., Labigne,A. and Sagot,M. (2000) Inferring
regulatory elements from a whole genome. An analysis of
Helicobacter pylori sigma(80) family of promoter signals. J. Mol.
Biol., 297(2), 335–353.

Waterman,M., Arratia,R. and Galas,E. (1984) Pattern recognition in
several sequences: consensus and alignment. Bull. Math. Biol.,
46, 515–527.

ii155

 at U
niverzita K

arlova v Praze on January 8, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

