
The Logic Book is a leading text for symbolic logic courses that presents all

concepts and techniques with clear, comprehensive explanations. There is a wealth

of carefully constructed examples throughout the text, and its flexible organization

places materials within largely self-contained chapters that allows instructors the

freedom to cover the topics they want, in the order they choose.

Features of the 6th Edition:

 There is a fuller and more accessible discussion of formal semantics than

in previous editions.

 A recovery of only extensions of predicates from truth-trees, rather than

English readings of those predicates.

 Many chapters have been reorganized so that technical material is

presented at the beginning of the chapter, which gives instructors the flexibility

to cover the material quickly before proceeding to the following chapters.

What Instructors are Saying about The Logic Book:

“The Logic Book is an ideal choice for an upper-division first or second course

in symbolic logic. It contains not only all of the basic material covered in an

introductory symbolic logic course, but also a full treatment of mathematical

induction and the soundness and completeness of sentential and predicate logic.”

-Charles Cross, University of Georgia

“A solid and functional logic textbook that is suitable for a variety of different

introductory and intermediate logic courses...”

“A precise, careful, fully formal approach to first-order logic.”

-Arnold Smith, Kent State University

ThE

LogIc Book
Sixth Edit ion

Merrie Bergmann | James Moor | Jack Nelson

Sixth
Edition

T
h

E

Lo
g

Ic
 B

o
o

k
B
e
rgm

a
n
n

|

M
o
o
r

|
N

e
lso

n

M
D

 D
A

L
IM

 1220925 12/21/12 C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
A

C
K

THE
LOGIC
BOOK
Sixth Edition

MERRIE BERGMANN Smith College, Emerita

JAMES MOOR Dartmouth College

JACK NELSON

ber38413_fm_i-x.indd Page i 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page i 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

THE LOGIC BOOK, SIXTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221
Avenue of the Americas, New York, NY, 10020. Copyright © 2014, 2009, 2004, 1998,
1990, and 1980 by Merrie Bergmann, James Moor, and Jack Nelson. All rights reserved.
No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent of
The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other
electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to
customers outside the United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3

ISBN 978-0-07-803841-9
MHID 0-07-803841-3

Senior Vice President, Products & Markets: Kurt L. Strand
Vice President, General Manager, Products & Markets: Michael Ryan
Vice President, Content Production & Technology Services: Kimberly Meriwether David
Executive Director of Development: Lisa Pinto
Managing Director: William Glass
Brand Manager: Laura Wilk
Marketing Specialist: Alexandra Schultz
Managing Editor: Sara Jaeger
Director, Content Production: Terri Schiesl
Content Project Manager: Mary Jane Lampe
Buyer: Nichole Birkenholz
Media Project Manager: Sridevi Palani
Cover Designer: Studio Montage, St. Louis, MO
Cover Image: Jacopo de’Barbari, (c.1460/70-c.1516). Portrait of the mathematician Luca
Pacioli, the “father of accounting,” and an unknown young man. Museo Nazionale di Capodi-
monte, Naples, Italy. © Scala / Art Resource, NY
Typeface: 10/12 ITC New Baskerville Roman
Compositor: Aptara®, Inc.
Printer: R. R. Donnelley

Library of Congress Cataloging-in-Publication Data
(CIP has been applied for)

The Internet addresses listed in the text were accurate at the time of publication. The
inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill, and
McGraw-Hill does not guarantee the accuracy of the information presented at these sites.

www.mhhe.com

ber38413_fm_i-x.indd Page ii 12/27/12 8:12 AM user-fw429 ber38413_fm_i-x.indd Page ii 12/27/12 8:12 AM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

ABOUT THE AUTHORS iii

ABOUT THE AUTHORS

MERRIE BERGMANN received her Ph.D. in philosophy from the University of
Toronto. She is an emerita professor of computer science at Smith College. She
is the author of An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras,
and Derivation Systems and has published articles in formal semantics, logic, phi-
losophy of logic, philosophy of language, philosophy of humor, and computa-
tional linguistics. She is an avid blue-water sailor and is currently a digital nomad,
living the cruising life.

JAMES MOOR received his Ph.D. in history and philosophy of science from Indi-
ana University. He is currently Daniel P. Stone Professor of Intellectual and Moral
Philosophy at Dartmouth College. He has numerous publications in philosophy of
science, philosophy of mind, logic, philosophy of artifi cial intelligence, and com-
puter ethics. Moor is a former editor of the journal Minds and Machines and a re-
cipient of the American Philosophical Association Barwise Prize.

JACK NELSON received his Ph.D. from the University of Chicago. He was a mem-
ber of the Philosophy Department of Temple University for over 25 years, 10 of
them as Dean of the Graduate School. Subsequently he served as Vice Chancellor
for Academic Affairs at the University of Missouri–St. Louis and later held the same
position at the University of Washington, Tacoma. After retiring from the University
of Washington he served for three years as Interim Chair of Philosophy at Arizona
State University. He has published articles in epistemology, identity, and the philoso-
phy of science and is co-author, with Lynn Hankinson Nelson, of On Quine.

ber38413_fm_i-x.indd Page iii 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page iii 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

ber38413_fm_i-x.indd Page iv 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page iv 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

CONTENTS v

CONTENTS

Preface ix

 CHAPTER 1 INTRODUCTION TO DEDUCTIVE LOGIC 1
 1.1 Introduction 1
 1.2 Core Concepts of Deductive Logic 3
 1.3 Special Cases of Logical Concepts 12

 CHAPTER 2 SYNTAX AND SYMBOLIZATION 15
 2.1 The Syntax of SL 15
 2.2 Introduction to Symbolization 24
 2.3 More Complex Symbolizations 37
 2.4 Non-Truth-Functional Uses of Connectives 58

 CHAPTER 3 SENTENTIAL LOGIC: SEMANTICS 69
 3.1 Truth-Value Assignments and Truth-Tables for Sentences 69
 3.2 Truth-Functional Truth, Falsity, and Indeterminacy 77
 3.3 Truth-Functional Equivalence 87
 3.4 Truth-Functional Consistency 92

ber38413_fm_i-x.indd Page v 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page v 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

vi CONTENTS

 3.5 Truth-Functional Entailment and Truth-Functional
Validity 95

 3.6 Truth-Functional Properties and Truth-Functional
Consistency 106

 CHAPTER 4 SENTENTIAL LOGIC: TRUTH-TREES 110
 4.1 The Truth-Tree Method 110
 4.2 Truth-Tree Rules 111
 4.3 Using Truth-Trees To Test for Other Truth-Functional

Properties 129

 CHAPTER 5 SENTENTIAL LOGIC: DERIVATIONS 146
 5.1 The Derivation System SD 146
 5.2 Basic Concepts of SD 175
 5.3 Strategies for Constructing Derivations in SD 179
 5.4 The Derivation System SD+ 214

 CHAPTER 6 SENTENTIAL LOGIC: METATHEORY 226
 6.1 Mathematical Induction 226
 6.2 Truth-Functional Completeness 234
 6.3 The Soundness of SD and SD+ 244
 6.4 The Completeness of SD and SD+ 252

 CHAPTER 7 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION 262
 7.1 Predicates, Singular Terms, and Quantity Expressions of

English 262
 7.2 The Formal Syntax of PL 268
 7.3 Introduction To Symbolization 276
 7.4 Symbolization Fine-Tuned 296
 7.5 The Language PLE (Predicate Logic Extended) 310

 CHAPTER 8 PREDICATE LOGIC: SEMANTICS 329
 8.1 Interpretations 329
 8.2 Quantifi cational Truth, Falsehood, and Indeterminacy 351
 8.3 Quantifi cational Equivalence and Consistency 358
 8.4 Quantifi cational Entailment and Validity 363
 8.5 Truth-Functional Expansions 369
 8.6 Semantics for Predicate Logic with Identity and Functors 381

ber38413_fm_i-x.indd Page vi 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page vi 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

 CONTENTS vii

 CHAPTER 9 PREDICATE LOGIC: TRUTH-TREES 402
 9.1 Truth-Tree Rules for PL 402
 9.2 Truth-Trees and Quantifi cational Consistency 410
 9.3 Truth-Trees and Other Semantic Properties 416
 9.4 Fine-Tuning the Tree Method for PL 425
 9.5 Truth-Trees for PLE 441
 9.6 Fine-Tuning the Tree Method for PLE 457

 CHAPTER 10 PREDICATE LOGIC: DERIVATIONS 474
 10.1 The Derivation System PD 474
 10.2 Using Derivations to Establish Syntactic Properties of PD 492
 10.3 The Derivation System PD+ 521
 10.4 The Derivation System PDE 526

 CHAPTER 11 PREDICATE LOGIC: METATHEORY 545
 11.1 Semantic Preliminaries for PL 545
 11.2 Semantic Preliminaries for PLE 558
 11.3 The Soundness of PD, PD+, and PDE 561
 11.4 The Completeness of PD, PD+, and PDE 566
 11.5 The Soundness of the Tree Method 584
 11.6 The Completeness of the Tree Method 596

Appendix 1 A-1
Selected Bibliography B-1
Index I-1
Index of Symbols I-7

ber38413_fm_i-x.indd Page vii 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page vii 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

ber38413_fm_i-x.indd Page viii 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page viii 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

PREFACE

Our overall goal in the sixth edition of The Logic Book remains the same as in
earlier versions: presenting deductive symbolic logic in an accessible yet for-
mally rigorous way. To this end, we have extensively reorganized and rewritten
several chapters. We have also condensed presentations throughout the book.

Chapter 1 now focuses almost exclusively on deductive logic. Chapter 2
presents and discusses the formal syntax for the language SL before turning to
symbolizations. Chapter 4 presents all of the truth-tree rules in the fi rst section,
and Chapter 5 does the same for the derivation rules of SD. The discussion of
the completeness proof in Chapter 6 has been rewritten to make the fl ow of
the proof more apparent. Like Chapter 2, Chapter 7 now presents the formal
syntax of PL before discussing symbolization, and the Aristotelian square of
opposition fi gures less prominently than it did in previous editions. Chapter 8
begins with a presentation of the formal semantics for predicate logic, discuss-
ing the formal semantics at greater length and with more examples. (However,
those who want to skip most of the formal semantics can do so—we indicate
this in the middle of Section 8.1, and we continue to display interpretations in
the style of symbolization keys in most of the remainder of the chapter.) All
interpretations presented in Chapter 8, except for some exercises for the fi rst
section, now use the set of positive integers as the UD. Chapter 9 recovers only
extensions of predicates, rather than English readings of those predicates, from
completed open branches of truth-trees. Finally, we have added an appendix
with some facts about the positive integers; this can serve as a refresher for
students as they work through symbolization in Chapter 7 and the construction
of interpretations in Chapter 8.

PREFACE ix

ber38413_fm_i-x.indd Page ix 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page ix 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

x PREFACE

The Logic Book presupposes no previous training in logic, and because
it covers sentential logic through the metatheory of fi rst-order predicate logic,
it is suitable for both introductory and intermediate courses in symbolic logic.

The instructor who does not want to emphasize metatheory can simply
omit Chapters 6 and 11. The chapters on truth-trees and the chapters on deriva-
tions are independent, so it is possible to cover truth-trees but not derivations
and vice versa. However, the chapters on truth-trees do depend on the chapters
presenting semantics; that is, Chapter 4 depends on Chapter 3 and Chapter
9 depends on Chapter 8. In contrast, the derivation chapters can be covered
without fi rst covering semantics.

The Logic Book includes large exercise sets for all chapters. Answers to
unstarred exercises appear in the Student Solutions Manual, available at www.
mhhe.com/bergmann6e, while answers to starred exercises appear in the
Instructor’s Manual, which can be obtained by following the instructions on the
same web page.

ACKNOWLEDGMENTS

We are grateful to Bernard Kobes and his students at Arizona State University,
Mark Gardiner, Johannes Hafner, Robert Robinson and his students at CUNY
City College, Trish Savage, Scott Schaerer, and Scott Stapleford for valuable
comments on the previous edition and suggestions for the present edition. We
are also grateful to the reviewers of this edition, who include

Jamin Asay, University of North Carolina at Chapel Hill
John Rawling, The Florida State University
Charles Cross, University of Georgia
Colin McLarty, Case Western Reserve University
Leemon McHenry, California State University Northridge
Meggan Payne, Bellevue College
Elaine Landry, UC, Davis
Arnold Smith, Kent State University
Craig Fox, California University of Pennsylvania

M. B.
J. M.
J. N.

ber38413_fm_i-x.indd Page x 12/12/12 8:51 AM user-F/W/149ber38413_fm_i-x.indd Page x 12/12/12 8:51 AM user-F/W/149 user-F/W/149user-F/W/149

1.1 INTRODUCTION 1

Chapter 1
INTRODUCTION TO
DEDUCTIVE LOGIC

 1.1 INTRODUCTION

This is a text in deductive logic—more specifi cally, in formal or symbolic
deductive logic. Chapters 1–5 are devoted to sentential logic, the branch of
symbolic deductive logic that takes sentences as the fundamental units of
logical analysis. Chapters 7–10 are devoted to predicate logic, the branch of
symbolic deductive logic that takes predicates and individual terms as the
fundamental units of logical analysis. Chapter 6 is devoted to the metathe-
ory of sentential logic, while Chapter 11 is devoted to the metatheory of
predicate logic.

The hallmark of deductive logic is truth-preservation. Reasoning that is
acceptable by the standards of deductive logic is always truth-preserving; that is,
it never takes one from truths to a falsehood. The following syllogism provides
an example of such reasoning:

All mammals are vertebrates.

Some sea creatures are mammals.

Some sea creatures are vertebrates.

ber38413_ch01_001-014.indd Page 1 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 1 16/11/12 1:26 PM user-f396 F-403F-403

2 INTRODUCTION TO DEDUCTIVE LOGIC

If the fi rst and second sentences (the premises) are true, then the third sen-
tence (the conclusion) must also be true. In deductive logic, reasoning that is
truth-preserving is said to be ‘valid’.1

Over the centuries, a variety of systems of deductive logic have been
developed. One of the oldest is Euclid’s axiomatization of plane geometry,
developed around 300 BCE in classical Greece. All of the truths or theorems
of plane geometry can be derived from the fi ve fundamental assumptions or
axioms of Euclid’s system. Many have attempted to axiomatize other areas of
knowledge, including many of the sciences and many areas of mathematics.
Giuseppe Peano successfully axiomatized arithmetic in 1889. Aristotle (350
BCE), a near contemporary of Euclid, developed a system of deductive logic
that is known as “categorical” or “syllogistic” logic. Our earlier example of
valid deductive reasoning was an Aristotelian syllogism. Aristotle’s system is built
around the logic of terms that identify categories of things, fi sh, human beings,
animals, and so on. Aristotelian logic is still taught today, and the Law School
Admissions Test (LSAT) usually contains questions about Aristotelian logic.
However, Aristotle’s system is limited in some important ways. For example,
every syllogism must have exactly two premises, and the premises and conclu-
sion of a syllogism must be structured according to very restrictive rules. Aris-
totelian logic cannot accommodate such obviously valid reasoning as

Either the maid or the butler killed Watson.

If it was the maid, Watson was poisoned.

Watson wasn’t poisoned.

The butler killed Watson.

because there are three premises, not two, and the fi rst and second premises
have more complex forms than can be accommodated in Aristotelian logic.

The systems of deductive logic that we present in this text have their
foundations in the work of Gottlob Frege, David Hilbert, Bertrand Russell, and
other logicians in the late nineteenth and early twentieth centuries. Unlike
axiomatic systems, which are based on a (usually) small number of axioms,
the deductive systems in this text are based on a small number of reasonably
intuitive rules that govern how sentences can be derived from other sentences.

There are a variety of reasons for studying deductive logic. It is a well-
developed discipline that many fi nd interesting in its own right, a discipline
that has a rich history and important current research programs and practical
applications. Certainly, those who plan to major or do graduate work in areas
such as philosophy, mathematics, and computer science should have a solid
grounding in skills that are needed for presenting and evaluating arguments in

1Deductive logic’s requirement that good reasoning be truth-preserving sets a very high standard for acceptable
reasoning. This stands in contrast to inductive logic, which sets a more modest standard for good reasoning,
namely that if the claims with which one starts are true, then the claims one reaches by using inductive prin-
ciples are likely to be true. A great deal of the reasoning used in the sciences and in ordinary life is judged by
inductive rather than deductive standards.

ber38413_ch01_001-014.indd Page 2 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 2 16/11/12 1:26 PM user-f396 F-403F-403

1.2 CORE CONCEPTS OF DEDUCTIVE LOGIC 3

any discipline. Another reason for studying symbolic logic is that, in learning
to symbolize natural language sentences (in our case, English sentences) in a
formal language, one becomes more aware and more appreciative of the impor-
tance of the structure and complexities of natural languages. The specifi c words
that we use have a direct bearing on whether a piece of reasoning is valid or
invalid. For example, it is essential to distinguish between ‘Roberta will pass if
she completes all the homework’ and ‘Roberta will pass only if she completes all
the homework’ if we want to reason well about Roberta’s prospects for passing.
Finally, the concepts that we explore in this text are abstract concepts. Learning
to think about abstract concepts and the relations between them is an important
skill that is useful in a wide range of theoretical and applied disciplines.

 1.2 CORE CONCEPTS OF DEDUCTIVE LOGIC

Many—but not all—sentences of English are either true or false (this is true of
any natural language). We will say that true sentences have the truth-value T and
that false sentences have the truth-value F. Sentences that are true or false include

Canada is located in South America.

Beethoven composed nine symphonies.

The Boston Red Sox will win the next World Series.

On December 29, 1012, it rained in what is now Manhattan.

The fi rst of these sentences is false and therefore has the truth-value F. The
second sentence is true and has the truth-value T. We do now know whether
the third and fourth sentences are true or false, but we do know that each is
one or the other. Time will tell whether the third sentence has the truth-value
T or the truth-value F, but we will probably never know the truth-value of the
fourth sentence. However, regardless of the state of our knowledge, the fourth
sentence does have either the truth-value T or the truth-value F. It is important
not to confuse our inability to know which truth-value a sentence has with the
sentence’s lack of a truth-value. There are obviously many sentences whose
truth-values we will never know but that do nevertheless have truth-values.

Examples of sentences that lack truth-values include

Do I really have to do the homework to do well in this course?

Lock the door when you leave.

Hurrah!

The fi rst of these sentences is a question. The second is a request or command
and the third is an exclamation. To have a truth-value, a sentence must assert
something. These three sentences do not assert or claim anything and hence
do not have truth-values. In this text, we will be concerned only with sentences

ber38413_ch01_001-014.indd Page 3 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 3 16/11/12 1:26 PM user-f396 F-403F-403

4 INTRODUCTION TO DEDUCTIVE LOGIC

that do have truth-values; when we refer to a sentence or sentences we are
referring to sentences that do have truth-values.

When we are talking about expressions of English we will often use the
variables p, q, r, and s to do so. We use these variables in the same way that
mathematicians use x and y as variables when they are talking about positive
integers, that is, the numbers 1, 2, 3, . . . For example, the claim ‘If x is an even
positive integer and y is an odd positive integer then x plus y is an odd positive
integer’ is a true claim of arithmetic. So too, where p and q are variables that
take expressions of English as their values, the following is true:

If p is a sentence of English and q is a sentence of English then

Either p or q

is also a sentence of English.

The use of variables provides a convenient way for us to make claims about all
expressions of English of a certain sort.

We defi ne an argument as follows:

An argument is a set of two or more sentences, one of which is designated
as the conclusion and the others as the premises.2

Note that this defi nition uses the concept of a set of sentences. Sets are abstract
objects that have members (zero or more). We can specify a fi nite set by list-
ing its members, separated by commas, within a set of curly brackets. Here, for
example, is a set of three English sentences:

{Helen is not very well educated if she believes there is intelligent life
on Mars, Helen is very well educated, Helen does not believe there is
intelligent life on Mars}

If we designate the fi rst two members that we have listed as the premises and
the third sentence as the conclusion, then we have the argument

Helen is not very well educated if she believes there is intelligent life
on Mars.

Helen is very well educated.

Helen does not believe there is intelligent life on Mars.

We adopt the convention of displaying arguments by listing the premises with
a horizontal line under the last premise, followed by the conclusion. We will
say that arguments displayed in this way are in standard form.

2This defi nition allows arguments to have any number of premises, including an infi nite number. However, all
the arguments that we use as examples in this text have only a fi nite number of premises.

ber38413_ch01_001-014.indd Page 4 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 4 16/11/12 1:26 PM user-f396 F-403F-403

1.2 CORE CONCEPTS OF DEDUCTIVE LOGIC 5

We now have all the terminology we need to introduce the core con-
cepts of deductive logic. The fi rst concept is logical validity, a concept that
applies to arguments:

Logically valid argument: An argument is logically valid if and only if it is not
possible for all the premises to be true and the conclusion false. An argument
is logically invalid if and only if it is not logically valid.

A logically valid argument is truth-preserving. If the premises are true, then the
conclusion must also be true. The previous argument about Helen is logically
valid because it is impossible for the premises to be true and the conclusion
false. That is, if the premises are all true, then the conclusion must be true
as well. Note that to determine validity, we do not need to know whether the
premises or conclusion are in fact true. All that we need to know is the logical
relation between the premises and the conclusion.

The following argument is not logically valid:

If Sara receives an A in her chemistry class, she will graduate with a
3.5 grade point average.

If Sara graduates with a 3.5 grade point average, she will get into
medical school.

Sara will get into medical school

Sara will receive an A in her chemistry class.

This argument is invalid because it is possible for all three premises to be true
and the conclusion false. Perhaps Sara will only receive a B in her chemistry class
but will nevertheless graduate with a 3.5 grade point average because her other
grades are so high, or perhaps she’ll get into medical school with less than a 3.5
average because her medical school admissions interview was exceptional.

An argument that is logically valid and that has true premises is said
to be logically sound:

Logically sound argument: An argument is logically sound if and only if it
is logically valid and all of its premises are true. An argument is logically
unsound if and only if it is not logically sound.

Obviously, all logically sound arguments are logically valid, but not all logically
valid arguments are logically sound because not all logically valid arguments
have premises that are all true. The following argument is logically valid but
is not logically sound:

Italy is a country that is located in North America.

Every country that is located in North America uses the United States
dollar as its currency.

Italy uses the United States dollar as its currency.

ber38413_ch01_001-014.indd Page 5 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 5 16/11/12 1:26 PM user-f396 F-403F-403

6 INTRODUCTION TO DEDUCTIVE LOGIC

This argument is logically valid because if the premises were both true, the
conclusion would have to be true as well. Obviously, however, the premises
are not both true; in fact, they are both false (as is the conclusion), and
so the argument is not logically sound, On the other hand, the following
logically valid argument is also logically sound, because both of its premises
are true:

The United States is a country that is located in North America.

No country that is located in North America uses the euro as its
currency.

The United States does not use the euro as its currency.

Note that if an argument is logically sound, its conclusion will also be true. This
is because if the premises of a logically valid argument are true, then, because
it is impossible for the argument’s premises to be true and its conclusion false,
the conclusion must also be true.

Identifying passages of English that contain arguments, extracting
those arguments, and presenting them in standard form are important skills
that must be mastered before the techniques presented in this text can be used
to evaluate English arguments. The following expressions often signal that the
sentence that follows is the conclusion of an argument:

therefore
thus
it follows that
so
hence
consequently
as a result

We will call these ‘conclusion indicator expressions’. Similarly, expressions
such as

since
for
because
on account of
inasmuch as
for the reason that

often indicate that the sentences following these expressions are the premises
of an argument, and we will call these ‘premise indicator expressions’.

ber38413_ch01_001-014.indd Page 6 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 6 16/11/12 1:26 PM user-f396 F-403F-403

1.2 CORE CONCEPTS OF DEDUCTIVE LOGIC 7

Sometimes premise and conclusion indicators signal that what is gram-
matically a single sentence can reasonably be recast as an argument. For exam-
ple, in the sentence

If Ron went to the store, he’d be home by now, but he isn’t home,
and so we may conclude that he didn’t go to the store.

the words ‘so we may conclude’ indicate that the sentence should be understood
as an argument. We can present the argument in standard form as follows:

If Ron went to the store, Ron would be home by now.

Ron isn’t home yet.

Ron didn’t go to the store.

This argument is, by the way, logically valid.
Note that we cannot assume that the premises of an argument always

occur before the conclusion in natural language discourse. The following sen-
tence can also be recast as an argument, and the argument’s conclusion occurs
at the beginning, rather than the end, of the sentence:

Michael will not get the job, for the person that gets the job must
have strong references, and Michael’s references are not strong.

The extracted argument, which is logically valid, is

The person that gets the job must have strong references.

Michael’s references are not strong.

Michael will not get the job.

The conclusion of an argument can also occur between its premises, and an
entire argument may be buried in a larger piece of prose or discourse. Here
is an example:

I’ve got more relatives than I know what to do with. I’ve got relatives
in Idaho and in New Jersey, in Ireland, and in Israel. Among them
are a couple of cousins, Tom and Fred Culverson. Both Tom and
Fred are hardworking, and Tom is as tenacious as a bulldog. So Tom
is sure to be a success, for if there is one thing I have learned in life,
it is that everyone who is both hardworking and tenacious succeeds.
But I’m sure success won’t change Tom. He’ll work just as hard after
he makes his fi rst million as he does now. He is, after all, a Culver-
son. And no one is as predictable as a Culverson, unless it’s a Hutch-
ings. There are lots of Hutchings on my mother’s side, but I haven’t
had much to do with them . . .

ber38413_ch01_001-014.indd Page 7 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 7 16/11/12 1:26 PM user-f396 F-403F-403

8 INTRODUCTION TO DEDUCTIVE LOGIC

The following explicit argument can be extracted from this passage:

Tom and Fred are hardworking.

Tom is tenacious.

Everyone who is both hardworking and tenacious succeeds.

Tom will succeed.

As frequently happens, there is a lot of information in the passage that is not
relevant to the specifi c argument we have extracted.

We note that our formal defi nition of ‘argument’ allows for arguments
in which the premise or premises provide no support whatsoever for the con-
clusion. Here is an example:

Two is the smallest prime number.

In 1967 the Green Bay Packers won the fi rst Super Bowl.

The one premise of this argument is true, as is the conclusion. But it is certainly
possible for the premise to be true and the conclusion false, so the argument
is invalid. (The Kansas City Chiefs lost to the Green Bay Packers in the fi rst
super bowl game, but they might have won.) Some might object that we should
not count this as an argument at all, for the premises of an argument usually
have something to do with the conclusion. But it is not at all clear what kind
of connections there must be between sentences before we are willing to count
one of them as the conclusion and the rest as the premises of an argument.
Some benighted and superstitious soul might think that the fact that a bluebird
landed on his window sill in the morning is relevant to his winning the lottery
and ‘argue’ as follows:

This morning a bluebird landed on my bedroom window as I was get-
ting out of bed.
Therefore, this will be my lucky day and I will win today’s lottery.

Although where and when bluebirds land has nothing to do with who wins
lotteries and when this happens, it is prudent to count this as an argument,
because we can then use the tools of deductive logic to show that it is a bad--
and clearly invalid—argument.

Every sentence that has a truth-value is either logically true, logically
false, or logically indeterminate:

A sentence is logically true if and only if it is not possible for the sentence
to be false.
A sentence is logically false if and only if it is not possible for the sentence
to be true.

ber38413_ch01_001-014.indd Page 8 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 8 16/11/12 1:26 PM user-f396 F-403F-403

1.2 CORE CONCEPTS OF DEDUCTIVE LOGIC 9

The sentence ‘Either June will pass Chemistry 101 or June will not pass Chem-
istry 101’ is logically true, for it is impossible for this sentence to be false. The
sentence is true by virtue of its structure alone. That is, all sentences of the
form p or not p, where p is any sentence that has a truth-value and not p is a
denial of p, is logically true. So, for example, ‘Either it is raining or it is not
raining’ is logically true. Of course, there are other forms of logically true
sentences. For example, ‘If all dogs have tails, then there are no dogs that do
not have tails’ is logically true. Logically true sentences are uninformative; they
don’t tell us anything about the ‘real world’. The sentence about June tells us
nothing about her chances of passing Chemistry 101, and the sentence about
dogs tells us nothing about whether dogs do or do not have tails. An example
of a logically false sentence is

June will pass Chemistry 101 and she will not pass Chemistry 101.

Logically false sentences are false by virtue of their structure. This sentence
is logically false because it is impossible for June to both pass and not pass
Chemistry 101. Like logically true sentences, logically false sentences give us
no information about the world. The sentence ‘It rained on July 6, 1309, in
what is now San Francisco’ is logically indeterminate. Whether this sentence
is true or false is not a matter of logic but rather depends on what in fact
happened on that day in that place. Most of the sentences that we encounter
in ordinary conversation, writing, and reading are logically indeterminate.
Whether they are true or false depends upon how the world in fact is.

Logical equivalence is a relation between sentences:

Logically equivalent sentences: Sentences p and q are logically equivalent if and
only if it is not possible for one of these sentences to be true while the other
sentence is false.

The sentences ‘Jake loves Henry’ and ‘Henry is loved by Jake’ are logically
equivalent. One cannot be true without the other being true, and if either is
false the other is false. Given a pair of logically equivalent sentences, both of
which are logically indeterminate, we know that either both members of the
pair are true or both are false, but we don’t always know which. We know the
sentences ‘Mary is taller than Henry’ and ‘Henry is shorter than Mary’ are
logically equivalent. Mary cannot be taller than Henry without Henry being
shorter than she is, and Henry cannot be shorter than Mary without Mary
being taller than he is. But the fact that the sentences are logically equivalent
doesn’t tell us whether they are both true or both false. Since we may replace
the variables p and q with the same sentence, it follows from our defi nition of
logical equivalence that every sentence is equivalent to itself.

A sentence is logically indeterminate if and only if it is neither logically true
nor logically false.

ber38413_ch01_001-014.indd Page 9 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 9 16/11/12 1:26 PM user-f396 F-403F-403

10 INTRODUCTION TO DEDUCTIVE LOGIC

Logical consistency is defi ned as follows:

A set of sentences is logically consistent if and only if it is possible for all the
members of that set to be true. A set of sentences is logically inconsistent if
and only if it is not logically consistent.

The set

{Tom is left-handed, Carol is left-handed, Mona is left-handed}

is logically consistent. Whoever Tom, Carol, and Mona are, it is logically pos-
sible that they are all left-handed. But

{Everyone in the room is left-handed, Mona is in the room, Mona is
not left-handed}

is logically inconsistent. The three sentences in the set cannot all be true. If
everyone in the room is left-handed and Mona is in the room, then Mona must
be left-handed, so it is false that she is not left-handed.

It may seem that the notion of what is and is not logically possible, a
concept we have used in defi ning all of the core concepts of deductive logic,
is itself in need of clarifi cation. One of the motivations for developing formal
or symbolic systems of deductive logic is in fact to refi ne the concept of logi-
cal possibility so that there are clear criteria for what is logically possible and
what is not. These criteria form the bases of our formal deductive systems in
the rest of this book. In Chapter 2 we will present the symbolic language SL
(for ‘Sentential Logic’), and in Chapter 3 we will defi ne formal sentential logic
versions of the core concepts of deductive logic. In Chapter 7 we will present
the far more powerful language PL (for ‘Predicate Logic’), and in Chapter 8
we will defi ne formal predicate logic versions of the core concepts.

The last core concept of deductive logic is that of entailment. This
concept is closely related to, but not identical, with that of validity:

A set of sentences logically entails a sentence if and only if it is impossible for
the members of the set to be true and that sentence false.

The set

{Henry and Joan will both receive their law degrees in June}

logically entails the sentence ‘Joan will receive her law degree in June’, for it
is impossible for the sentence ‘Joan will receive her law degree in June’ to be
false if the single sentence in the set is true. On the other hand, the set

{Andrew plays soccer, Siri plays tennis}

ber38413_ch01_001-014.indd Page 10 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 10 16/11/12 1:26 PM user-f396 F-403F-403

1.2 CORE CONCEPTS OF DEDUCTIVE LOGIC 11

does not logically entail the sentence ‘Andrew does not play tennis and Siri
does not play soccer’, for it may be the case that in addition to playing soccer,
Andrew plays tennis and in addition to playing tennis, Siri plays soccer.

If an argument is logically valid, then the set consisting of the premises
of the argument logically entails the argument’s conclusion. However, logical
entailment is a more general concept than is logical validity, for there are
sentences that are entailed by the empty set, while arguments must have at
least one premise. The former may seem odd, but there are good reasons for
introducing the more general concept—one reason being that the concept of
logical entailment facilitates reasoning about logical systems, as we will do in
Chapters 6 and 11.

What sentences are entailed by the empty set? One example is the sen-
tence ‘Either June will pass Chemistry 101 or she will not pass Chemistry 101’.
This sentence is logically entailed by the empty set of sentences because it is
impossible for all of the members of the empty set (there are none) to be true
and ‘Either June will pass Chemistry 101 or she will not pass Chemistry 101’
to be false, precisely because this sentence cannot be false. One way that we
might intuitively understand this sentence’s and all logical truths being entailed
by the empty set is by noting that this sentence requires no support. It is true
regardless of what the world is like. This means that reasoning that starts with
no assumptions (the empty set) and reaches this sentence is truth-preserving.

 1.2E EXERCISES

Note: Solutions to unstarred exercises can be accessed from the fol-
lowing web page: http://highered.mcgraw-hill.com/sites/007353563x/
information_center_view0/

Select ‘Student Edition’ on the left-hand side of the page, then select ‘Chapter
1’ and the solutions will appear as a pdf fi le. If you do not have Adobe Reader
you can download it for free from Adobe’s website.

 1. For each of the following, indicate whether it is the kind of sentence that falls
within the scope of this text—that is, whether it is a sentence that has a truth-
value. If it is not this kind of sentence, explain why not.

 a. George Washington was the second president of the United States.
 *b. The next president of the United States will be a Republican.
 c. Turn in your homework on time or not at all.
 *d. Would that 9/11 had never happened.
 e. Two is the smallest prime number.
 *f. One is the smallest prime number.
 g. George Bush, Senior, immediately preceded George W. Bush as president.
 *h. At 3:00 pm EST on January 15, 1134, there was a snowstorm in what is now

Manhattan.

 2. For each of the following passages, determine whether it advances an argu-
ment. If an argument is probably being expressed, restate the argument in

ber38413_ch01_001-014.indd Page 11 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 11 16/11/12 1:26 PM user-f396 F-403F-403

12 INTRODUCTION TO DEDUCTIVE LOGIC

standard form. If the intent is probably not to express an argument, explain
why not.

 a. When Mike, Sharon, Sandy, and Vicky are all away from the Tacoma offi ce, no
important decisions get made. Mike is off skiing, Sharon is in Spokane, Vicky
is in Olympia, and Sandy is in Seattle. So no decisions will be made today.

 *b. Our press releases are always crisp and upbeat. Mike is the press offi cer, and if
he has his way, all press releases are crisp and upbeat. Mike always has his way.

 c. Shelby and Noreen are wonderful at dealing with irate students and faculty
members. Stephanie is very good at managing the chancellor’s very demanding
schedule, and Tina keeps everything moving and cheers everyone up.

 *d. Tom and Ray are our offi ce assistants, and one of them is incompetent and
the other one is lazy. So either Tom is incompetent and Ray is lazy, or Tom is
lazy and Ray is incompetent.

 e. We won’t be able to repair the deck because to do so we need stainless steel
screws. All the screws we have are in the nail and screw cabinet. The fi rst drawer
contains only galvanized nails, the second contains only ordinary nails, and the
third contains only drywall screws. And the fourth and bottom drawers contain
only brass screws.

 *f. If the budget is to be balanced we will have to raise taxes or cut spending. If
we cut spending, then entitlement programs, including Medicare and Social
Security, will have to be signifi cantly cut and the Democrats will have a fi t. If
we raise taxes, Republicans will go ballistic. So if the budget is balanced, either
the Democrats will have a fi t or the Republicans will go ballistic.

 g. The weather is perfect, the view is wonderful, and we’re on vacation. So why
are you unhappy?

 *h. The new kitchen will be fi nished on time only if our carpenter works over the
weekend. He will work over the weekend only if he doesn’t go duck hunting,
but he will go duck hunting. So the new kitchen will not be fi nished on time.

 i. If Sarah did the wiring, it was done right, and if Marcie did the plumbing, it
was done right. As neither the wiring nor the plumbing was done right, Sarah
didn’t do the wiring and Marcie didn’t do the plumbing.

 *j. Sarah, John, Rita, and Bob have all worked hard, and one of them will be pro-
moted. Their company is having a cash fl ow problem and is offering its employees
who are over 55 a $50,000 bonus if they retire at the end of this year. Sarah, John,
and Bob are all over 55 and will take early retirement. So Rita will be promoted.

 k. Having cancer is a good, for whatever is required by something that is a good
is itself a good. Being cured of cancer is a good, and being cured of cancer
requires having cancer.

 *l. Humpty Dumpty sat on a wall. Humpty Dumpty had a great fall. All the king’s
horses and all the king’s men couldn’t put Humpty together again. So they
made him into an omelet and had a great lunch.3

3With apologies to Lewis Carroll.

 1.3 SPECIAL CASES OF LOGICAL CONCEPTS

In this section we point out and explain some special cases of our logical con-
cepts. These may seem counterintuitive, but we shall explain why they follow
from our defi nitions.

ber38413_ch01_001-014.indd Page 12 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 12 16/11/12 1:26 PM user-f396 F-403F-403

1.3 SPECIAL CASES OF LOGICAL CONCEPTS 13

The fi rst special case is that of an argument whose conclusion is logi-
cally true. Such an argument is logically valid no matter what premises it has.
Here is such an argument:

The Philadelphia Phillies is the best team in the National League.

Either the next president of the United States will be a woman or
the next president will not be a woman.

The conclusion of this argument is logically true. No matter who wins the next
presidential election, that person either will or will not be a woman. Because the
conclusion is logically true, it is impossible for the argument’s premise to be true
and the conclusion false, because it is impossible for the conclusion to be false.
So, the argument is logically valid; it will never lead us from truths to a false-
hood. The second, and related, special case is that of every logically true sentence
being entailed by every set of sentences, including the empty set, because it is
impossible for a logically true sentence to be false and hence impossible for the
members of a set, any set, all to be true and that logically true sentence false.

The third special case concerns arguments whose premises form logi-
cally inconsistent sets. Here is an example:

Albert is brighter than all his sisters.

Sally is Albert’s sister.

Sally is brighter than all her brothers.

Tyrannosaurus rex was the fi ercest of all dinosaurs.

The premises form a logically inconsistent set because they cannot all be true. If the
fi rst and second premises are both true, for example, the third premise cannot be
true. And if the premises cannot all be true, it is impossible for the premises to be
true and the conclusion false. The argument is therefore logically valid. Although
every argument whose premises form an inconsistent set is logically valid, of course
no such argument can be logically sound. Note that every argument that has at
least one logically false premise is an instance of this special case, because any set
of sentences that contains a logically false sentence is logically inconsistent.

Our fourth and fi fth special cases concern logical equivalence, which
we have defi ned as follows:

Sentences p and q are logically equivalent if and only if it is not possible
for one of the sentences to be true while the other sentence is false.

By this defi nition, all logically true sentences p and q are logically equivalent.
Because it is not possible for any logically true sentence to be false, it is impos-
sible for logically true sentences p and q to be such that one is true while the
other is false. It follows that all logically true sentences are logically equivalent.
Similar reasoning shows that all logically false sentences are logically equivalent.
Of course, not all logically indeterminate sentences are logically equivalent.

ber38413_ch01_001-014.indd Page 13 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 13 16/11/12 1:26 PM user-f396 F-403F-403

14 INTRODUCTION TO DEDUCTIVE LOGIC

 1.3E EXERCISES

 1. Which of the following are true, and which are false? Explain your answers,
giving examples where appropriate.

 a. Every argument that has ‘Whatever will be, will be’ as a conclusion is logically
valid.

 *b. Any argument that includes among its premises ‘Everyone is a scoundrel’ and
‘I’m no scoundrel’ is logically valid.

 c. Every argument that has ‘Everyone is a scoundrel and I’m no scoundrel’ as a
conclusion is logically invalid.

 *d. The premises of a logically valid argument always provide support for the con-
clusion of the argument.

 2. Answer each of the following.
 a. Suppose that an argument has a premise that is logically true. Must the argu-

ment be logically valid? Explain.
 *b. Suppose that an argument has a premise that is logically equivalent to a logi-

cally false sentence. Must the argument be logically valid? Explain.
 c. Suppose that an argument has a logically true sentence as its conclusion.

Explain why the argument must be valid no matter what its premises are.
Explain why some such arguments are sound and some are not.

 *d. Suppose that the premises of an argument form a logically inconsistent set.
Explain why the argument must be logically valid but unsound.

GLOSSARY

ARGUMENT: An argument is a set of two or more sentences, one of which is desig-
nated as the conclusion and the others as the premises.

LOGICAL VALIDITY: An argument is logically valid if and only if it is not possible for
the premises to be true and the conclusion false. An argument is logically invalid if
and only if it is not logically valid.

LOGICAL SOUNDNESS: An argument is logically sound if and only if it is logically
valid and all its premises are true. An argument is logically unsound if and only if it
is not logically sound.

LOGICAL TRUTH: A sentence is logically true if and only if it is not possible for the
sentence to be false.

LOGICAL FALSITY: A sentence is logically false if and only if it is not possible for the
sentence to be true.

LOGICAL INDETERMINACY: A sentence is logically indeterminate if and only if it is
neither logically true nor logically false.

LOGICAL EQUIVALENCE: Sentences p and q are logically equivalent if and only if it is
not possible for one of these sentences to be true while the other sentence is false.

LOGICAL CONSISTENCY: A set of sentences is logically consistent if and only if it is
possible for all the members of that set to be true. A set of sentences is logically
inconsistent if and only if it is not logically consistent.

LOGICAL ENTAILMENT: A set of sentences logically entails a sentence if and only if
it is impossible for all the members of the set to be true and that sentence false.

ber38413_ch01_001-014.indd Page 14 16/11/12 1:26 PM user-f396ber38413_ch01_001-014.indd Page 14 16/11/12 1:26 PM user-f396 F-403F-403

2.1 THE SYNTAX OF SL 15

Chapter 2
SYNTAX AND SYMBOLIZATION

Section 2.1 of this chapter presents the formal language SL (‘SL’ is short for
‘Sentential Logic’). Section 2.2 introduces the symbolization process, that is,
how English sentences are symbolized in SL. Section 2.3 is devoted to develop-
ing profi ciency in the symbolization process. Section 2.4 explores some of the
complexities involved in symbolizing English sentences in SL.

 2.1 THE SYNTAX OF SL

The syntax of a language specifi es the basic expressions of a language and
the rules that determine which combinations of those expressions count as
sentences of the language. The syntax of a language does not specify how the
sentences of the language are to be interpreted; that is a matter for semantics,
which we will address in Chapter 3. The syntax of English, and every other
natural language, is enormously complex. Fortunately, the syntax of SL is sim-
ple, straightforward, and easily learned.

But before we lay out the syntax of SL we need to introduce some
terminology.

METALANGUAGE/OBJECT LANGUAGE

Throughout the rest of this text we will be using English to talk about two
formal languages, fi rst SL and later PL. When we use a language to talk about

ber38413_ch02_015-068.indd Page 15 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 15 16/11/12 1:23 PM user-f396 F-403F-403

16 SYNTAX AND SYMBOLIZATION

a language, we are using that language as a metalanguage, and the language
that we are talking about is the object language. So when we are talking about
SL and PL they are the object languages.1

USE AND MENTION

We regularly use language to talk about or of a host of different things,

. . . of shoes—and ships—and sealing-wax—Of cabbages—and kings—

as Lewis Carroll wrote. But we also have occasion to use language to talk about
language. In this text we will frequently talk of expressions, sentences, and
arguments of SL (and later of PL), as well as words, sentences, and arguments
of English. When we talk about these or other linguistic constructions, large
or small, we are mentioning rather than using those constructions and it is
important that we have ways of indicating that we are doing so. Failure to indi-
cate that we are mentioning rather than using a piece of language can lead to
confusion. Consider the sentence:

Minnesota derives from a Native American word.

We can probably all fi gure out what a person who asserts this sentence means,
namely, that the name of the state located between the Dakotas and Wisconsin
derives from a Native American word. But what the sentence literally says is that
Minnesota, the state, a political entity, derives from a Native American word,
and this is clearly false.

In this text, we use two conventions to indicate that we are mentioning
or talking about language. The fi rst is to place the linguistic expression we are
mentioning within single quotation marks. So we can make the intended claim
about the origin of the name of Minnesota by saying that ‘Minnesota’ derives
from a Native American word. The second convention we will use is that of
displaying the language we wish to talk about or mention on an indented line
or lines. Thus we can truly say that the following sentence is about the origin
of the name of Minnesota:

‘Minnesota’ derives from a Native American word.

We have just said something about a sentence, and we indicated that we were
doing so by displaying that sentence on a line by itself. Within the displayed
sentence, we used the convention of placing an expression that we are talking
about within single quotes. We have used both of these conventions earlier in
this text, and we will use them throughout the rest of this text.

1In a German class the instructor uses English to talk about German, and in this instance English is the metalan-
guage and German is the object language. And when a grammar instructor uses English to talk about the rules
of English grammar English is both the metalanguage and the object language.

ber38413_ch02_015-068.indd Page 16 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 16 16/11/12 1:23 PM user-f396 F-403F-403

2.1 THE SYNTAX OF SL 17

METAVARIABLES

Most of us are familiar with mathematicians’ use of the letters ‘x’ and ‘y’ to
make arithmetic claims such as

For any positive integers x and y, if x is even and y is odd then x � y
is odd.

Of course ‘x’ and ‘y’ are not integers. They are letters of the English alphabet.
But they are used by mathematicians to make general claims about, in this
case, integers. The letters ‘x’ and ‘y’ when so used are said to be variables
and to range over or take as values the positive integers, that is, the numbers
1, 2, 3, 4 . . .

Analogously to the way mathematicians use ‘x’ and ‘y’ as variables rang-
ing over numbers we will use the boldface capital letters ‘P’, ‘Q’, ‘R’, and ‘S’,
with or without subscripts, as in

P P1 Q3

as metavariables ranging over expressions of the object languages SL and
PL. These variables are termed ‘metavariables’ because they are parts of the
metalanguage we are using, English, not parts of the object languages SL and
PL. We will similarly use the boldfaced lowercase letters ‘p’, ‘q’, ‘r’, and ‘s’,
with or without following primes, as metavariables ranging over expressions
of English.

We can now lay out the syntax of SL. We begin by specifying the expres-
sions or vocabulary of SL. These are

Sentence Letters: the capital Roman letters ‘A’ through ‘Z’, with or
without positive integer subscripts2:

A, B, C, . . . , A1, B1, C1, . . . , A2, B2, C2, . . .

Sentential Connectives:

~ (called the ‘tilde’)

& (called the ‘ampersand’)

∨ (called the ‘wedge’)

⊃ (called the ‘horseshoe’)

� (called the ‘triple bar’)

2The inclusion of capital Roman letters with positive integer subscripts among the sentence letters of SL means
that there are infi nitely many sentence letters of SL. This is appropriate as there are infi nitely many claims that
can be made about the universe and its contents and we never know how many of these claims someone may
want to symbolize by using sentence letters of SL.

ber38413_ch02_015-068.indd Page 17 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 17 16/11/12 1:23 PM user-f396 F-403F-403

18 SYNTAX AND SYMBOLIZATION

The connective tilde is a unary connective; the remaining connectives are binary
connectives. Binary connectives connect, as the name suggests, two sentences to
form a new sentence. The unary connective tilde attaches to a single sentence
to form a new sentence.3

Punctuation marks: ‘(’ and ‘)’

Recursive Defi nition of ‘Sentence of SL’

 We defi ne ‘sentence of SL’ as follows:
 1. Every sentence letter of SL is a sentence of SL.
 2. If P is a sentence of SL, then ~ P is a sentence of SL.
 3. If P and Q are sentences of SL, then (P & Q) is a sentence of SL.
 4. If P and Q are sentences of SL, then (P ∨ Q) is a sentence of SL.
 5. If P and Q are sentences of SL, then (P ⊃ Q) is a sentence of SL.
 6. If P and Q are sentences of SL, then (P � Q) is a sentence of SL.
 7. Nothing is a sentence of SL unless it can be formed by repeated application

of clauses 1–6.4

Our specifi cation of the syntax of SL is now complete. Our recursive defi nition
of ‘sentence of SL’ provides a complete specifi cation of what expressions counts
as a sentence of SL.

All of the following expressions are sentences of SL, as we shall
explain:

(B & D)
((B � D) ∨ ~ C)
~ ~ D
((A & B) & ~ (C � ~ D))

‘(B & D)’ contains two sentence letters, ‘B’ and ‘D’. By clause 1, they are both
sentences of SL. Since they are sentences of SL, ‘(B & D)’ is also, by clause

3Expressions that attach to a single sentence to form a new sentence, as does the tilde, are traditionally, though
somewhat misleadingly, termed ‘connectives’ though they do not connect two sentences.
4Readers are unlikely to have diffi culty understanding clauses 2–6 of our recursive defi nition of ‘sentence of SL.
For example, the import of clause 3

If P and Q are sentences of SL, then (P & Q) is a sentence of SL,

is simply that the result of placing ‘&’ between any two sentences of SL and enclosing the result in parentheses
is a sentence of SL. But there is a complexity here that we note for the sake of completeness. We stipulate that
in expressions that contain both metavariables and expressions of SL the metavariables are being used and the
expressions of SL are being mentioned. We need this stipulation because in claims such as clauses 2–6 of our
recursive defi nition we are talking about what expressions constitute sentences of SL, not using sentences of SL.
We adopt a parallel convention for hybrid expressions in which we use the metalinguistic variables ‘p’, ‘q’, ‘r’,
and/or ‘s’ to refer to expressions of English.

ber38413_ch02_015-068.indd Page 18 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 18 16/11/12 1:23 PM user-f396 F-403F-403

2.1 THE SYNTAX OF SL 19

3, a sentence of SL. The second listed sentence contains the sentence letters
‘B’, ‘C’, and ‘D’. These are all sentences of SL by clause 1. Therefore ‘(B �
D)’ is a sentence of SL, by clause 6, and ‘~ C’ is a sentence of SL, by clause 2.
Since ‘(B & D)’ and ‘~ C’ are both sentences of SL, ‘((B � D) ∨ ~ C)’ is also
a sentence of SL, by clause 4.

Turning to the third sentence, ‘D’ is a sentence of SL, by clause 1.
Therefore, by clause 2, ‘~ D’ is also a sentence of SL, and since ‘~ D’ is a
sentence of SL, so is ‘~ ~ D’, again by clause 2. The fourth listed sentence
contains four sentence letters, ‘A’, ‘B’, ‘C’, and ‘D’ and these are all sen-
tences of SL by clause 1. Since ‘A’ and ‘B’ are sentences of SL by clause 1
so is ‘(A & B)’, by clause 3. And since ‘D’ is a sentence of SL, so is ‘~ D’,
by clause 2. Because ‘C’ and ‘~ D’ are both sentences of SL, ‘(C � ~ D)’ is
a sentence of SL, by clause 6. It follows that ‘~ (C � ~ D)’ is a sentence of
SL by clause 2. Finally, it follows by clause 3 that ‘((A & B) & ~ (C � D)’
is a sentence of SL.

The following expressions are not sentences of SL:

B & D
∨ A
(BC ⊃ D)
(B ⊂ (C ∨ D))
(P � Q)

• ‘B & D’ is not a sentence of SL because the only clause of our defi -
nition that introduces an ampersand is clause 3 and it requires that
when sentences are joined by an ampersand the result be placed
within parentheses. ‘B & D’ contains no parentheses, so it is not a
sentence of SL. (However, we shall adopt an informal convention of
allowing the deletion of outer parentheses, so that ‘B & D’ will count
informally as a sentence of SL. All parentheses other than outer
parentheses are necessary to make it clear what sentences binary con-
nectives are connecting.)

• ‘∨ A’ contains a wedge, and the only clause that introduces a
wedge is clause 4, which requires a sentence in front of the wedge
as well as a sentence after the wedge. So ‘∨ A’ is not a sentence
of SL.

• ‘(BC ⊃ D)’ contains a horseshoe, and clause 5 is the only clause that
introduces a horseshoe. But for clause 5 to be applicable, ‘BC’ would
have to be a sentence of SL. It is not, because there is no clause in
our defi nition that allows two sentences of SL to be concatenated
without placing a connective between them. So ‘(BC ⊃ D)’ is not a
sentence of SL.

ber38413_ch02_015-068.indd Page 19 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 19 16/11/12 1:23 PM user-f396 F-403F-403

20 SYNTAX AND SYMBOLIZATION

• ‘(B ⊂ (C ∨ D))’ is not a sentence of SL because ‘⊂’ is not a symbol
of SL.

• ‘(P � Q)’ is not a sentence because neither ‘P’ nor ‘Q’ is a sentence of
SL. The sentence letters of SL do not include boldface letters.

We complete this section by laying out terminology associated with the syntax
of SL. First, our defi nition of ‘sentence of SL’ is a recursive defi nition. Recur-
sive defi nitions start by directly identifying some items that the concept being
defi ned applies to. In our case clause 1 of our defi nition specifi es that the con-
cept ‘sentence of SL’ applies to the sentence letters of SL. Subsequent clauses
specify that if one or more items are such that the concept in question applies
to them, then that concept applies to some additional item. In our defi nition,
clauses 2 through 6 do this. These clauses say that if some expression or expres-
sions are sentences of SL then so is another expression. Our recursive defi nition
of ‘sentence of SL’ ends with a closure clause, which says that there is nothing
else the concept being defi ned applies to.

Sentences of SL are of two sorts: atomic sentences and compound sen-
tences. The sentence letters of SL constitute the atomic sentences of SL. (They
are called ‘atomic sentences’ because they are not formed or compounded
from other sentences.) All non-atomic sentences are compound sentences, so
called because they are formed or compounded from other sentences of SL.
All compound sentences contain at least one sentential connective. There are
fi ve types of compound sentences and each type has a main connective and an
immediate component or components:

Negations: sentences of the form ~ P. The main connective of ~ P is
‘~’ and P is the immediate component.

Conjunctions: sentences of the form (P & Q). The main connective of
(P & Q) is ‘&’ and P and Q are the immediate components.

Disjunctions: sentences of the form (P ∨ Q). The main connective of
(P ∨ Q) is ‘∨’ and P and Q are the immediate components.

Material Conditionals: sentences of the form (P ⊃ Q). The main
connective of (P ⊃ Q) is ‘⊃’ and P and Q are the immediate
components.

Material Biconditionals: sentences of the form (P � Q). The main con-
nective of (P � Q) is ‘�’ and P and Q are the immediate components.

The immediate components of a conjunction are the conjuncts of that con-
junction and the immediate components of a disjunction are the disjuncts of
that disjunction. The immediate components of a material conditional are the
antecedent—which precedes the main connective—and the consequent—which
follows the main connective.

Below we list several examples of each kind of truth-functional compound
sentence of SL. The arrows point to the main connectives of these sentences.

ber38413_ch02_015-068.indd Page 20 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 20 16/11/12 1:23 PM user-f396 F-403F-403

2.1 THE SYNTAX OF SL 21

All of the following are negations of SL:

↓
~ A
↓
~ (B & C)
↓
~ (A ∨ (D & B))
↓
~ ~ (A � D)

All of the following are conjunctions of SL:

 ↓
(A & B)
 ↓
(A & (B ∨ C))
 ↓
((C & ~ D) & (~ D ∨ B))
 ↓
(D & ((C � A) ∨ ~ (A ⊃ B)))

All of the following are disjunctions of SL:

 ↓
(D ∨ ~ A)
 ↓
(B ∨ (A ⊃ ~ D))
 ↓
((B � ~ D) ∨ (A & ~ C))
 ↓
(~ ~ (A & ~ D) ∨ (B ⊃ (A � ~ D)))

All of the following are material conditionals of SL:

 ↓
(A ⊃ B)
 ↓
((B & ~ C) ⊃ ~ D)
 ↓
(~ D ⊃ (B & (C ∨ ~ A))
 ↓
((A � ~ B) ⊃ (B ⊃ ~ A))

ber38413_ch02_015-068.indd Page 21 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 21 16/11/12 1:23 PM user-f396 F-403F-403

22 SYNTAX AND SYMBOLIZATION

All of the following are material biconditionals of SL:

 ↓
(~ D � ~ A)
 ↓
(B � (~ A & ~ C))
 ↓
((~ A & ~ B) � (C ∨ ~ D))
 ↓
((C � ~ D) � ~ A)

We next introduce the notion of a component of a sentence of SL.

The components of a sentence P of SL are

• P itself,
• The immediate components (if any) of P,
• The components of P’s immediate components.

What this comes to is that every sentence that can be found within P, as well
as P itself, counts as a component of P. This is how it works. Consider the
compound sentence

~ (A ⊃ (B & ~ D))

By defi nition, this sentence is a component of itself. The immediate component
of this negation,

(A ⊃ (B & ~ D))

is also by defi nition a component of the negation. The two immediate compo-
nents of this sentence:

A
(B & ~ D)

are therefore components of ‘(A ⊃ (B & ~ D))’ and therefore of ‘~ (A ⊃ (B & ~
D))’, and so on. By this defi nition, the components of ‘~ (A ⊃ (B & ~ D))’ are

~ (A ⊃ (B & ~ D))
(A ⊃ (B & ~ D))
A
(B & ~ D)
B
~ D
D

ber38413_ch02_015-068.indd Page 22 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 22 16/11/12 1:23 PM user-f396 F-403F-403

2.1 THE SYNTAX OF SL 23

Finally, we establish two conventions that make it easier to work with sentences
of SL. First, we informally allow the deletion of outermost parentheses as delet-
ing them does not introduce any ambiguity as to what sentences binary connec-
tives are connecting. A sentence of SL that begins with a left parenthesis and
ends with a right parenthesis has outermost parentheses, and they can, by our
convention, be omitted. So we can write ‘A ⊃ (B & ~ D)’ rather than ‘(A ⊃
(B & ~ D))’. Note that this convention about outermost parentheses does not
apply to negations of compound sentences. (Negations do not have outermost
parentheses; they start with a ‘~’, not a left parentheses.) For example, ‘~ ((A ∨
B) ⊃ ~ (C � D))’ cannot be rewritten as ‘~ (A ∨ B) ⊃ ~ (C � D)’. The former
is a negation and the latter is a material conditional. We also allow the use
of square brackets (‘[’ and ‘]’) in place of parentheses to make complicated
sentences easier to read. For example, if we write ‘~ ((A ∨ B) ⊃ ((A ⊃ ~ C)
� D))’ as ‘~ [(A ∨ B) ⊃ [(A ⊃ ~ C) � D]]’, it becomes easier to discern the
structure of the sentence.

 2.1E EXERCISES

 1. Which of the following are sentences of SL and which are not? For those that
are not, explain why they are not.

 a. & H
 *b. B & Z
 c. ~ O
 *d. M ~ N
 e. J ⊃ (K ⊃ (A ∨ N))
 *f. P ∨ Q
 g. (I ∨ [T & E])
 *h. (U & C & ~ L)
 i. [(G ∨ E) ⊃ (~ H & (K ⊃ B)]
 *j. (F � K) ⊃ [M ∨ K]

 2. For each of the following sentences, indicate whether the sentence is a nega-
tion, a conjunction, a disjunction, a material conditional, or a material bicon-
ditional.

 a. A ⊃ B
 *b. ~ A ∨ B
 c. ~ A � ~ B
 *d. ~ ~ (A ⊃ B)
 e. ~ A ⊃ (B & ~ D)
 *f. (D � ~ A) � B
 g. ~ (A � B) & (~ C ⊃ D)
 *h. ~ ~ ~ B
 i. [A & ~ (B ∨ C)] ⊃ [(A & ~ B) & (A & ~ C)]
 *j. (A ⊃ B) & (B ⊃ A)
 k. ~ (~ A ⊃ ~ B)
 *l. ~ A ⊃ B
 m. ~ ~ (A ⊃ B) ∨ (C ⊃ D)
 *n. (A ∨ ~ B) ⊃ ~ (C & ~ D)

ber38413_ch02_015-068.indd Page 23 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 23 16/11/12 1:23 PM user-f396 F-403F-403

24 SYNTAX AND SYMBOLIZATION

 3. For each of the following sentences, circle the main connective and underline
the immediate sentential component(s). Then list all the sentential compo-
nents, including the atomic components.

 a. ~ A & H
 *b. ~ (A & H)
 c. ~ (S & G) ∨ B
 *d. K ⊃ (~ K ⊃ K)
 e. (C � K) ⊃ [~ H ⊃ (M & N)]
 *f. M ⊃ [~ N ⊃ ((B & C) � ~ [(L ⊃ J) ∨ X])]

 4. Which of the following characters can occur immediately to the left of ‘~’ in a
sentence of SL? When one can so occur, give a sentence of SL in which it does;
when it cannot so occur, explain why. Which of these characters can occur
immediately to the right of ‘A’ in a sentence of SL? When one can so occur,
give a sentence of SL in which it does; when it cannot so occur, explain why.

 a. H
 *b. &
 c. (
 *d.)
 e. [
 *f. ~

 2.2 INTRODUCTION TO SYMBOLIZATION

As we have seen, the sentence letters or atomic sentences of SL can be com-
bined using connectives and parentheses to form compound sentences of con-
siderable complexity. But what is the relation between sentences of SL and
English sentences? The sentence letters of SL can be used to symbolize English
sentences. In theory, any sentence letter of SL can symbolize any English sen-
tence. Recall the simple argument we used as an example in Chapter 1:

Either the maid or the butler killed Watson.

If it was the maid, Watson was poisoned.

Watson wasn’t poisoned.

The butler killed Watson.

For convenience, we will refer to this English language argument as our “who-
dunit”. We could use ‘A’ to symbolize the fi rst premise, ‘B’ to symbolize the
second, ‘C’ to symbolize the third, and ‘D’ to symbolize the conclusion. Our
symbolic argument would then be

A

B

C

D

ber38413_ch02_015-068.indd Page 24 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 24 16/11/12 1:23 PM user-f396 F-403F-403

2.2 INTRODUCTION TO SYMBOLIZATION 25

Our whodunit is clearly valid. But the premises of our symbolic argu-
ment provide no apparent support for the conclusion, and that argument will
turn out to be an invalid argument of SL. The problem is that this symbolic
argument does not refl ect the structure of the English language argument.
That is, there are important relationships among the premises and conclu-
sion that are not refl ected in our symbolization of our whodunit. To capture
those relationships, we need to use compound sentences of SL to symbolize the
premises and conclusion of our whodunit. To this end, we need to know how
the sentential connectives of SL are to be interpreted. The following list pairs
connectives of SL with expressions of English to which they roughly correspond.

~ It is not the case that . . .

& . . . and . . .

∨ . . . or . . .

⊃ if . . . then . . .

� . . . if and only if . . .

Given this information about the connectives, a far better symbolization of our
whodunit is

M ∨ B
M ⊃ W

~ W

B

We can specify the English sentences that we are symbolizing with the sentence
letters ‘M’, ‘B’, and ‘W’ as follows:

M: The maid killed Watson.
B: The Butler killed Watson.
W: Watson was poisoned.

We call such specifi cations ‘symbolization keys’, and we will use them through-
out this chapter. A symbolization key for a group of atomic sentences of SL
allows us to construct English readings for sentences of SL that contain those
sentence letters. For example, an appropriate English reading of ‘~ (M & B)’
given our current symbolization key is

It is not the case that both the maid and the butler killed Watson,

or, more colloquially,

The maid and the butler didn’t both kill Watson.

ber38413_ch02_015-068.indd Page 25 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 25 16/11/12 1:23 PM user-f396 F-403F-403

26 SYNTAX AND SYMBOLIZATION

Note that the fi rst premise of our whodunit, ‘Either the maid or the butler
killed Watson’ is not literally a compound sentence, that is, it does not consist
of two sentences connected by ‘or’. But it is clearly equivalent to such a com-
pound sentence, namely

The maid killed Watson or the butler killed Watson.

Similarly, ‘The butler and the maid both hated Watson’ is not a compound sen-
tence consisting of two English sentences connected by ‘and’; but it is equiva-
lent to the compound sentence ‘The butler hated Watson and the maid hated
Watson’. If we expand our current symbolization key to include:

H: The butler hated Watson
A: The maid hated Watson

we can symbolize this additional information about the maid and the butler
as ‘H & A’.

When we symbolize English sentences, we usually choose sentence let-
ters of SL that may help us to remember which sentences they are symbol-
izing. For example, we earlier used ‘M’ to symbolize the sentence ‘The maid
killed Watson’ in the expectation that using ‘M’ will help us remember that
‘M’ is symbolizing a sentence about the maid. In symbolizing our whodunit we
selected ‘B’ and ‘W’ for analogous reasons. There is no formal requirement
that sentence letters be correlated in this manner with the sentences that they
symbolize, and when we are using one symbolization key to symbolize a signifi -
cant number of sentences, it often becomes impossible to use this mnemonic
device. It is, however, a requirement that each sentence letter symbolize only
one sentence in a given symbolization key. So we cannot expand the previous
whodunit symbolization key to include ‘M’ as a symbolization of ‘The maid
hated Watson’ because in that symbolization key ‘M’ is already used to symbol-
ize ‘The maid killed Watson’. Once we selected ‘H’ to symbolize ‘The butler
hated Watson’ no obvious mnemonic letter is available to symbolize ‘The maid
hated Watson’. Hence we arbitrarily chose the letter ‘A’.

It is time to make the process of symbolizing English sentences some-
what more systematic. We have already seen that when the sentences to be
symbolized are compound sentences whose main connective is ‘or’ or ‘and’,
or are equivalent to such sentences, they can be symbolized as compound sen-
tences of SL. But the question of when an English sentence is, or is equivalent
to, a compound sentence that can be symbolized as a compound sentence of
SL is often more complicated than the rather simple examples we have used
would suggest. We have provided a table that gives rough English interpreta-
tions of the connectives of SL, but we need to be more precise. We begin with
the concept of the truth-functional use of a sentential connective:

A sentential connective of a formal or natural language is used truth-
functionally if and only if it is used to generate a compound sentence

ber38413_ch02_015-068.indd Page 26 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 26 16/11/12 1:23 PM user-f396 F-403F-403

2.2 INTRODUCTION TO SYMBOLIZATION 27

from one or more sentences in such a way that the truth-value of
the generated compound is wholly determined by the truth-values
of those one or more sentences from which the compound is gener-
ated, no matter what those truth-values may be.

English contains a number of sentential connectives that are always or nearly
always used truth-functionally, some that are frequently used truth-functionally
but also frequently used non-truth-functionally, and many that have no truth-
functional uses. The connectives of SL, on the other hand, have only truth-
functional uses. Because an understanding of how the connectives of SL work
is required to appropriately symbolize English sentences in SL we here present
the semantics or interpretation of the connectives of SL. The full semantics of
SL is given in Chapter 3.

The following ‘characteristic truth-tables’ for the connectives of SL fully
defi ne the connectives of SL. It follows from these defi nitions that the connec-
tives of SL have only truth-functional uses.

Negation

P ~ P

T F
F T

Conjunction Disjunction

P Q (P & Q) P Q (P ∨ Q)

T T T T T T
T F F T F T
F T F F T T
F F F F F F

Material Conditional Material Biconditional

P Q (P ⊃ Q) P Q (P � Q)

T T T T T T
T F F T F F
F T T F T F
F F T F F T

The truth-value of a compound sentence of SL is fully determined by the
truth-value(s) of its immediate component(s). Characteristic truth-tables dis-
play, in the columns to the left of the vertical line, all the combinations
of truth-values the immediate components of compounds generated by the
connective being defi ned can have. The truth-value the compound sentence
has for each of those combinations of truth-values is displayed to the right
of the vertical line.

ber38413_ch02_015-068.indd Page 27 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 27 16/11/12 1:23 PM user-f396 F-403F-403

28 SYNTAX AND SYMBOLIZATION

NEGATIONS

The tilde is the connective of SL that roughly corresponds to the English con-
nective ‘It is not the case that’. The tilde turns sentences of SL that have the
truth-value T into sentences that have the truth-value F—this is indicated by
the fi rst row of the table for negations—and it turns sentences of SL that have
the truth-value F into sentences that have the truth-value T—this is indicated
by the second row of the table. This means that a negation of SL is true if and
only if the negated sentence is false.

CONJUNCTIONS

The ampersand is the connective of SL that roughly corresponds to the Eng-
lish connective ‘and’. The characteristic truth-table for conjunctions has a ‘T’
beneath the ampersand in the fi rst row and only in the fi rst row, and this is
the only row in which there is a ‘T’ beneath both ‘P’ and ‘Q’. This means that
a conjunction of SL is true if and only if both conjuncts are true and is false
if and only if at least one conjunct is false.

DISJUNCTIONS

The wedge is the connective of SL that roughly corresponds to the English
connective ‘or’. The characteristic truth-table for disjunctions has a ‘T’ under
the wedge in every row in which there is a ‘T’ beneath ‘P’ or beneath ‘Q’. This
means that a disjunction of SL is true if and only if at least one of its disjuncts
is true and is false if and only if both of its disjuncts are false.

MATERIAL CONDITIONALS

The horseshoe is the connective of SL that roughly corresponds to the two-
part English connective ‘if . . . then’. The characteristic truth-table for material
conditionals has a ‘T’ under the horseshoe in every row in which there is a
‘T’ under the consequent and in every row in which there is an ‘F’ under the
antecedent. This means that a material conditional of SL is true if and only if
either the antecedent is false or the consequent is true. It is false if and only
if the antecedent is true and the consequent is false.

MATERIAL BICONDITIONALS

The triple bar is the connective of SL that roughly corresponds to the English
connective ‘if and only if’. The characteristic truth-table for material bicondi-
tionals has a ‘T’ under the triple bar in the row in which there is a ‘T’ under

ber38413_ch02_015-068.indd Page 28 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 28 16/11/12 1:23 PM user-f396 F-403F-403

2.2 INTRODUCTION TO SYMBOLIZATION 29

both ‘P’ and ‘Q’ and in the row in which there is an ‘F’ under both ‘P’ and
‘Q’. This means that a material biconditional of SL is true if and only if its
immediate components have the same truth-value and is false if and only if its
immediate components have different truth-values.

We can now lay out the two-step process we will use in symbolizing
English sentences in SL. The fi rst step is to construct a truth-functional para-
phrase of the sentence or sentences to be symbolized. Some examples will be
useful. We have seen that sentences of English that can reasonably be symbol-
ized as truth-functional compounds of SL are not themselves always compound
sentences—for example, while ‘The butler and the maid both hated Watson’
is not a conjunction of two English sentences, it is equivalent to a conjunction
of two English sentences. So the fi rst step in symbolizing this sentence is to
paraphrase it as

The butler hated Watson and the maid hated Watson.

Our paraphrase is an explicit conjunction of two sentences. We have under-
lined the connective, in this case ‘and’, to indicate that it is being used purely
truth-functionally. Here is another example:

The pitcher for the home team will be either Betty or Margaret.

We paraphrase this sentence as an explicit disjunction of two sentences:

Betty will be the pitcher for the home team or Margaret will be the
pitcher for the home team,

again underlining the connective to indicate it is being used purely truth-func-
tionally in the paraphrase.

We can paraphrase ‘Margaret will be the pitcher for the home team if
her shoulder has healed’ as

If Margaret’s shoulder has healed then Margaret will be the pitcher
for the home team.

In this case we made two changes to the original sentence. First, we reversed
the order in which the component sentences occur, placing the sentence fol-
lowing ‘if’ fi rst. Second, we replaced ‘she’ with ‘Margaret’ so that each sentence
written alone is completely interpreted. That is, we have explicitly indicated to
whom ‘her’ refers.

The purpose of paraphrasing an English sentence is to produce a sen-
tence that can easily be symbolized in SL. When an English sentence is or
can be paraphrased as a truth-functional compound, the paraphrase will obvi-
ously be a truth-functionally compound sentence and its structure will mirror
the structure of the sentence of SL we will use to symbolize it. If an English
sentence cannot be paraphrased as a truth-functionally compound sentence,
then we will let that sentence serve as its own paraphrase and will symbolize

ber38413_ch02_015-068.indd Page 29 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 29 16/11/12 1:23 PM user-f396 F-403F-403

30 SYNTAX AND SYMBOLIZATION

it as an atomic sentence of SL.5 Because paraphrases that are truth-functional
compounds mirror the structure of the sentences that will symbolize them in
SL, we will speak of them, as well as of sentences of SL, as being negations,
conjunctions, disjunctions, material conditionals, and material biconditionals
and as having main connectives and immediate components.

Symbolizing truth-functional paraphrases in SL is straightforward. If
a paraphrase is not a truth-functional compound, we will symbolize the para-
phrase as an atomic sentence of SL. If it is a truth-functional compound, then
we symbolize it as a truth-functional compound of SL with the same structure.

Here is a group of sentences that can be paraphrased as negations and
symbolized as sentences of the form ~ P. Note that only one of these English
sentences contains the word ‘not’.

The United States isn’t a confederation of states.
Chlorine is a nonmetal.
Aristotle was unmarried.
Not everyone likes hip hop music.
Someone isn’t telling the truth.
No one always tells the truth.

Paraphrasing the fi rst four examples is straightforward:

It is not the case that the United States is a confederation of states.
It is not the case that chlorine is a metal.
It is not the case that Aristotle was married.
It is not the case that everyone likes hip hop music.

The fi fth and sixth examples are less straightforward. It would be a mistake to
paraphrase ‘Someone isn’t telling the truth’ as

It is not the case that someone is telling the truth,

because this purported paraphrase is equivalent to ‘No one is telling the truth’,
a far stronger claim than ‘Someone isn’t telling the truth’. A correct paraphrase
for the fi fth sentence is

It is not the case that everyone is telling the truth.

The sixth sentence, ‘No one always tells the truth’, is a denial of the claim made
by the sentence ‘There is someone who always tells the truth’ and is therefore
correctly paraphrased as

It is not the case that there is someone who always tells the truth.

5We refer to the sentences that result from the paraphrase process, including those that serve as their own
paraphrases, as ‘truth-functional paraphrases’. Note that those that serve as their own paraphrases are not truth-
functionally compound sentences.

ber38413_ch02_015-068.indd Page 30 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 30 16/11/12 1:23 PM user-f396 F-403F-403

2.2 INTRODUCTION TO SYMBOLIZATION 31

Using the symbolization key

U: The United States is a confederation of states.
C: Chlorine is a metal.
A: Aristotle was married.
E: Everyone likes hip hop music.
T: Everyone is telling the truth.
S: There is someone who always tells the truth.

we can symbolize the paraphrases as ‘~ U’, ‘~ C’, ‘~ A’, ‘~ E’, ‘~ T’, and ‘~ S’,
respectively.

The following English sentences can be paraphrased as conjunctions:

Handel and Mozart both composed operas.
Beethoven composed symphonies and piano sonatas.
Beethoven composed nine symphonies, as did Mahler.
Mahler’s Kindertoten Lieder are beautiful but also sad.

Here are our paraphrases:

Handel composed operas and Mozart composed operas.
Beethoven composed symphonies and Beethoven composed piano
sonatas.
Beethoven composed nine symphonies and Mahler composed nine
symphonies.
Mahler’s Kindertoten Lieder are beautiful and Mahler’s Kindertoten Lieder
are sad.

The fi rst three paraphrases clearly capture the full meaning of the sentences
being paraphrased. But it is arguable that the fourth paraphrase does not
capture the full meaning of the original, which uses the word ‘but’ rather
than ‘and’ as a sentential connective. The word ‘but’ suggests a contrast or
tension between a composition’s being beautiful and its being sad, such that
it is surprising to hear that a beautiful composition is at the same time sad.
This suggestion is not present in the truth-functional paraphrase. Nonetheless,
the paraphrase does capture what is asserted, rather than just suggested, by
the original sentence. So what is asserted by the original sentence is true if
both ‘Mahler’s Kindertoten Lieder are beautiful’ and ‘Mahler’s Kindertoten Lieder
are sad’ are true.

Just how much of the content of the original sentence a truth-func-
tional paraphrase must capture to be a reasonable paraphrase may depend on
the context, but usually the loss of a suggestion will not matter to the logical
analysis of a sentence or passage that has been truth-functionally paraphrased.
Other English words that may be rendered as a truth-functional ‘and’ in para-
phrases, some of which may also suggest an element of surprise or unexpected-
ness, include ‘nevertheless’, ‘moreover’, ‘while’, ‘although’, and ‘albeit’.

ber38413_ch02_015-068.indd Page 31 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 31 16/11/12 1:23 PM user-f396 F-403F-403

32 SYNTAX AND SYMBOLIZATION

Using the symbolization key

H: Handel composed operas.
M: Mozart composed operas.
S: Beethoven composed symphonies.
P: Beethoven composed piano concertos.
N: Beethoven composed nine symphonies.
A: Mahler composed nine symphonies.
B: Mahler’s Kindertoten Lieder are beautiful.
K: Mahler’s Kindertoten Lieder are sad.

our paraphrases can be symbolized as ‘H & M’, ‘S & P’, ‘N & A’, and ‘B & K’,
respectively.

All of the following sentences can be paraphrased as disjunctions:

Maggie or Ronald will win the race.
Jim likes either jazz or hip hop.
Karen likes classical music, unless her tastes in music have changed.
At least one of the two fi nalists, Betty and Larry, will be very happy.

Appropriate paraphrases are

Maggie will win the race or Ronald will win the race.
Jim likes jazz or Jim likes hip hop.
Karen likes classical music or Karen’s tastes in music have changed.
Betty will be very happy or Larry will be very happy.

The fi rst two paraphrases are straightforward. The third sentence that we have
paraphrased as a disjunction contains the sentential connective ‘unless’ rather
than ‘or’, but it is clear that ‘unless’ in this sentence is correctly rendered as the
truth-functional connective ‘or’. If someone asks us what type of music Karen
likes, and we know that Karen liked classical music the last time we talked with
her, which was a year ago, we might say “Karen likes classical music, unless her
tastes in music have changed”. Here we mean that either she likes classical
music (as she did a year ago) or her tastes have changed (in which case she
might no longer like classical music). The fourth paraphrase may not jump
out as an obvious truth-functional paraphrase if we only look at the original
sentence, but it clearly captures what the original is saying.

We will use the following symbolization key to symbolize these para-
phrases in SL:

M: Maggie will win the race
R: Ronald will win the race.
J: Jim likes jazz.
H: Jim likes hip hop.
K: Karen likes classical music.

ber38413_ch02_015-068.indd Page 32 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 32 16/11/12 1:23 PM user-f396 F-403F-403

2.2 INTRODUCTION TO SYMBOLIZATION 33

C: Karen’s tastes in music have changed.
B: Betty will be very happy.
L: Larry will be very happy.

Our symbolizations are ‘M ∨ R’, ‘J ∨ H’, ‘K ∨ C’, and ‘B ∨ L’, respectively.
Recall that disjunctions of SL, sentences of SL of the form P ∨ Q, are

true if either P is true, or Q is true, or both are true. It is sometimes claimed
that there are two uses of ‘or’ in English, one in which the ‘or’ means ‘either
this or that or both’ and the other in which it means ‘either this or that and
not both’. The former is described as the inclusive use of ‘or’, the latter the
exclusive use. It may appear that ‘or’ is being used in the exclusive sense in
sentences such as

Louise Penny or Miles Blunt will win this year’s Silver Dagger Award,

for surely two authors can’t win the mystery writers’ award in question. But we
have made a misstep here. First, for all we know, the awards committee does
sometimes award two or more authors the Silver Dagger Award in a single year.
More importantly, if the rules governing the awarding of the Silver Dagger
allow for only one winner per year, then it is those rules, not the meaning of ‘or’,
that keep both Louise Penny and Miles Blunt from winning this year’s award.

Those who think ‘or’ does have an exclusive use in English often
cite the use of ‘or’ in choices we are offered. When a spokesperson for a
state lottery announces that the grand prize winner can choose to receive
$12 million in a lump sum or $1 million per year for the next fi fteen years,
we all know the winner won’t be able to get both $12 million in a lump
sum and $1 million a year for the next fi fteen years. It is clearly one or the
other and not both. And when studying a menu that contains the sentence
‘With the Chef’s Special you may have either an egg roll or hot and sour
soup’, almost everyone will know that they cannot get both an egg roll and
hot and sour soup with the Chef’s Special, at least not without paying extra.
Whether we know these things because we recognize that ‘or’ is being used,
in these cases of proffered choices, in the exclusive sense, or because we
know about the customs and conventions prevalent when we are given a
choice, is another matter.

If there is an exclusive sense of ‘or’ in English we can capture that sense
in SL. For example, if we want to say that that Sally is in either New York or Chi-
cago but not both, we can do so with the following paraphrase and symbolization:

(Sally is in New York or Sally is in Chicago) and it is not the case
that (Sally is in New York and Sally is in Chicago)

(N ∨ C) & ~ (N & C)

Here we have used ‘N’ to symbolize ‘Sally is in New York’ and ‘C’ to symbolize
‘Sally is in Chicago’.

ber38413_ch02_015-068.indd Page 33 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 33 16/11/12 1:23 PM user-f396 F-403F-403

34 SYNTAX AND SYMBOLIZATION

The following four sentences can be paraphrased as material condi-
tionals:

If Sheila’s hard work is recognized, she will get a raise.
Pamela will get a raise if everyone does.
Cynthia will get a raise provided she fi nishes her current assignment
on time.
Harry will get a raise only if his boss is a damn fool.

Appropriate paraphrases of our four examples are

If Sheila’s hard work is recognized then Sheila will get a raise.
If everyone will get a raise then Pamela will get a raise.
If Cynthia fi nishes her current assignment on time then Cynthia will
get a raise.
If Harry will get a raise then Harry’s boss is a damn fool.

We will use the following symbolization key:

S: Sheila’s hard work is recognized.
R: Sheila will get a raise.
E: Someone will get a raise.
P: Pamela will get a raise.
F: Cynthia fi nishes her current assignment on time.
C: Cynthia will get a raise.
H: Harry will get a raise.
B: Harry’s boss is a damn fool.

The fi rst paraphrase is straightforward and can be symbolized as ‘S ⊃ R’. Our
paraphrase for the second sentence reverses the order of ‘Pamela will get a
raise’ and ‘Everyone will [get a raise]’ in order to place the ‘if’ part of the
sentence at the beginning of the paraphrase. This sentence is symbolized as
‘E ⊃ P’. The third example illustrates that not every English sentence that can
be paraphrased as a material conditional contains the word ‘if’. In this exam-
ple, ‘provided that’ plays the role of ‘if’. This paraphrase is symbolized as ‘F ⊃
C’. The sentences ‘Cynthia will get a raise, assuming she fi nishes her current
assignment on time’ and ‘Should Cynthia fi nish her current on time, she will
get a raise’ can both be paraphrased as ‘If Cynthia fi nishes her current assign-
ment on time then Cynthia will get a raise’.

The fourth example is intended to illustrate the difference between
‘if’ and ‘only if’. Note that the sentence being paraphrased is ‘Harry will get
a raise only if his boss is a damn fool’, not ‘Harry will get a raise if Harry’s
boss is a damn fool’. The latter tells us that if Harry’s boss is a damn fool,
then Harry will get a raise. But the former tells us that if Harry does get a
raise, then his boss is a damn fool. These are not equivalent claims. Our
symbolization is ‘H ⊃ B’.

ber38413_ch02_015-068.indd Page 34 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 34 16/11/12 1:23 PM user-f396 F-403F-403

2.2 INTRODUCTION TO SYMBOLIZATION 35

To put the point more generally, when we are told that p only if q
we are being told that if p is true q is true as well, and this is not the same as
saying that if q is true p is also true. A university may require that all students
complete two semesters of a foreign language before graduating. If so, then
Kurt will graduate only if he has two semesters of a foreign language. But
the university undoubtedly has other graduation requirements, for example,
completing 120 semester hours of academic credit. If Kurt doesn’t meet these
additional requirements, he won’t graduate—even if he does have two semes-
ters of a foreign language.

English sentences of the form

p only if q

should therefore be paraphrased as sentences of the form

if p then q,

that is, the sentential component following ‘if’ becomes the consequent, not the
antecedent, of the paraphrase.

On the other hand, sentences of the forms

if p (then) q
q if p
q provided that p
assuming p, q
q, assuming p

should all be paraphrased as sentences of the form

if p then q.

The following sentence can be straightforwardly paraphrased as a
 material biconditional:

The global fi nancial crisis will be resolved if but only if the world’s
major economic powers cut long-term spending.

Here is our paraphrase:

The global fi nancial crisis will be resolved if and only if the world’s
major economic powers cut long-term spending.

Note that in constructing this truth-functional paraphrase we replaced ‘if but
only if’ with ‘if and only if’, and we did so for the reason that we earlier replaced
the simple connective ‘but’ with ‘and’. That is, the use of ‘but’ suggests, but
does not assert, that it is not clear or obvious that the world’s major economic

ber38413_ch02_015-068.indd Page 35 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 35 16/11/12 1:23 PM user-f396 F-403F-403

36 SYNTAX AND SYMBOLIZATION

powers will cut long-term spending. Our paraphrase can be symbolized as ‘G �
W’, using the following symbolization key:

G: The global fi nancial crisis will be resolved.
W: The world’s major economic powers cut long-term spending.

Although sentences of English that are appropriately paraphrased as mate-
rial biconditionals often contain the expression ‘if and only if’ or the vari-
ant ‘if but only if’, sentences containing the expression ‘just in case’ can also
sometimes be paraphrased as material biconditionals. Consider the following
sentences:

Fighter pilots carry parachutes just in case they have to eject from
their planes.
The House will pass the tax reform bill just in case there is great
public pressure for tax reform.

The fi rst sentence clearly should not be paraphrased as ‘Fighter pilots carry
parachutes if and only if fi ghter pilots have to eject from their planes’, for the
paraphrase says that fi ghter pilots carry parachutes when they have to eject and
only at such times. Clearly the English sentence allows for fi ghter pilots carrying
parachutes at all times, whether or not these are times when they have to eject.
The English sentence should therefore not be interpreted as a claim about
when pilots carry parachutes, but rather as an explanation of why they carry
parachutes, namely, to be prepared for emergencies. But the second sentence
can correctly be paraphrased as a material biconditional:

The House will pass the tax reform bill if and only if there is great
public pressure for tax reform.

This can be symbolized in SL as ‘H � G’, using the following symbolization key:

H: The House will pass the tax reform bill
G: There is great public pressure for reform.

 2.2E EXERCISES

 1. Paraphrase and then symbolize each of the following sentences, indicating
which sentences the sentence letters you use symbolize.

 a. Bob isn’t a marathon runner.
 *b. Albert and Bob are joggers.
 c. If Carol is a jogger she is also a marathon runner.
 *d. Some joggers are marathon runners.
 e. Carol will run in the Boston marathon if and only if Albert does.
 *f. Not all joggers are marathon runners.
 g. Either Carol or Albert will run in the Boston marathon.
 *h. If Carol will run in the Boston marathon so will Albert.

ber38413_ch02_015-068.indd Page 36 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 36 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 37

 2. Paraphrase and then symbolize each of the following sentences, indicating
which sentences the sentence letters you use symbolize.

 a. If Felice vacations in Bermuda so will Clarence.
 *b. Veronica will vacation in Bermuda only if Clarence does.
 c. Veronica will vacation in Bermuda if Felice does.
 *d. Either Clarence or Robert will vacation in Bermuda.
 e. Veronica will vacation in Bermuda provided that Clarence will.
 *f. Robert won’t vacation in Bermuda.

 2.3 MORE COMPLEX SYMBOLIZATIONS

In this section we will paraphrase and symbolize more complex sentences and
sets of sentences in SL. Along the way, we will also illustrate and discuss some
of the fi ner nuances of the symbolization process. We shall continue to sym-
bolize English sentences in two stages, fi rst constructing truth-functional para-
phrases of the sentence or sentences to be symbolized and then symbolizing
the paraphrases in SL. We begin by laying out guidelines for the construction
of truth-functional paraphrases:

1. Determine whether the sentence to be symbolized can reasonably be
paraphrased as a truth-functionally compound sentence.

a. If it cannot, use the sentence as its own paraphrase.
b. If it can, determine whether its immediate component(s) and their

components can also reasonably be paraphrased as truth-functional
compounds.

2. Use one or more of the connectives ‘it is not the case that . . .’,
‘. . . and . . .’, ‘. . . or . . .’, ‘if . . . then . . .’, and ‘. . . if and only
if . . .’ to construct truth-functional paraphrases of each sentence
that can reasonably be paraphrased as a truth-functionally compound
sentence.

3. Where applicable, use parentheses and square brackets to indicate
which sentences are the immediate components of truth-functional
compounds.

4. When paraphrasing an argument, present the paraphrased premises
and conclusion in standard form. That is, list the paraphrased premises,
draw a line beneath the last premise, and then list the paraphrased
conclusion.

5. Reword the sentences being paraphrased so that all immediate compo-
nents of the paraphrase are complete sentences with no cross-references
between components, and if there are two or more wordings of the same
claim, use just one wording in the paraphrase.

Some explanatory comments are in order. Many English sentences are not com-
pound sentences. Among them are ‘Canada is a member of the Commonwealth
of Nations’ and ‘George W. Bush was the 43rd President of the United States’.

ber38413_ch02_015-068.indd Page 37 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 37 16/11/12 1:23 PM user-f396 F-403F-403

38 SYNTAX AND SYMBOLIZATION

Guideline 1 specifi es that such sentences should serve as their own paraphrases,
as these are not compound sentences. Each such sentence will of course be
symbolized by a single sentence letter of SL. There are also English sentences
that contain sentences as proper constituents that should be used as their own
paraphrases. One example is ‘Archie believes that playing the lottery is the
best way to get rich’. This sentence is formed by placing ‘Archie believes that’
in front of ‘Playing the lottery is the best way to get rich’. But ‘Archie believes
that playing the lottery is the best way to get rich’ cannot be paraphrased as a
truth-functionally compound sentence in which ‘Playing the lottery is the best
way to get rich’ is a component, because the truth-value of the former is not
determined by the truth-value of the latter. Given only that a sentence is true,
it does not follow that Archie believes it, and it does not follow that he does
not believe it. Similarly, given only that a sentence is false it follows neither
that Archie believes it nor that he does not believe it. Hence, ‘Archie believes
that playing the lottery is the best way to get rich’ and all other sentences that
cannot reasonably be paraphrased as truth-functional compounds should be
used as their own paraphrases and symbolized as atomic sentences of SL. (Non-
truth-functionally compound sentences will be further discussed in Section 2.4.)

Guideline 2 simply lists the connectives that are available for construct-
ing truth-functionally compound paraphrases of English sentences. We shall
prove in Chapter 6 that the structure of every truth-functionally compound
sentence of English, no matter how complex, can be captured in a paraphrase
that uses only the fi ve truth-functional connectives listed in Guideline 2.

Guideline 3 calls for using parentheses and/or square brackets in para-
phrases to indicate which sentences are being connected by which binary con-
nectives. Doing so serves to eliminate ambiguities and also to mirror the syntax
of SL, where parentheses are necessary to indicate grouping. Some English
sentences that contain multiple sentential connectives are ambiguous, from a
syntactic point of view. Consider

Paul is taking saxophone lessons and Ellen is taking saxophone les-
sons or Karen is taking saxophone lessons.

Someone who asserts this sentence might intend to say that Paul is taking
saxophone lessons and either Ellen or Karen is also taking saxophone lessons,
making ‘and’ the main connective of the sentence. Alternatively, the intent
might be to say that either Paul and Ellen are both taking saxophone lessons
or Karen is taking saxophone lessons, making ‘or’ the main connective. That
is, an English sentence of the form

p and q or r

is syntactically ambiguous. From the syntax alone we don’t know whether the
intended meaning is

p and (q or r)

ber38413_ch02_015-068.indd Page 38 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 38 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 39

or

(p and q) or r

In actual English discourse the context or the tone of voice or the emphasis
a speaker places on one connective or the other often removes ambigui-
ties like this. But SL does not contain ambiguities, and we shall refl ect this
in our truth-functional paraphrases by using parentheses to remove such
ambiguities.

Some English sentences containing multiple sentential connectives are
not ambiguous. These include sentences that can be recast as what we will
call ‘extended conjunctions’ and ‘extended disjunctions’. An example of the
fi rst sort is

Paul, Ellen, and Karen are all taking saxophone lessons.

This sentence can clearly be recast as:

Paul is taking saxophone lessons and Ellen is taking saxophone les-
sons and Karen is taking saxophone lessons.

A sentence that can be recast as an extended disjunction is

Either Paul or Ellen or Karen is taking saxophone lessons.

This sentence can be recast as

Paul is taking saxophone lessons or Ellen is taking saxophone lessons
or Karen is taking saxophone lessons.

In neither case do we need to “fi gure out” which connective of the recast
sentence is the main connective, as neither the original sentences nor their
recastings are ambiguous. The fi rst is true if and only if all three of the named
individuals are taking saxophone lessons, the second if and only if at least one
of them is taking saxophone lessons. However, because we will have occasion
to symbolize such sentences in SL, where parentheses are required in sentences
containing multiple ampersands or multiple wedges, we will use parentheses
and/or square brackets to identify a main connective in paraphrasing such
sentences. Of course there are multiple ways of doing this—that is, we can use
parentheses to make the fi rst occurrence of ‘and’ (or ‘or’), or the second or
the third, the main connective. All of these paraphrases are equally appropri-
ate. For example, here are two equally acceptable truth-functional paraphrases
of our original conjunction:

Paul is taking saxophone lessons and (Ellen is taking saxophone les-
sons and Karen is taking saxophone lessons),

ber38413_ch02_015-068.indd Page 39 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 39 16/11/12 1:23 PM user-f396 F-403F-403

40 SYNTAX AND SYMBOLIZATION

and

(Paul is taking saxophone lessons and Ellen is taking saxophone les-
sons) and Karen is taking saxophone lessons.6

Guideline 4 is straightforward. But guideline 5 needs some explanation. One
way to eliminate cross-reference is to replace pronouns with the terms for which
they are going proxy. In paraphrasing

If John is late he will have a good excuse,

it is obviously appropriate to replace ‘he’ with ‘John’. More complex reword-
ings are often necessary. Suppose we are asked to paraphrase the following
very simple argument:

If Sally is late for class she will miss the discussion of Darwin’s study
of pigeons. Sally will be late for class, so she will miss the discussion.

A paraphrase of this argument that does not follow guideline 5 is

If Sally is late for class then Sally will miss the discussion of Darwin’s
study of pigeons.

Sally will be late for class.

Sally will miss the discussion.

This paraphrase contains the following four distinct component sentences: ‘Sally
is late for class’, ‘Sally will miss the discussion of Darwin’s study of pigeons’,
‘Sally will be late for class’, and ‘Sally will miss the discussion’. Using the four
sentence letters ‘S’, ‘M’, ‘W’, and ‘D’, respectively, to symbolize these compo-
nent sentences generates the following argument of SL:

S ⊃ M

W

D

This is not a valid argument of SL. Yet the original English argument is valid.
The problem is that our paraphrase does not refl ect the fact that in the origi-
nal argument ‘Sally is late for class’ and ‘Sally will be late for class’ express the
same claim. It is also implicit in the original argument that the discussion Sally

6Since the grouping we use in extended conjunctions and extended disjunctions is arbitrary, it may appear that
we should allow extended conjunctions and disjunctions in SL without the use of parentheses to indicate which
connective is the main connective. We do not and cannot allow this because to apply the rules of the logical
systems that we develop for SL, it will be necessary to know for every use of a binary connective which sentences
are connected by that connective.

ber38413_ch02_015-068.indd Page 40 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 40 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 41

will miss is the discussion of Darwin’s study of pigeons, not some other dis-
cussion. Hence the following rewording provides an appropriate paraphrase:

If Sally will be late for class then Sally will miss the discussion of Dar-
win’s study of pigeons.

Sally will be late for class.

Sally will miss the discussion of Darwin’s study of pigeons.

Using ‘S’ to symbolize ‘Sally will be late for class’ and ‘M’ to symbolize ‘Sally
will miss the discussion of Darwin’s study of pigeons’ we can symbolize this
paraphrased argument as follows:

S ⊃ M

S

M

This argument is valid in SL.
The following argument calls for even more extensive rewording in

the paraphrase:

Either Jim will not pass the test or Jim spent last night studying logic.
Jim’s night was not spent poring over his logic text. Hence, Jim will
fail the test.

Here is an inappropriate paraphrase of this argument, a paraphrase that ignores
our fi fth guideline:

It is not the case that Jim will pass today’s logic test or Jim spent last
night studying logic.

It is not the case that Jim’s night was spent poring over his logic text.

Jim will fail the test.

Symbolizing this paraphrase requires the use of four different sentence letters
of SL:

~ J ∨ S

~ P

F

This is not a valid argument of SL. Yet, the English language argument with
which we started is valid. Our paraphrase fails to refl ect the fact that in this
argument, ‘Jim will not pass the test’ and ‘Jim will fail the test’ are intended to

ber38413_ch02_015-068.indd Page 41 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 41 16/11/12 1:23 PM user-f396 F-403F-403

42 SYNTAX AND SYMBOLIZATION

be equivalent—these two sentences are making the same claim.7 So too, ‘Jim
spent last night studying logic’ is making the same claim as is ‘Jim’s night was
spent poring over his logic text’.

A better paraphrase of our argument is

It is not the case that Jim will pass the logic test or Jim spent last
night studying logic.

It is not the case that Jim spent last night studying logic.

It is not the case that Jim will pass the logic test.

This argument can be symbolized in SL using just two sentence letters, with
‘J’ symbolizing ‘Jim will pass the logic test’ and ‘S’ symbolizing ‘Jim spent last
night studying logic’:

~ J ∨ S

~ S

~ J

And this argument will turn out to be a valid argument of SL.
Using our guidelines for constructing paraphrases we will now para-

phrase and symbolize additional sentences, passages, and arguments in SL. Our
fi rst group of sentences concerns contemporary mystery writers. We will use the
following symbolization key:

F: Ted has read A Fine Red Rain.
B: Ted has read Bury Your Dead.
D: Ted has read The Old Fox Deceived.
R: Ted has read Rough Country.

The fi rst sentence we will paraphrase and symbolize is

Ted has read all of the books A Fine Red Rain, Bury Your Dead, The
Old Fox Deceived, and Rough Country.

The paraphrase is straightforward:

(Ted has read A Fine Red Rain and Ted has read Bury Your Dead) and
(Ted has read The Old Fox Deceived and Ted has read Rough Country),

7Failing and not passing are not always the same. If Sally is not enrolled in Jim’s logic class, then she does not
pass the test in that class, because she does not take it, but it is not true that she fails that test. More generally,
that two claims can, in a given context, have a common paraphrase does not show that those two claims can be
paraphrased as the same claim in every context.

ber38413_ch02_015-068.indd Page 42 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 42 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 43

as is the symbolization:

(F & B) & (D & R)

Because all of the connectives are ampersands, we could have grouped the
conjuncts of both our paraphrase and our symbolization in several other ways,
including:

Ted has read A Fine Red Rain and [Ted has read Bury Your Dead and
(Ted has read The Old Fox Deceived and Ted has read Rough Country)]

F & [B & (D & R)]

Our next sentence can be paraphrased as an extended disjunction:

Ted has read at least one of the books A Fine Red Rain, Bury Your
Dead, The Old Fox Deceived, and Rough Country.

An appropriate paraphrase is

(Ted has read A Fine Red Rain or Ted has read Bury Your Dead) or
(Ted has read The Old Fox Deceived or Ted has read Rough Country).

(The grouping in this paraphrase is also arbitrary.) The symbolization is

(F ∨ B) ∨ (D ∨ R)

The sentence

Ted hasn’t read any of the books A Fine Red Rain, Bury Your Dead,
The Old Fox Deceived, or Rough Country

can be paraphrased as

(It is not the case that Ted has read A Fine Red Rain and it is not the
case that Ted has read Bury Your Dead) and (it is not the case that
Ted has read The Old Fox Deceived and it is not the case that Ted has
read Rough Country)

and symbolized as

(~ F & ~ B) & (~ D & ~ R)

This sentence can also (and equivalently) be paraphrased as

It is not the case that [(Ted has read A Fine Red Rain or Ted has
read Bury Your Dead) or (Ted has read The Old Fox Deceived or Ted
has read Rough Country)]

ber38413_ch02_015-068.indd Page 43 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 43 16/11/12 1:23 PM user-f396 F-403F-403

44 SYNTAX AND SYMBOLIZATION

and symbolized as

~ [(F ∨ B) ∨ (D ∨ R)]

The sentence

Ted has read one but not both of the books A Fine Red Rain and
Bury Your Dead

can be paraphrased as

(Ted has read A Fine Red Rain or Ted has read Bury Your Dead) and
it is not the case that (Ted has read A Fine Red Rain and Ted has
read Bury Your Dead)

and symbolized as

(F ∨ B) & ~ (F & B)

Note that ‘F ∨ B’ alone is not an acceptable symbolization of the sentence as
the wedge of SL is inclusive, that is, the sentence ‘F ∨ B’ is true if Ted has
read either or both of the books in question. Our current example can also be
paraphrased and symbolized as follows:

(Ted has read A Fine Red Rain and it is not the case that Ted has
read Bury Your Dead) or (Ted has read Bury Your Dead and it is not
the case that Ted has read A Fine Red Rain).

(F & ~ B) ∨ (B & ~ F)

The sentence

Ted has read exactly two of the books A Fine Red Rain, Bury Your
Dead, and The Old Fox Deceived.

lists three books and says that Ted has read exactly two of them, but it doesn’t
say which two. We can capture this claim by spelling out the three possibilities
in our paraphrase:

[(Ted has read A Fine Red Rain and Ted has read Bury Your Dead)
and it is not the case that Ted has read The Old Fox Deceived] or
([(Ted has read A Fine Red Rain and Ted has read The Old Fox
Deceived) and it is not the case that Ted has read Bury Your Dead] or
[(Ted has read Bury Your Dead and Ted has read The Old Fox
Deceived) and it is not the case that Ted has read A Fine Red Rain]).

ber38413_ch02_015-068.indd Page 44 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 44 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 45

This is symbolized as

[(F & B) & ~ D] ∨ ([(F & D) & ~ B] ∨ [(B & D) & ~ F])

Again, the grouping of the disjuncts is arbitrary, as is the grouping of the
conjuncts within each disjunction. The sentence can also be paraphrased
and symbolized as saying that Ted has read at least two of the books, but
not all three:

([(Ted has read A Fine Red Rain and Ted has read Bury Your Dead) or
(Ted has read A Fine Red Rain and Ted has read The Old Fox Deceived)]
or (Ted has read Bury Your Dead and Ted has read The Old Fox Deceived))
and it is not the case that [(Ted has read A Fine Red Rain and Ted has
read Bury Your Dead) and Ted has read The Old Fox Deceived].

([(F & B) ∨ (F & D)] ∨ (B & D)) & ~ [(F & B) & D]

We next paraphrase a series of sentences concerning various genres of music.
We follow each paraphrase with a symbolization key and a symbolization of
the paraphrase.

• Jazz is invigorating and classical music is uplifting, but neither is
broadly popular.

This sentence can be paraphrased as a conjunction whose left conjunct is itself
a conjunction and whose right conjunct is the negation of a disjunction:

(Jazz is invigorating and classical music is uplifting) and it is not
that case that (jazz is broadly popular or classical music is broadly
popular).

J: Jazz is invigorating.
C: Classical music is uplifting.
B: Jazz is broadly popular.
P: Classical music is broadly popular.

(J & C) & ~ (B ∨ P)

• Opera enthusiasts are small in number and very devoted to opera,
but not always tolerant of other forms of music.

This sentence can also be paraphrased as a conjunction:

Opera lovers are small in number and (opera lovers are very devoted
to opera and it is not the case that opera lovers are always tolerant
of other music).

ber38413_ch02_015-068.indd Page 45 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 45 16/11/12 1:23 PM user-f396 F-403F-403

46 SYNTAX AND SYMBOLIZATION

O: Opera lovers are small in number.
D: Opera lovers are very devoted to opera.
T: Opera lovers are always tolerant of other forms of music.

O & (D & ~ T)

• Country and western music is wildly popular and is both funky and
funny.

Our paraphrase is

Country and western music is wildly popular and (country and west-
ern music is funny and country and western music is funky).

C: Country and western music is wildly popular.
N: Country and western music is funny.
K: Country and western music is funky.

C & (N & K)

• Folk music was the rage in the 60s but has only a small following
today, and it will make a comeback if and only if country
and western music proves to be a fad, but it won’t prove to be
a fad.

A little refl ection will show that our paraphrase should contain three con-
junctions, one formed by the fi rst ‘but’, a second by the ‘and’ occurring
before ‘it will make a comeback’, and the third formed by the ‘but’ occur-
ring before ‘it won’t prove to be a fad’. The paraphrase will also contain a
material biconditional. We can treat the ‘and’ or either of the occurrences
of ‘but’ as the main connective. We choose to treat the occurrence of ‘and’
as the main connective:

(Folk music was the rage in the 60s and folk music has only a small
following today) and [(folk music will make a comeback if and only if
country and western music proves to be a fad) and it is not the case
that folk music will prove to be a fad].

R: Folk music was the rage in the 60s.
F: Folk music has only a small following today.
C: Folk music will make a comeback.
P: Country and western music proves to be a fad.

(R & F) & [(C � P) & ~ P]

• Either hip hop is more popular than it deserves to be or there is
more to it than there seems to be, but there isn’t.

ber38413_ch02_015-068.indd Page 46 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 46 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 47

This sentence can be paraphrased as a conjunction whose left conjunct is a
disjunction and whose right conjunct is a negation:

(Hip hop is more popular than it deserves to be or there is more to
hip hop than there seems to be) and it is not the case that there is
more to hip hop than there seems to be.

H: Hip hop is more popular than it deserves to be.
M: There is more to hip hop than there seems to be.

(H ∨ M) & ~ M

There are several points to note about the paraphrases and symbolizations we
have just given. First, in paraphrasing our fi rst and second sentences, we treated
‘but’ as surrogate for ‘and’. Conversely, we point out that the word ‘and’ in the
phrase ‘country and western music’ is not being used as a truth-functional con-
nective. Our paraphrases and symbolizations also demonstrate that the mnemonic
device of selecting a sentence letter based on an important word in the sentence
to be symbolized is often of limited use. The paraphrase of our third sentence
yielded three component sentences, all about country and western music:

C: Country and western music is wildly popular.
N: Country and western music is funny.
K: Country and western music is funky.

We chose to use ‘C’ to symbolize the fi rst of these, and ‘C’ may well remind
us that it is symbolizing a sentence about country and western music, but it
cannot remind us of which of the three component sentences about country
and western music it symbolizes. We used ‘N’ and ‘K’ to symbolize the other
two component sentences, and ‘N’ may serve to remind us that it symbolizes
a sentence containing ‘funny’ (though we could equally well have used it to
symbolize the third component sentence, which contains the word ‘funky’).
Similarly, our paraphrase of our fourth sentence yielded four component
sentences, three of them about folk music. Again, the conclusion to be drawn
from these examples is that the mnemonic device of using sentence letters
that remind us of an important word in the sentence being symbolized is
often of limited use.

We next paraphrase and symbolize several arguments. The fi rst is

Tim will go to the Blue Olive if and only if it is featuring a jazz trio
but Susan will go if and only if the Blue Olive is featuring piano
jazz. Ralph will go to the Blue Olive if Susan goes and Tim doesn’t.
Bill will go to the Blue Olive if they have a country and western
band, but they don’t. The Blue Olive is featuring piano jazz, not
a jazz trio. So neither Tim nor Bill will go to the Blue Olive, but
Susan and Ralph will.

ber38413_ch02_015-068.indd Page 47 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 47 16/11/12 1:23 PM user-f396 F-403F-403

48 SYNTAX AND SYMBOLIZATION

Our paraphrase of this argument follows:

(Tim will go to the Blue Olive if and only if the Blue Olive is featur-
ing a jazz trio) and (Susan will go to the Blue Olive if and only if
the Blue Olive is featuring piano jazz).

If (Susan will go to the Blue Olive and it is not the case that Tim
will go to the Blue Olive) then Ralph will go to the Blue Olive.

(If the Blue Olive has a country and western band then Bill will go
to the Blue Olive) and it is not the case that the Blue Olive has a
country and western band.

The Blue Olive is featuring piano jazz and it is not the case that the
Blue Olive is featuring a jazz trio.

It is not the case that (Tim will go to the Blue Olive or Bill will go to
the Blue Olive) and (Susan will go to the Blue Olive and Ralph will
go to the Blue Olive).

Using the symbolization key,

T: Tim will go to the Blue Olive.
J: The Blue Olive is featuring a jazz trio.
S: Susan will go to the Blue Olive.
P: The Blue Olive is featuring piano jazz.
R: Ralph will go to the Blue Olive.
C: The Blue Olive has a country and western band.
B: Bill will go to the Blue Olive.

we can symbolize the paraphrased argument as follows:

(T � J) & (S � P)

(S & ~ T) ⊃ R

(C ⊃ B) & ~ C

P & ~ J

~ (T ∨ B) & (S & R)

In subsequent chapters we will be able to show that this argument of SL is valid.
Our second argument is

If the Outback Coral gets a liquor license before the end of the week
it will feature a country and western band this weekend. Monica
loves country and western music, and she will go to the Outback
Coral this weekend if it does feature a country and western band.
Eric hates country and western music but he is infatuated with
Monica, and if Monica goes to the Outback Coral this weekend Eric

ber38413_ch02_015-068.indd Page 48 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 48 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 49

will also go, even though he will hate every minute of his time there.
The Outback Coral will get a liquor license by the end of the week.
Hence, Monica and Eric will both go to the Outback Coral this week-
end and Eric will hate every minute of his time there.

We paraphrase the passage as an argument in standard form:

If the Outback Coral gets a liquor license before the end of the week
then the Outback Coral will feature a country and western band this
weekend.

Monica loves country and western music and (if the Outback Coral
will feature a country and western band this weekend then Monica
will go to the Outback Coral this weekend).

(Eric hates country and western music and Eric is infatuated with
Monica) and (if Monica goes to the Outback Coral this weekend
then (Eric will go to the Outback Coral this weekend and Eric will
hate every minute of his time at the Outback Coral)).

The Outback Coral will get a liquor license by the end of the week.

Monica will go to the Outback Coral this weekend and (Eric will go
to the Outback Coral this weekend and Eric will hate every minute
of his time at the Outback Coral).

Our paraphrase of the argument yields eight sentences that will be symbolized
as atomic sentences of SL. Our symbolization key follows. Note that we were
not, in every case, able to use a sentence letter that bears a strong mnemonic
connection to an important word in the sentence it symbolizes.

O: The Outback Coral will get a liquor license before the end of
the week.

C: The Outback Coral will feature a country and western band this
weekend.

L: Monica loves country and western music.
M: Monica will go to the Outback Coral this weekend.
H: Eric hates country and western music.
I: Eric is infatuated with Monica.
E: Eric will go to the Outback Coral this weekend.
T: Eric will hate every minute of his time at the Outback Coral.

O ⊃ C

L & (C ⊃ M)

(H & I) & [M ⊃ (E & T)]

O

M & (E & T)

ber38413_ch02_015-068.indd Page 49 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 49 16/11/12 1:23 PM user-f396 F-403F-403

50 SYNTAX AND SYMBOLIZATION

In subsequent chapters we will also show that this argument of SL is valid.
Our third argument concerns contemporary mystery writers:

At least one of the authors Louise Penny, Giles Blunt, Donna Leon,
and Charles Todd will be nominated for this year’s Gold Dagger
Award. Everyone who is nominated will publish a new mystery this
year. Neither Todd nor Blunt will publish a new mystery this year.
Louise Penny will publish a new mystery this year if and only if
Donna Leon does. Therefore, both Donna Leon and Louise Penny
will publish new mysteries this year and at least one of them will be
nominated for Gold Dagger Award.

Here is our paraphrase of this argument:

(Louise Penny will be nominated for this year’s Gold Dagger Award or
Giles Blunt will be nominated for this year’s Gold Dagger Award) or
(Donna Leon will be nominated for this year’s Gold Dagger Award or
Charles Todd will be nominated for this year’s Gold Dagger Award).

[(If Louise Penny will be nominated for this year’s Gold Dagger
Award then Louise Penny will publish a new mystery this year)
and (if Giles Blunt will be nominated for this year’s Gold Dagger
Award then Giles Blunt will publish a new mystery this year)] and
[(if Donna Leon will be nominated for this year’s Gold Dagger
Award then Donna Leon will publish a new mystery this year)
and (if Charles Todd will be nominated for this year’s Gold
 Dagger Award then Charles Todd will publish a new mystery
this year)].

It is not the case that Charles Todd will publish a new mystery this
year and it is not the case that Giles Blunt will publish a new mystery
this year.

Louise Penny will publish a new mystery this year if and only if
Donna Leon will publish a new mystery this year.

(Donna Leon will publish a new mystery this year and Louise Penny
will publish a new mystery this year) and (Donna Leon will be nomi-
nated for this year’s Gold Dagger Award or Louise Penny will be
nominated for this year’s Gold Dagger Award).

Note that we have paraphrased the fi rst premise as an extended disjunction.
The occurrence of ‘and’ in the fi rst premise does not signal that the premise
should be paraphrased as a conjunction. Rather it is used to specify the
members of the group, one of whom will be nominated. The second premise,
‘Everyone who is nominated will publish a new mystery this year’ is about
all potential nominees, not just the four authors named in the fi rst premise.
But the second premise is relevant to the validity of the argument only as it

ber38413_ch02_015-068.indd Page 50 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 50 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 51

applies to the listed authors. Hence our paraphrase. We will use the following
symbolization key:

P: Louise Penny will be nominated for this year’s Gold Dagger Award.
B: Giles Blunt will be nominated for this year’s Gold Dagger Award.
L: Donna Leon will be nominated for this year’s Gold Dagger Award.
T: Charles Todd will be nominated for this year’s Gold Dagger Award.
E: Louise Penny will publish a new mystery this year.
G: Giles Blunt will publish a new mystery this year.
D: Donna Leon will publish a new mystery this year.
C: Charles Todd will publish a new mystery this year.

(P ∨ B) ∨ (L ∨ T)

[(P ⊃ E) & (B ⊃ G)] & [(L ⊃ D) & (T ⊃ C)]

~ C & ~ G

E � D

(D & E) & (L ∨ P)

There are, of course, multiple ways in which the fi rst and second paraphrases
and symbolizations can be grouped. On the other hand, the second premise
cannot correctly be regrouped and symbolized as ‘[(P & B) & (L & T)] ⊃ [(E
& G) & (D & C)]’. This sentence would serve as a symbolization of the claim
that if they all win, then they will all publish a new mystery this year. It will
turn out that the argument with the correct symbolization given above is a
valid argument of SL.

Here’s another argument:

If Henry is after pure suspense he will read a Jeffrey Deaver mystery,
and if he wants wonderfully rich characters and doesn’t care about sub-
tle plots, he will read a Martha Grimes mystery. But if he wants richly
developed characters and a subtle plot he will read a Louise Penny
mystery. Although Henry doesn’t care about character development or
subtle plots, he does want pure suspense, so Henry will read a Jeffrey
Deaver mystery.

Here is our paraphrase:

(If Henry wants pure suspense then Henry will read a Jeffrey Deaver
mystery) and [if (Henry wants well-developed characters and it is not
the case that Henry cares about subtle plots) then Henry will read a
Martha Grimes mystery].

If (Henry wants well-developed characters and Henry cares about
subtle plots) then Henry will read a Louise Penny mystery.

ber38413_ch02_015-068.indd Page 51 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 51 16/11/12 1:23 PM user-f396 F-403F-403

52 SYNTAX AND SYMBOLIZATION

It is not the case that (Henry wants well-developed characters or
Henry cares about subtle plots) and Henry wants pure suspense.

Henry will read a Jeffrey Deaver mystery.

In paraphrasing the original argument we have taken ‘Henry is after pure sus-
pense’ and ‘Henry does want pure suspense’ to express the same claim, and we
have used the latter in our paraphrases. Henry’s view about character develop-
ment is also variously expressed in the original argument. The fi rst premise
mentions ‘wonderfully rich characters’, the second mentions ‘richly developed
characters’, and the third simply mentions character development. We have
paraphrased all three as ‘Henry wants well-developed characters’. Here are our
symbolization key and our symbolization of the argument:

S: Henry wants pure suspense.
D: Henry will read a Jeffrey Deaver mystery.
W: Henry wants well-developed characters.
P: Henry cares about subtle plots.
M: Henry will read a Martha Grimes novel.
L: Henry will read a Louise Penny mystery.

(S ⊃ D) & [(W & ~ P) ⊃ M]

(W & P) ⊃ L

~ (W ∨ P) & S

D

We will show in the next few chapters that this is also a valid argument of SL.
Our fi nal argument is

Christine will read a mystery if and only if there are no new science
fi ction novels in our library and there are no new science fi ction
movies available on Netfl ix. She will only read a mystery if it is set
in the United States. Our library doesn’t have any new science fi c-
tion novels and there are no new science fi ctions on Netfl ix. Donna
Leon’s mysteries are set in Venice, Louise Penny’s mysteries and
Giles Blunt’s mysteries are set in Canada, and Charles Todd’s mys-
teries are set in England. John Sandford’s mysteries are set in the
United States. Christine will therefore read a John Sandford mystery.

We paraphrase this as

Christine will read a mystery if and only if (it is not the case that
there are new science fi ction novels in our library and it is not the
case that new science fi ction movies are available on Netfl ix).

Christine will only read a mystery if it is set in the United States.

ber38413_ch02_015-068.indd Page 52 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 52 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 53

It is not the case that there are new science fi ction novels in our
library and it is not the case that new science fi ction movies are
available on Netfl ix.

(Donna Leon’s mysteries are set in Venice and Louise Penny’s mys-
teries are set in Canada) and (Giles Blunt’s mysteries are set in Can-
ada and Charles Todd’s mysteries are set in England).

John Sandford’s mysteries are set in the United States

Christine will read a John Sandford mystery.

We have used the second sentence of the original passage as its own para-
phrase. This may seem strange, as the second sentence is an ‘only if’ claim and
it may seem obvious that it should be paraphrased as

If Christine reads a mystery then it is set in the United States.

The problem is that in a truth-functional conditional what follows the ‘then’
must be an independent sentence that has a truth-value. ‘It is set in the
United States’ is not such a sentence. Nor can it be turned into one by
replacing ‘it’ with the name of a particular mystery, because ‘it’ does not
refer to a particular mystery. If there were only a small number of mysteries,
say two—A Fine Red Rain and Rough Country—then we could paraphrase the
second premise as

(If Christine reads A Fine Red Rain then A Fine Red Rain is set in
the United States) and (if Christine reads Routh Country then Rough
Country is set in the United States).

But there are in fact an enormous number of mysteries, so it is not practical
to paraphrase the second premise as a very long conjunction of material con-
ditionals, each of which deals with one mystery. Rather, we will need the more
powerful language PL, which is presented in Chapter 7, to adequately capture
the structure of the second premise.

Here are our symbolization key and symbolizations:

C: Christine will read a mystery.
S: Our library has new science fi ction novels.
N: New science fi ction movies are available on Netfl ix.
U: Christine will only read a mystery if it is set in the United

States.
D: Donna Leon’s mysteries are set in Venice.
L: Louise Penny’s mysteries are set in Canada.
G: Giles Blunt’s mysteries are set in Canada.
T: Charles Todd’s mysteries are set in England.

ber38413_ch02_015-068.indd Page 53 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 53 16/11/12 1:23 PM user-f396 F-403F-403

54 SYNTAX AND SYMBOLIZATION

J: John Sandford’s mysteries are set in the United States
R: Christine will read a John Sandford mystery.

C � (~ S & ~ N)

U

(D & L) & (G & T)

J

R

This is not a valid argument of SL. Our paraphrase and symbolization do not
bring out what is implicit in the original, that a mystery set in Venice is not
set in the United States, that a mystery set in Canada is not set in the United
States, and that a mystery set in England is not set in the United States. And
even if these bits of geographic information were explicitly included in the
argument and symbolization, the result would still not be a valid argument,
because our symbolization of the second premise in SL does not show the
relation between Christine’s reading a mystery and the setting of that mystery,
and also because John Sandford’s mysteries are not the only mysteries set in
the United States.

SUMMARY OF SOME COMMON CONNECTIVES

English Connective Paraphrase Symbolization in SL

not p it is not the case that p ~ P

p and q p and q P & Q
p but q
p however q
p although q
p nevertheless q
p nonetheless q
p moreover q

p or q p or q P ∨ Q
p unless q

p or q (exclusive sense) p or q and it is not the
case that (p and q)

(P ∨ Q) & ~ (P & Q)

if p then q if p then q P ⊃ Q
p only if q
q if p
q provided that p
q given p

p if and only if q p if and only if q P � Q

p if but only if q
p just in case q

ber38413_ch02_015-068.indd Page 54 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 54 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 55

 2.3E EXERCISES

 1. Construct truth-functional paraphrases of the following sentences and symbol-
ize those paraphrases in SL, using the following symbolization key:

P: The Red Sox improve their pitching.
G: The Red Sox have a good chance of winning the American

League pennant.
Y: The Yankees will win the pennant.
F: The Red Sox falter.
T: The Twins win tonight.
M: The Mariners win tonight.
A: The Angels win tonight.
I: The Indians win tonight.
S: The Indians’ starting pitcher can go the full nine innings.
N: The Angels move into fi rst place.
H: The rain stops within an hour.
G: The game will be postponed.
R: The Royals are in the running for the pennant.

 a. If the Red Sox improve their pitching they have a good chance of winning the
American League pennant.

 *b. The Yankees will win the pennant if the Red Sox falter and the Twins lose
tonight.

 c. If the Twins and the Mariners both lose tonight the Angels will move into fi rst
place.

 *d. Assuming the rain stops within an hour the game will not be postponed.
 e. The Indians will win tonight provided their starting pitcher can go the full

nine innings.
 *f. The Angels will move into fi rst place only if the Twins and the Indians both

lose tonight.
 g. Assuming either the Twins or the Mariners win tonight, the Royals will be out

of the running for the pennant.
 *h. The Red Sox have a good chance of winning the pennant if and only if the

Mariners and the Angels and the Twins all lose tonight.
 i. The Royals are out of the race for the pennant and the Yankees will win the

pennant if and only if the Twins win tonight and the Mariners and the Angels
both lose tonight.

 *j. The Red Sox have a good chance of winning the American League pennant
but the Yankees will win the pennant if either the Red Sox falter or the Twins,
the Angels, and the Mariners all win tonight.

 2. Construct truth-functional paraphrases for the following, then provide a sym-
bolization key and use it to symbolize your paraphrases in SL.

 a. Either George or Emily will graduate with honors.
 *b. Both George and Emily will graduate with honors or neither will.
 c. At least one of George, Emily, Donna, and Fred will graduate with honors.
 *d. If Donna graduates with honors so will Fred, and if Bob graduates with honors

so will Emily.

ber38413_ch02_015-068.indd Page 55 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 55 16/11/12 1:23 PM user-f396 F-403F-403

56 SYNTAX AND SYMBOLIZATION

 e. Either they (Fred, George, Emily, and Donna) will all graduate with honors or
none of them will.

 *f. Either Fred won’t graduate with honors or Emily and Donna both will.
 g. Fred and George will graduate with honors if and only if Donna and Emily

graduate with honors.
 *h. Either George or Emily will graduate with honors but they won’t both graduate

with honors.
 i. George won’t graduate with honors but Fred will, and Donna will graduate

with honors if and only if Emily does.
 *j. If Emily and Donna don’t both graduate with honors then neither George or

Fred will graduate with honors.

 3. Construct a truth-functional paraphrase of each of the following sentences,
then provide a symbolization key and use it to symbolize your paraphrases.

 a. If Felice vacations in Bermuda so will Clarence.
 *b. Veronica will vacation in Bermuda only if both Clarence and Robert will also

do so.
 c. If either Felice or Veronica vacation in Bermuda they both will.
 *d. Clarence will vacation in Bermuda only if Robert does and neither Felice nor

Veronica do.
 e. If Veronica vacations in Bermuda then Clarence will but Felice won’t.
 *f. Robert will vacation in Bermuda if and only if Clarence does, and Veronica

will vacation in Bermuda if and only if Felice does.
 g. Veronica will vacation in Bermuda if and only if Clarence doesn’t, and Felice

will vacation in Bermuda if and only if Robert does.
 *h. Felice will vacation in Bermuda if and only if Veronica does and Robert doesn’t,

and Veronica will vacation in Bermuda if and only if Robert does and Clarence
doesn’t.

 4. For each of the following, provide a truth-functional paraphrase and then sym-
bolize your paraphrases in SL, indicating what sentence each of the sentence
letters you use symbolizes.

 a. Casablanca, The Lion in Winter, Witness for the Prosecution, The Third Man, and
Charade will all be shown at this year’s classical fi lm festival.

 *b. If Phil sees Casablanca he will enjoy Bogart’s and Bergman’s performances but
he won’t hear Bogart say “Play it again, Sam”.

 c. Phil will see The Lion in Winter only if Marion will and both of them will see
Charade.

 *d. Eric will see The Lion in Winter if and only if Betty does and if they see it they
will love it.

 e. If Witness for the Prosecution and The Lion in Winter are both screened at 8:00 pm,
Marion and Phil will see Witness for the Prosecution and Eric and Betty will see
The Lion in Winter.

 *f. Phil will see Charade if and only if Audrey Hepburn and Cary Grant are both
in it, and they are.

 g. If it’s the case that if Eric likes Katherine Hepburn then he’ll see The Lion in
Winter, then if Marion likes Eric she will see The Lion in Winter.

 *h. If Claude Raines, Sydney Greenstreet, and Peter Lorre were in the movie Betty
saw last night then she saw Casablanca.

 i. Neither Betty nor Eric like James Coburn but they do both like Audrey Hep-
burn and if Audrey Hepburn is in Charade they will both see it (and she is).

ber38413_ch02_015-068.indd Page 56 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 56 16/11/12 1:23 PM user-f396 F-403F-403

2.3 MORE COMPLEX SYMBOLIZATIONS 57

 5. Construct a truth-functional paraphrase of each of the following arguments,
then provide a symbolization key and use it to symbolize your paraphrase of
the argument in SL.

 a. If Betty sees Casablanca and The Third Man then she won’t see either Witness
for the Prosecution or The Lion in Winter. She will see Witness for the Prosecution
but she won’t see The Lion in Winter. So either she won’t see Casablanca or she
won’t see The Third Man.

 *b. If Phil likes either Joseph Cotton or Orson Wells he will like The Third Man, if he
sees it. If he likes either Peter O’Toole or Katharine Hepburn he’ll like The Lion
in Winter, if he sees it. He doesn’t like either Joseph Cotton or Orson Wells, but
he does like Katharine Hepburn. So if he sees The Lion in Winter he will like it.

 c. Phil will see The Third Man if and only if he likes both Joseph Cotton and
Orson Wells, and he will see Witness for the Prosecution if and only if he likes both
Marlene Dietrich and Charles Laughton. He doesn’t like either Joseph Cotton
or Orson Wells, but he does like Marlene Dietrich and Charles Laughton. So
Phil will see Witness for the Prosecution.

 *d. Betty will see either The Lion in Winter or Witness for the Prosecution. Marion will see
Casablanca and Charade. If Betty sees Witness for the Prosecution Eric won’t, but he will
see Casablanca if Marion does. Betty won’t see Witness for the Prosecution, and she will
see The Lion in Winter if and only if Phil does. So Phil will see The Lion in Winter.

 6. Construct truth-functional paraphrases of each of the following passages. If a
passage is an argument, present your paraphrase of the argument in standard
form. Provide symbolization keys for your paraphrases of these passages and
symbolize your paraphrases in SL.

 a. Fred will go to New York only if he can get a fi rst class air ticket and get tickets
to a Yankees game. Fred will go to Chicago only if he can travel by train and
get tickets to a White Sox game. He can’t get a fi rst class air ticket and he can’t
get tickets to a White Sox game, so he won’t go to either New York or Chicago.

 *b. If Lisa goes on vacation it will be to either Toronto, Montreal, Quebec, or
Vancouver. If she goes to Toronto she will visit the University of Toronto; if
she goes to Montreal she will eat great French food; if she goes to Quebec she
will visit the Plains of Abraham; and if she goes to Vancouver she will go whale
watching. She won’t visit the University of Toronto; she won’t eat great French
food; and she won’t go whale watching. So if she goes on vacation she will visit
the Plains of Abraham.

 c. Alice will go to Vienna if but only if Burt is willing to go with her and Burt
speaks German. If Alice does go to Vienna she will take the Orient Express to
Istanbul, unless Burt refuses to travel by train. Burt is willing to go with Alice
to Vienna and he does speak German, but he won’t travel by train. Hence if
Alice goes to Vienna she will not take the Orient Express to Istanbul.

 *d. Ben will go either to Duluth or to Kansas City. If it is the case that when Ben
travels he travels by train, then if he travels to Duluth there is a train to Duluth
and if he travels to Kansas City there is a train to Kansas City. Ben travels only
by train and there is no train to Duluth. So Ben will travel to Kansas City and
there is a train to Kansas City.

 e. Charles Todd’s mysteries are good mysteries. A good mystery has memorable
characters, a plot that keeps the reader in suspense, and contains enough fac-
tual information to allow the reader to actually learn some interesting things;
and Charles Todd’s mysteries have all of these features.

ber38413_ch02_015-068.indd Page 57 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 57 16/11/12 1:23 PM user-f396 F-403F-403

58 SYNTAX AND SYMBOLIZATION

 2.4 NON-TRUTH-FUNCTIONAL USES OF CONNECTIVES

In Section 2.2 we introduced the notion of the truth-functional use of sentential
connectives. As we explained there,

A sentential connective, of a formal or a natural language, is used
truth-functionally if and only if it is used to generate a compound sen-
tence from one or more sentences in such a way that the truth-value
of the generated compound is wholly determined by the truth-values
of those one or more sentences from which the compound is gener-
ated, no matter what those truth-values may be.

The sentential connectives of SL are fully defi ned by their characteristic truth-
tables and therefore have only truth-functional uses. As we have seen, we can
often paraphrase English compounds as truth-functional compounds without
weakening or distorting the content of the sentences being paraphrased. Para-
phrases that are negations, conjunctions, and disjunctions often capture all or
almost all of the content of the sentences being paraphrased. A sentence such
as ‘Aristotle and Alexander were both Greek’ can be paraphrased as

Aristotle was Greek and Alexander was Greek

with no loss of content. The English sentence says neither more nor less than
the truth-functional paraphrase. In contrast, English conditionals frequently
express links or connections between their antecedents and consequents that
are lost when we paraphrase them as material conditionals. For example, con-
sider the sentence

Assuming the rain stops within an hour, the game will not be postponed.

This sentence is appropriately paraphrased as

If the rain stops within an hour then it is not the case that the game
will be postponed

and the paraphrase can be symbolized as ‘S ⊃ ~ P’. But it can be argued that
our paraphrase does not capture all of the content of the sentence it para-
phrases. In the original there is at least the suggestion that the rain’s stopping,
if it does, will be the reason the game will not be postponed and that the rain’s
not stopping, if it doesn’t, will be the reason for the game’s being postponed.
Often this kind of loss of content will not matter for the purposes at hand, for
example, determining the validity of an argument. But when an English condi-
tional is based on a scientifi c law, paraphrasing that conditional as a material
conditional can be problematic. An example is

If this rod is made of metal, then it will expand when heated.

ber38413_ch02_015-068.indd Page 58 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 58 16/11/12 1:23 PM user-f396 F-403F-403

2.4 NON-TRUTH-FUNCTIONAL USES OF CONNECTIVES 59

A simple law of physics lies behind this claim: all metals expand when heated,
and the conditional is in effect claiming that if the rod in question is made of
metal then heating it will cause it to expand. A paraphrase of this causal claim
as a material conditional does not capture this causal connection. The failure
to capture such causal connections may or may not be acceptable, depending
on the context and on what questions we are asking about the sentence or set
of sentences being paraphrased.

When we use the tools that we develop in subsequent chapters to ana-
lyze sentences and sets of sentences of SL, the results that we obtain will apply
directly to the sentences and sets of sentences of SL we are analyzing and to
the truth-functional paraphrases those sentences symbolize. The results will also
apply to the English sentences from which the paraphrases are obtained to the
extent, and only to the extent, that the paraphrases capture the content of the
original sentences. Here’s an example of how things can go wrong if we ignore
this caveat. Suppose some benighted person incorrectly believes that metals
contract when they are heated. Such a person might make the following claim
about a rod whose composition is unknown: ‘If this rod is made of metal, then
this rod will contract when heated’. Taken as a causal claim, this is clearly false.
Metals expand when heated; they don’t contract. Here is a truth-functional
paraphrase of the claim, and a symbolization of that paraphrase in SL:

If this rod is made of metal then this rod will contract when heated.

M ⊃ C

We have used ‘M’ to symbolize ‘This rod is made of metal’ and ‘C’ to symbolize
‘This rod will contract when heated’. Now suppose that the rod is in fact plastic,
not metal. Then the antecedent of ‘M ⊃ C’ and of the paraphrase it symbol-
izes are both false, making the material conditional of SL and our paraphrase
both true, even though the English sentence we paraphrased and symbolized is
clearly false. In this case, where the alleged causal connection between anteced-
ent and consequent is crucial to the claim being made, it is wise to treat the
original sentence as a non-truth-functional compound and symbolize it as an
atomic sentence of SL.

Of course, there are many English conditionals that can be appropri-
ately paraphrased as material conditionals with no loss of content. We are all
familiar with, and probably have made, claims of the sort

If such-and-such then I’m a such-and-such,

where the fi rst ‘such-and-such’ is replaced by some very improbable claim and
the second with a known falsehood. For example, if someone tells us that
Jones, whom we know to be barely literate, is going to write the great American
novel, one of us might comment ‘If Jones can write the great American novel
I can leap tall buildings in a single bound’. We all know the consequent of
this conditional is false. By asserting the conditional, knowing the consequent

ber38413_ch02_015-068.indd Page 59 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 59 16/11/12 1:23 PM user-f396 F-403F-403

60 SYNTAX AND SYMBOLIZATION

is false, the speaker is implicitly asserting that the antecedent is also false, and
the antecedent’s being false makes the conditional true.

There are other English conditionals called ‘subjective conditionals’ that
cannot adequately be paraphrased as material conditionals. Here are two examples:

If Harry were to win the lottery, he would give all the proceeds to
charity.

and

If Hitler had not invaded Russia, he would have defeated Great Brit-
ain and won the Second World War.

We might be tempted to paraphrase the claim about Harry as a material con-
ditional, that is, as

If Harry wins the lottery then Harry will give all the proceeds to
charity.

A material conditional is true when its antecedent is false. Now suppose that
the antecedent of our paraphrase is false; Harry does not win the lottery (as will
almost certainly be the case). Our paraphrase is then true. But Harry’s failure to
win hardly makes the original subjunctive claim true. Suppose we know that Harry
is by nature not a generous person, and we know that he has never given a dime
to charity in his life. Moreover he has frequently railed against those who do give
to charity. If we know all of this, then we will reject the subjunctive conditional.
Harry is just not the sort of person who gives money to charity. So we will conclude
that it is not the case that if Harry were to win the lottery he would give all the
proceeds to charity. That he did not win the lottery is irrelevant to this reasoning.

Our second example of a subjunctive conditional also cannot be para-
phrased as a material conditional. All historians know that Hitler did invade
Russia and did not win the Second World War. But they do not take those facts
to determine the truth-value of the above subjunctive conditional concerning
Hitler. In fact, historians continue to disagree about the truth-value of that
subjunctive conditional.

English has a large number of non-truth-functional connectives. ‘I
believe that . . .’ is one. Attach ‘I believe that’ to any sentence of English that
has a truth-value and the result is a sentence of English that has a truth-value.
But the result is not a truth-functional compound. Given any sentence of the
form ‘I believe that p’, the truth-value of that sentence is not determined by the
truth-value of p. No matter how obviously false p may be, I might still believe
it, and no matter how obviously true it may be, I may still not believe it. ‘It is
alleged that’ is not a truth-functional connective for similar reasons. Attaching
‘It is alleged that’ to any sentence with a truth-value yields a sentence with a
truth-value, but the truth-value of the sentence to which ‘It is alleged that’ is
attached does not determine the truth-value of the resulting sentence. Suppose

ber38413_ch02_015-068.indd Page 60 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 60 16/11/12 1:23 PM user-f396 F-403F-403

2.4 NON-TRUTH-FUNCTIONAL USES OF CONNECTIVES 61

that it is false that Senator Bigmouth took a bribe when he was mayor of Lit-
tletown. ‘It is alleged that Senator Bigmouth took a bribe when he was mayor
of Littletown’ may nonetheless be true. All sorts of false things are alleged. And
all sorts of true things are not alleged. Similar to the case of ‘I believe that’, the
truth-value of ‘Senator Bigmouth took a bribe when he was mayor of Littletown’
and the truth-value of ‘It is alleged that Senator Bigmouth took a bribe when
he was mayor of Littletown’ are logically independent. They can both be true,
they can both be false, the fi rst can be true while the second is false, and the
second can be true while the fi rst is false. Other non-truth-functional unary
connectives of English include

It is probable that
Necessarily
It would not be surprising if
We are convinced that
We hope that . . .
I know that . . .

The truth-value of a sentence formed by attaching any one of these expressions
other than ‘I know that . . .’ to a sentence p that has a truth-value is logically
independent of the truth-value of p. The generated compound and p may both
be true, they may both be false, p may be true and the compound false, and
p may be false and the compound true. ‘I know that’ is different in that if this
connective is attached to a false sentence then the compound that is generated
is also false. But the compound may be either true or false when the sentence
to which ‘I know that’ is attached is true.

Though connectives of the sort we have been discussing are all non-
truth-functional, some of the compound sentences they generate can be para-
phrased as truth-functional compounds. An example is

Commentators believe the Republicans will retain control of the
House and the Democrats will retain control of the Senate.

This claim can reasonably be paraphrased as the truth-functionally compound
sentence

Commentators believe the Republicans will retain control of the
House and commentators believe the Democrats will retain control
of the Senate.

This paraphrase is a truth-functional compound, a conjunction, each of
whose conjuncts is a non-truth-functional compound. But we must be care-
ful here.

Commentators believe the Republicans will gain control of the Sen-
ate or of the House

ber38413_ch02_015-068.indd Page 61 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 61 16/11/12 1:23 PM user-f396 F-403F-403

62 SYNTAX AND SYMBOLIZATION

is not reasonably paraphrased as

Commentators believe the Republicans will gain control of the Senate
or commentators believe the Republicans will gain control of the House.

Commentators may believe the Republicans will gain control of at least one
chamber, the House or the Senate, but have no opinion about which cham-
ber it will be. As another example, consider the fl ipping of a fair coin. We all
believe that the coin will either come up heads or come up tails. But this is
not equivalent to

We all believe the coin will come up heads or we all believe the coin
will come up tails.

There are also binary connectives of English that are never used truth-functionally.
One is ‘because’. Consider the sentence

Henry will not read Drawing Conclusions because it is set in Venice.

The truth-value of this compound is not wholly determined by the truth-values
of its immediate components. While the falsity of either ‘Henry will not read
Drawing Conclusions’ or ‘Drawing Conclusions is set in Venice’ is suffi cient for the
falsity of the compound, the truth of these components does not determine the
truth-value of the compound. It is true that Drawing Conclusions is set in Venice
and it may be true that Harry will not read it, but the reason he will not read
it may have nothing to do with its being set in Venice. Perhaps the reason is
that Henry’s library doesn’t have a copy and Henry is too cheap to buy a copy.

The connective ‘before’ is also a non-truth-functional connective. Con-
sider the sentences

Jimmy Carter was elected president before Ronald Reagan was
elected president

and

Ronald Reagan was elected president before Jimmy Carter was
elected president.

The component sentences ‘Ronald Reagan was elected president’ and ‘Jimmy
Carter was elected president’ are both true, but the fi rst compound sentence is
true while the second is false. Hence the truth-values of the components do not,
in every case, determine the truth-value of the compound sentences and ‘before’
is, therefore, not a truth-functional connective. The same is true of ‘after’. More
generally, given that either p is false or q is false, we may conclude that both

p before q

ber38413_ch02_015-068.indd Page 62 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 62 16/11/12 1:23 PM user-f396 F-403F-403

2.4 NON-TRUTH-FUNCTIONAL USES OF CONNECTIVES 63

and

p after q

are false, but we cannot conclude anything about the truth or falsity of either
of these claims given only that both p and q are true.

The safest policy for paraphrasing non-truth-functionally compound
sentences is to let them be their own paraphrases and symbolize them as atomic
sentences of SL. However, there are cases in which we can construct truth-func-
tionally compound sentences of English that capture some of the content of
non-truth-functionally compound English sentences, and it is sometimes useful
to do so. First, a defi nition. We have noted several times that a paraphrase or
proposed paraphrase fails to capture all of the content of the sentence being
paraphrased. In such cases the paraphrase is “weaker” than the original. What
it means to say that one sentence is weaker than, or stronger than, another is
not entirely clear in ordinary English, and we therefore provide a stipulative
defi nition of these terms that states what logicians mean when we use the words
‘weaker’ and ‘stronger’ to describe relationships between sentences:

A sentence p of a natural or formal language is stronger than a sentence
q of a natural or formal language (and q is weaker than p) if and
only if q follows from p but p does not follow from q.8

For example, ‘Aristotle was Greek and Alexander was Greek’ is stronger than
‘Aristotle was Greek’, because the latter follows from the former, but not vice
versa. For the same reason, ‘Aristotle was Greek’ is weaker than ‘Aristotle was
Greek and Alexander was Greek’.

Here is an argument all of whose premises are conditionals:

If the rain continues the game will be postponed. If the game is
postponed Bronson won’t have to pitch today. If Bronson won’t
have to pitch today he will be ready to pitch tomorrow. If Bronson
is ready to pitch tomorrow his team will win tomorrow. The rain will
continue. So Bronson’s team will win tomorrow.

This argument, which is valid, connects a series of envisioned events, the fi rst
being its continuing to rain today and the last being Bronson’s team’s winning
tomorrow. Arguably, the envisioned events are presented as being connected
in more than a truth-functional way. For example, it is at least implicit that if
the rain continues, its doing so will cause the game to be postponed, and that
if the game is postponed, the postponement will be responsible for Bronson’s
not having to pitch today, and that if Bronson’s not having to pitch today will
ensure that he’ll be ready to pitch tomorrow, and that his being ready to pitch

8This is a stipulative defi nition because it does not fully accord with all the ways ‘stronger than’ and ‘weaker
than’ are used in ordinary English. For example, most of us would take ‘There is a cougar in the yard’ to be a
stronger claim than is ‘I think there is a cougar in the yard’. But ‘There is a cougar in the yard’ does not follow
from ‘I think there is a cougar in the yard’. Such uses of ‘stronger’ in ordinary English perhaps convey that one
claim conveys more reliable, or more important information than does another.

ber38413_ch02_015-068.indd Page 63 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 63 16/11/12 1:23 PM user-f396 F-403F-403

64 SYNTAX AND SYMBOLIZATION

tomorrow will lead to and be responsible for his team’s victory. These implicit
causal relationships are lost in the following truth-functional paraphrase of
the argument:

If the rain will continue then the game will be postponed.

If the game will be postponed then it is not the case that Bronson
will have to pitch today.

If it is not the case that Bronson will have to pitch today then Bron-
son will be ready to pitch tomorrow.

If Bronson will be ready to pitch tomorrow then Bronson’s team will
win tomorrow.

The rain will continue.

Bronson’s team will win tomorrow.

But the conclusion of the paraphrase is identical to the conclusion of the origi-
nal, and it does follow from the paraphrased premises. And since each of the
paraphrased premises is weaker than (and therefore follows from) the premise
it paraphrases, the conclusion also follows from the original premises, and so
we may conclude that the original argument is valid.

In paraphrasing the original argument we weakened each premise, by
replacing a causal conditional with a material conditional. Causal conditionals
are stronger than material conditionals. For example, it follows from the causal
conditional

If this rod is made of metal it will expand when heated,

that either the rod is not made of metal or it will expand when heated, which
is all that the material conditional

If this rod is made of metal then it will expand when heated

comes to, but the causal conditional does not follow from the material conditional.
We have seen that if we weaken the premises of an argument in the

paraphrase process but do not weaken the conclusion, and the paraphrase
and its symbolization turn out to be valid, we may safely conclude that the
original argument is also valid. But if the paraphrased argument and its sym-
bolization turn out to be invalid we cannot conclude that the original argu-
ment is invalid. That a conclusion does not follow from one set of premises
(our paraphrases of the original premises) does not show that it does not
follow from a stronger set of premises (the premises of the original argu-
ment). Hence while we can sometimes use a paraphrase whose premises are
weaker than the premises of the original argument to show that the original
argument is valid, we can never use such paraphrases to show the argument
being paraphrased is invalid.

ber38413_ch02_015-068.indd Page 64 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 64 16/11/12 1:23 PM user-f396 F-403F-403

2.4 NON-TRUTH-FUNCTIONAL USES OF CONNECTIVES 65

Here is a simple example that illustrates this point.

Aristotle and Plato were both Greek. If Aristotle was Greek he wasn’t
Roman, and if Plato was Greek he wasn’t Roman. So neither Aristo-
tle nor Plato was Roman.

This is obviously a valid argument, as are its truth-functional paraphrase and
symbolization:

Aristotle was Greek and Plato was Greek.

(If Aristotle was Greek then it is not the case that Aristotle was Roman)
and (if Plato was Greek then it is not the case that Plato was Roman).

It is not the case that Aristotle was Roman and it is not the case that
Plato was Roman.

Using ‘A’ to symbolize ‘Aristotle was Greek’, ‘P’ to symbolize ‘Plato was Greek’,
‘R’ to symbolize ‘Aristotle was Roman’, and ‘L’ to symbolize ‘Plato was Roman’,
we can symbolize our paraphrased argument as

A & P

(A ⊃ ~ R) & (P ⊃ ~ L)

~ R & ~ L

This symbolic argument is valid. Now suppose we weaken our paraphrase of
the fi rst premise by replacing it with ‘Aristotle was Greek’, a sentence that is
clearly weaker than (because if follows from) the fi rst premise of the original
argument. The symbolization of our revised paraphrase will be

A

(A ⊃ ~ R) & (P ⊃ ~ O)

~ R & ~ O

This symbolic argument is invalid, as is the truth-functional paraphrase it symbol-
izes. But the original argument is valid. Again, showing that a paraphrased argu-
ment is invalid where the premises of the paraphrase are weaker than the premises
of the original argument does not show that the original argument is invalid.

Here is a more interesting case in which weakening the premises of
an argument in paraphrasing it is both appropriate and useful. Suppose that
a detective reasons as follows:

If Williams is the murderer he had to be in Philadelphia on the 5th.
Because we know that Williams was in Rome on the 5th, we know that
he was not in Philadelphia on the 5th. So Williams isn’t the murderer.

ber38413_ch02_015-068.indd Page 65 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 65 16/11/12 1:23 PM user-f396 F-403F-403

66 SYNTAX AND SYMBOLIZATION

This seems to be a valid piece of reasoning, and if we use ‘Williams was in
Rome on the 5th and it is not the case that Williams was in Philadelphia on
the night of the 5th, for the second premise, it seems that we can capture the
structure of that reasoning:

If Williams is the murderer then Williams was in Philadelphia on
the 5th.

Williams was in Rome on the 5th and it is not the case that Williams
was in Philadelphia on the 5th.

It is not the case that Williams is the murderer.

Our paraphrase of the fi rst premise is weaker than the premise it paraphrases:
we have replaced ‘had to be in Philadelphia’ with ‘was in Philadelphia’. Our
paraphrase of the second premise is weaker than the original and follows from
it. Both p and q follow from causal claims of the sort

Because p, q

and p follows from

We know that p,

though not vice versa. So

We know that Williams was in Rome on the 5th and we know that
Williams was not in Philadelphia on the 5th

follows from the original second premise. And our paraphrase follows from
this conjunction of two knowledge claims. Using obvious choices of sentence
letters, we can symbolize the paraphrase as

W ⊃ P

R & ~ P

~ W

This is a valid argument of SL.
Similarly, although English subjunctive conditionals are not truth-

functional compounds, it is sometimes possible and appropriate to use material
conditionals as paraphrases of subjunctive conditionals. Suppose that a doctor
who is testifying at an inquest argues as follows:

Had the deceased died of strychnine poisoning, there would have been
traces of that poison in the body. The autopsy would have found those
traces had they been there. The autopsy did not reveal any traces of
strychnine. Hence the deceased did not die of strychnine poisoning.

ber38413_ch02_015-068.indd Page 66 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 66 16/11/12 1:23 PM user-f396 F-403F-403

2.4 NON-TRUTH-FUNCTIONAL USES OF CONNECTIVES 67

Replacing the subjunctive conditionals with material conditionals we obtain the
following paraphrase of this argument:

If the deceased died of strychnine poisoning then there were traces
of strychnine in the body.

If there were traces of strychnine in the body then the autopsy found
traces of strychnine in the body.

It is not the case that the autopsy found traces of strychnine in the
body.

It is not the case that the deceased died of strychnine poisoning.

Using obvious choices of sentence letters, we can symbolize this argument in SL as

S ⊃ T

T ⊃ F

~ F

~ S

This is a valid argument of SL, as we will be able to show in subsequent chapters.
We have discussed when it is appropriate to weaken the premises

of an argument when paraphrasing them. Recall that entailment is a notion
that nearly parallels that of validity (the difference being that some sentences
are entailed by the empty set but there are no arguments with no premises).
Accordingly, it is sometimes appropriate to weaken the members of a set when
trying to determine whether that set entails a given sentence.

Care must also be taken when weakening or strengthening a sentence in
the paraphrase process when we are concerned with determining the consistency
of a set of sentences, the equivalence of sentences, or the logical status of a sen-
tence (logically true, logically false, or logically indeterminate). For example, if we
are interested in whether a set of sentences of English is consistent and in the
paraphrase process we weaken one of the members of the set, then showing that
the set consisting of the paraphrased sentences is consistent will not establish that
the original set of sentences is consistent. And if in the paraphrase process we
strengthen one of the members of the set, then showing that the set consisting of
the paraphrased sentences is inconsistent will not show that the original set is incon-
sistent, though if the set of paraphrased sentences turns out to be consistent, so is
the original set. Similarly, if we are interested in whether two sentences are equiva-
lent and weaken or strengthen either or both of the sentences in the paraphrase
process, then showing that the paraphrases are, or are not, equivalent will not, in
general, constitute showing that the original sentences are or are not equivalent.

What can be said, and we have so said before, is that the results we
obtain by using the techniques developed in subsequent chapters to test for
validity, entailment, consistency, and the other core semantical concepts apply
directly only to the paraphrases and symbolizations we have constructed.

ber38413_ch02_015-068.indd Page 67 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 67 16/11/12 1:23 PM user-f396 F-403F-403

68 SYNTAX AND SYMBOLIZATION

 2.4E EXERCISES

 1. Paraphrase and symbolize each of the following sentences that can reasonably
be paraphrased as a truth-functional compound. If a sentence cannot be so
paraphrased, explain why this is so. Provide a symbolization key when it is not
obvious what sentence your sentence letters are symbolizing.

 a. It’s likely that either the Boston Red Sox or the New York Yankees will win the
World Series this year.

 *b. Either Rocky or George knows what time the concert starts.
 c. Marcie thinks that either Helen or Stephanie will be elected.
 *d. Tamara won’t be visiting tonight because she is working late.
 e. Although Tamara won’t stop by, she has promised to phone early in the evening.
 *f. If the victim had been strangled there would have been marks on his throat,

and there weren’t.
 g. John believes that our manuscript has been either lost or stolen.
 *h. John believes that our manuscript has been stolen, and Howard believes that

it has been lost.
 i. The defendant confessed only after much of her testimony was discredited.
 *j. It is possible that the Twins will win tonight and possible that the Red Sox will

win tonight, but it is not likely that they will both win tonight.

 2. Construct truth-functional paraphrases of the premises and conclusions of the
following arguments, provide symbolization keys, and symbolize your para-
phrases in SL.

 a. The murder was committed by the maid only if she believed her life was in
danger. Had the butler done it, it would have been done silently and the
body would not have been mutilated. As a matter of fact it was done silently;
however, the maid’s life was not in danger. The butler did it if and only if the
maid failed to do it. Hence the maid did it.

 *b. If this piece of metal is gold, then it has atomic number 79. Nordvik believes
this piece of metal is gold. Therefore Nordvik believes this piece of metal has
atomic number 79.

 c. If Charles Babbage had had the theory of the modern computer and had had
modern electronic parts, then the modern computer would have been developed
before the beginning of the twentieth century. In fact, although he lived in the
early nineteenth century, Babbage had the theory of the modern computer. But
he did not have access to modern electronic parts, and he was forced to construct
his computers out of mechanical gears and levers. Therefore, if Charles Babbage
had had modern electronic parts available to him, the modern computer would
have been developed before the beginning of the twentieth century.

GLOSSARY

TRUTH-FUNCTIONAL USE OF A CONNECTIVE: A sentential connective, of a
formal or a natural language, is used truth-functionally if and only if it is used to
generate a compound sentence from one or more sentences in such a way that the
truth-value of the generated compound is wholly determined by the truth-values of
those one or more sentences from which the compound is generated, no matter
what those truth-values may be.

ber38413_ch02_015-068.indd Page 68 16/11/12 1:23 PM user-f396ber38413_ch02_015-068.indd Page 68 16/11/12 1:23 PM user-f396 F-403F-403

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 69

Chapter 3

Section 3.1 introduces the foundations of the truth-functional semantics for
SL: truth-value assignments and the truth-tables that record them. Sections
3.2 through 3.5 present the truth-functional versions of the core logical con-
cepts: truth-functional truth, falsehood, and indeterminacy; truth-functional
equivalence; truth-functional consistency; and truth-functional entailment and
validity. Section 3.6 explicates all of the truth-functional concepts in terms of
truth-functional consistency to provide a framework for truth-trees, which are
presented in Chapter 4.

SENTENTIAL LOGIC:
SEMANTICS

 3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES

In Chapter 1, we introduced logical concepts such as logical truth and logi-
cal validity. In this chapter we shall develop formal tests for truth-functional
versions of the core logical concepts introduced in Chapter 1. Specifi cally, we
will develop tests for truth-functional truth, falsity, and indeterminacy; truth-
functional equivalence; truth-functional consistency; and truth-functional
 entailment and validity. All these concepts fall within the realm of semantics:
They concern the truth-values and truth-conditions of sentences and sets of
sentences of SL. Before defi ning these truth-functional concepts, our fi rst task

ber38413_ch03_069-109.indd Page 69 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 69 16/11/12 1:23 PM user-f396 F-403F-403

70 SENTENTIAL LOGIC: SEMANTICS

is to specify how truth-values and truth-conditions for sentences of SL are
 determined.

Every sentence of SL can be built up from its atomic components in
accordance with the defi nition of sentences. Similarly the truth-value of a sen-
tence of SL is completely determined by the truth-values of its atomic compo-
nents in accordance with the characteristic truth-tables for the connectives.
We repeat the characteristic truth-tables here:

P ∼ P P Q P & Q P Q P ∨ Q

T F T T T T T T
F T T F F T F T
 F T F F T T
 F F F F F F

P Q P ⊃ Q P Q P � Q

T T T T T T
T F F T F F
F T T F T F
F F T F F T

These tables tell us how to determine the truth-value of a truth-functionally
compound sentence given the truth-values of its immediate sentential components.

The truth-values of atomic sentences are fi xed by truth-value assignments:

A truth-value assignment is an assignment of truth-values (Ts and Fs)
to the atomic sentences of SL.

The concept of a truth-value assignment is the basic semantic concept of
SL. Intuitively, each truth-value assignment gives us a description of a way
the world might be, for in each we consider a combination of truth-values
that atomic sentences might have. We assume that the atomic sentences of
SL are truth-functionally independent—that is, that the truth-value assigned
to one does not affect the truth-value assigned to any other. For generality
we stipulate that a truth-value assignment must assign a truth-value to every
atomic sentence, so that a truth-value assignment gives a complete descrip-
tion of a way the world might be. The truth-values of truth-functionally
compound sentences of SL are uniquely and completely determined by
the truth-values of their atomic components, so it follows that every truth-
functionally compound sentence also has a truth-value, either T or F, on
each truth-value assignment.

A truth-table for a sentence of SL is used to record its truth-value on
each truth-value assignment. Because a truth-value assignment assigns truth-
values to an infi nite number of atomic sentences (SL has infi nitely many atomic
sentences), we cannot list an entire truth-value assignment in a truth-table.

ber38413_ch03_069-109.indd Page 70 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 70 16/11/12 1:23 PM user-f396 F-403F-403

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 71

Instead, we list all the possible combinations of truth-values that the sentence’s
atomic components may have on a truth-value assignment. As an example, here
is the beginning of a truth-table for ‘∼ B ⊃ C’:

B C ∼ B ⊃ C

T T
T F
F T
F F

The atomic components of the sentence are ‘B’ and ‘C’, and the four
rows of the table display the four combinations of truth-values that these
components might have. Each row represents an infi nite number of truth-
value assignments, namely, all the truth-value assignments that assign
to ‘B’ and ‘C’ the values indicated in that row. Since the truth-value of
‘∼ B ⊃ C’ on a truth-value assignment depends only on the truth-values
that its atomic components have on that assignment, the four combina-
tions that we have displayed will allow us to determine the truth-value of
‘∼ B ⊃ C’ on any truth-value assignment.

The fi rst step in constructing a truth-table for a sentence P of SL is to
determine the number of different combinations of truth-values that its atomic
components can have. There is a simple way to do this. Consider fi rst the case
in which P has one atomic component. There are two different truth-values
that the single atomic component may have: T and F. Now suppose that P is a
sentence with two atomic components. In this case there are four combinations
of truth-values that the atomic components of P might have, as we have seen
in the case of ‘∼ B ⊃ C’ above.

If P has three atomic components, there are eight combinations of
truth-values that its atomic components might have. To see this, suppose we
want to expand this truth-table to record truth-values for a modifi ed sentence
that has three atomic components:

A B C (∼ B ⊃ C) & (A � B)

 T T
 T F
 F T
 F F

What truth-values do we enter in the fi rst row under ‘A’? The combination of
truth-values that would be displayed by entering T there is different from the
combination that would be displayed by entering F. And the same holds for
each row. So we need to list each of the four combinations of truth-values that
‘B’ and ‘C’ may have twice in order to represent all combinations of truth-values
for the three atomic components.

ber38413_ch03_069-109.indd Page 71 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 71 16/11/12 1:23 PM user-f396 F-403F-403

72 SENTENTIAL LOGIC: SEMANTICS

A B C (~ B ⊃ C) & (A � B)

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

Extending this reasoning, we fi nd that every time we add a new atomic sentence
to the list the number of rows in the truth-table doubles. If P has n distinct
atomic components, there are 2n different combinations of truth-values for its
atomic components.1

In constructing a truth-table, we adopt a systematic method of listing
the combinations of truth-values that the atomic components of a sentence P
might have. We fi rst list the atomic components of P to the left of the vertical
line at the top of the truth-table, in alphabetical order.2

Under the fi rst sentence letter listed, we write a column of 2n entries,
the fi rst half of which are Ts and the second half of which are Fs. In the second
column the number of Ts and Fs being alternated is half the number alternated in
the fi rst column. In the column under the third sentence letter listed, the number
of Ts and Fs being alternated will again be half the number in the second column.
We repeat this process until a column has been entered under each sentence let-
ter to the left of the vertical line. The column under the last sentence letter in
this list will then consist of single Ts alternating with single Fs. For a truth-table
with n distinct sentence letters, the fi rst column consists of 2n�1 Ts alternating
with 2n�1 Fs, the second of 2n�2 Ts alternating with 2n�2 Fs, and in general the
ith column consists of 2n�i Ts alternating with 2n�i Fs.

Now we can complete the rest of the truth-table for ‘(∼ B ⊃ C) &
(A � B)’. We fi rst repeat under ‘A’, ‘B’, and ‘C’, wherever these occur, the col-
umns we have already entered under these letters to the left of the vertical line:

A B C (∼ B ⊃ C) & (A � B)

T T T T T T T
T T F T F T T
T F T F T T F
T F F F F T F
F T T T T F T
F T F T F F T
F F T F T F F
F F F F F F F

12n is 2 if n � 1, 2 � 2 if n � 2, 2 � 2 � 2 if n � 3, and so on. 20 is 1.
2This is an extended sense of ‘alphabetical order’ since some sentence letters have subscripts. In this order all the
nonsubscripted letters appear fi rst, then all letters subscripted with ‘1’, then all letters subscripted with ‘2’, and so on.

ber38413_ch03_069-109.indd Page 72 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 72 16/11/12 1:23 PM user-f396 F-403F-403

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 73

Next we may enter the column for the component ‘∼ B’ under its main connective,
the tilde. In each row in which ‘B’ has the truth-value T, ‘∼ B’ has the truth-value
F, and in each row in which ‘B’ has the truth-value F, ‘∼ B’ has the truth-value T:

A B C (∼ B ⊃ C) & (A � B)

T T T F T T T T
T T F F T F T T
T F T T F T T F
T F F T F F T F
F T T F T T F T
F T F F T F F T
F F T T F T F F
F F F T F F F F

The column for ‘∼ B ⊃ C’ is entered under the horseshoe. A material bicon-
ditional has the truth-value F when its antecedent has the truth-value T and its
consequent has the truth-value F, and it has the truth-value T in all other cases:

A B C (∼ B ⊃ C) & (A � B)

T T T F T T T T T
T T F F T T F T T
T F T T F T T T F
T F F T F F F T F
F T T F T T T F T
F T F F T T F F T
F F T T F T T F F
F F F T F F F F F

We now enter the column for ‘A � B’ in accordance with the characteristic
truth-table for ‘�’:

A B C (∼ B ⊃ C) & (A � B)

T T T F T T T T T T
T T F F T T F T T T
T F T T F T T T F F
T F F T F F F T F F
F T T F T T T F F T
F T F F T T F F F T
F F T T F T T F T F
F F F T F F F F T F

Remember that a material biconditional has the truth-value T on all truth-value
assignments on which its immediate components have the same truth-value,

ber38413_ch03_069-109.indd Page 73 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 73 16/11/12 1:23 PM user-f396 F-403F-403

74 SENTENTIAL LOGIC: SEMANTICS

and the truth-value F on all other truth-value assignments. Finally we enter
the column for ‘(∼ B ⊃ C) & (A � B)’ under its main connective, the
ampersand:

 ↓
A B C (∼ B ⊃ C) & (A � B)

T T T F T T T T T T T
T T F F T T F T T T T
T F T T F T T F T F F
T F F T F F F F T F F
F T T F T T T F F F T
F T F F T T F F F F T
F F T T F T T T F T F
F F F T F F F F F T F

We use arrows to indicate the main connective of the sentence. Each row of
the truth-table displays, underneath the arrow, the truth-value that the sentence
has on every truth-value assignment that assigns the truth-values displayed to
the left of the vertical line to its atomic components.

Here is the truth-table for the sentence ‘[A � (B � A)] ∨ ∼ C’:

 ↓
A B C [A � (B � A)] ∨ ∼ C

T T T T T T T T T F T
T T F T T T T T T T F
T F T T F F F T F F T
T F F T F F F T T T F
F T T F T T F F T F T
F T F F T T F F T T F
F F T F F F T F F F T
F F F F F F T F T T F

The column for ‘∼ C’ is constructed in accordance with the characteristic
truth-table for the tilde. ‘∼ C’ has the truth-value T on all and only those
truth-value assignments on which ‘C’ has the truth-value F. The column for
‘∼ C’ appears directly underneath the tilde. ‘(B � A)’ has the truth-value T for
the combinations of truth-values displayed in the fi rst two and last two rows of
the truth-table, because ‘B’ and ‘A’ have the same truth-value in those rows,
and the truth-value F for the other combinations.

Similarly ‘[A � (B � A)]’ has the truth-value T on exactly those truth-
value assignments on which ‘A’ and ‘(B � A)’ have the same truth-value. The
column for ‘[A � (B � A)]’ appears directly underneath its main connective,
which is the fi rst occurrence of the triple bar. ‘[A � (B � A)] ∨ ∼ C’ has the
truth-value T on every truth-value assignment on which either ‘[A � (B � A)]’ or
‘∼ C’ has the truth-value T and the truth-value F when both of its immediate

ber38413_ch03_069-109.indd Page 74 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 74 16/11/12 1:23 PM user-f396 F-403F-403

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 75

components do. The truth-value of the entire sentence for each combination
of truth-values assigned to its atomic components is written in the column
directly underneath the wedge, the sentence’s main connective.

Here is the truth-table for the sentence ‘∼ [(U ∨ (W ⊃ ∼ U)) � W]’:

 ↓
U W ∼ [(U ∨ (W ⊃ ∼ U)) � W]

T T F T T T F F T T T
T F T T T F T F T F F
F T F F T T T T F T T
F F T F T F T T F F F

The column under the fi rst occurrence of the tilde displays the truth-value
of the entire sentence ‘∼ [(U ∨ (W ⊃ ∼ U)) � W]’ for each combination of
truth-values that its atomic components might have. The truth-table tells us that
‘∼ [(U ∨ (W ⊃ ∼ U)) � W]’ has the truth-value T on those truth-value assign-
ments on which either ‘U’ is assigned the truth-value T and ‘W’ is assigned the
truth-value F or both ‘U’ and ‘W’ are assigned the truth-value F; the sentence
is false on every other truth-value assignment.

Sometimes we are not interested in determining the truth-value of a
sentence P on every truth-value assignment but are interested only in the truth-
value of P on a particular truth-value assignment. In this case we may construct
a shortened truth-table for P that records only the truth-values that its atomic
components have on that truth-value assignment. For example, suppose we
want to know the truth-value of ‘(A & B) ⊃ B’ on a truth-value assignment that
assigns F to ‘A’ and T to ‘B’ and all the other atomic sentences of SL. We head
the shortened truth-table as before. We list only the combination of truth-values
that ‘A’ and ‘B’ have on the assignment we are interested in:

 ↓
A B (A & B) ⊃ B

F T F F T T T

Our table shows that ‘(A & B)’ has the truth-value F on this truth-value assign-
ment, for ‘A’ has the truth-value F. Since the antecedent of ‘(A & B) ⊃ B’ has
the truth-value F and the consequent the truth-value T, ‘(A & B) ⊃ B’ has the
truth-value T.

We emphasize that, when we want to determine the truth-value of
a sentence on a particular truth-value assignment we display only the truth-
values that the assignment assigns to the atomic components of the sentence
for which we are constructing a truth-table.

To review: The truth-value of a sentence P on a truth-value assignment
is determined by starting with the truth-values of the atomic components of P

ber38413_ch03_069-109.indd Page 75 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 75 16/11/12 1:23 PM user-f396 F-403F-403

76 SENTENTIAL LOGIC: SEMANTICS

on the truth-value assignment and then using the characteristic truth-tables for
the connectives of SL to compute the truth-values of larger and larger sentential
components of P on the truth-value assignment. Ultimately we determine the
truth-value of the largest sentential component of P, namely, P itself.

We also defi ne the notions of being true on a truth-value assignment
and false on a truth-value assignment:

A sentence is true on a truth-value assignment if and only if it has the
truth-value T on that truth-value assignment.
A sentence is false on a truth-value assignment if and only if it has the
truth-value F on that truth-value assignment.

 3.1E EXERCISES

 1. How many rows will be in the truth-table for each of the following
sentences?

 a. A � (∼ A � A)
 *b. [∼ D & (B ∨ G)] ⊃ [∼ (H & A) ∨ ∼ D]
 c. (B & C) ⊃ [B ∨ (C & ∼ C)]

 2. Construct truth-tables for the following sentences.
 a. ∼ ∼ (E & ∼ E)
 *b. (A & B) � ∼ B
 c. A � [J � (A � J)]
 *d. [A ⊃ (B ⊃ C)] & [(A ⊃ B) ⊃ C]
 e. [∼ A ∨ (H ⊃ J)] ⊃ (A ∨ J)
 *f. (∼ ∼ A & ∼ B) ⊃ (∼ A � B)
 g. ∼ (A ∨ B) ⊃ (∼ A ∨ ∼ B)
 *h. ∼ D & [∼ H ∨ (D & E)]
 i. ∼ (E & [H ⊃ (B & E)])
 *j. ∼ (D � (∼ A & B)) ∨ (∼ D ∨ ∼ B)
 k. ∼ [D & (E ∨ F)] � [∼ D & (E & F)]
 *l. (J & [(E ∨ F) & (∼ E & ∼ F)]) ⊃ ∼ J
 m. (A ∨ (∼ A & (H ⊃ J))) ⊃ (J ⊃ H)

 3. Construct shortened truth-tables to determine the truth-value of each of the
following sentences on the truth-value assignment that assigns T to ‘B’ and ‘C’,
and F to ‘A’ and to every other atomic sentence of SL.

 a. ∼ [∼ A ∨ (∼ C ∨ ∼ B)]
 *b. ∼ [A ∨ (∼ C & ∼ B)]
 c. (A ⊃ B) ∨ (B ⊃ C)
 *d. (A ⊃ B) ⊃ (B ⊃ C)
 e. (A � B) ∨ (B � C)
 *f. ∼ A ⊃ (B � C)
 g. ∼ [B ⊃ (A ∨ C)] & ∼ ∼ B
 *h. ∼ [∼ A � ∼ (B � ∼ [A � (B & C)])]
 i. ∼ [∼ (A � ∼ B) � ∼ A] � (B ∨ C)
 *j. ∼ (B ⊃ ∼ A) & [C � (A & B)]

ber38413_ch03_069-109.indd Page 76 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 76 16/11/12 1:23 PM user-f396 F-403F-403

3.2 TRUTH-FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 77

In Chapter 1 we introduced the concepts of logical truth, logical falsity, and
logical indeterminacy. Recall that a logically true sentence of English is one
that cannot possibly be false. A sentence that is logically true (or logically false)
may be so on purely truth-functional grounds. For example, we may symbol-
ize ‘Either Cynthia will get a job or Cynthia will not get a job’ as ‘C ∨ ∼ C’,
and the truth-table for this sentence shows that it is true on every truth-value
assignment:

 ↓
C C ∨ ∼ C

T T T F T
F F T T F

A sentence that is logically true on truth-functional grounds is a truth-functionally
true sentence.

 3.2 TRUTH-FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY

A sentence P of SL is truth-functionally true if and only if P is true on every
truth-value assignment.3

Alternatively, a sentence P is truth-functionally true if and only if there is no
truth-value assignment on which P is false.

Once the truth-table for a sentence has been constructed, it is a simple
matter to determine whether that sentence is truth-functionally true: the sen-
tence is truth-functionally true if and only if the column of truth-values under
its main connective consists solely of Ts. Since the rows of the truth-table rep-
resent all combinations of truth-values that may be assigned to the sentence’s
atomic components by any truth-value assignment, the absence of Fs under the
main connective shows that there is no truth-value assignment on which the
sentence is false.

Here is the truth-table for another truth-functionally true sentence:

 ↓
X Z Z ⊃ (X ∨ Z)

T T T T T T T
T F F T T T F
F T T T F T T
F F F T F F F

3Truth-functionally true sentences are sometimes called tautologies or truth-functionally valid sentences. Truth-
functionally false sentences (introduced shortly) are sometimes called contradictions, or self-contradictory sentences.
Truth-functionally indeterminate sentences (also to be introduced) are sometimes called contingent sentences.

ber38413_ch03_069-109.indd Page 77 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 77 16/11/12 1:23 PM user-f396 F-403F-403

78 SENTENTIAL LOGIC: SEMANTICS

The column under the main connective of ‘Z ⊃ (X ∨ Z)’ contains only Ts. Note
that the immediate sentential components of a truth-functionally true sentence
need not themselves be truth-functionally true.

Truth-functional falsity is also defi ned in terms of truth-value assign-
ments.

A sentence P of SL is truth-functionally false if and only if P is false on every
truth-value assignment.

It follows that if P is truth-functionally false then there is no truth-value assign-
ment on which P is true. We can show that a sentence of SL is truth- functionally
false by constructing a truth-table for the sentence; if the column of truth- values
under the sentence’s main connective contains only Fs, then the sentence is
truth-functionally false. Here are truth-tables for two truth-functionally false
sentences:

 ↓
A A & ∼ A

T T F F T
F F F T F

 ↓
H K [(H ∨ K) ⊃ ∼ (H ∨ K)] & H

T T T T T F F T T T F T
T F T T F F F T T F F T
F T F T T F F F T T F F
F F F F F T T F F F F F

Note that the immediate sentential components of a truth-functionally false
sentence need not themselves be truth-functionally false. Whenever we negate
a truth-functionally true sentence, the result is a truth-functionally false sen-
tence, as the following example shows:

 ↓
A ∼ (A ∨ ∼ A)

T F T T F T
F F F T T F

If we add another tilde to obtain ‘∼ ∼ (A ∨ ∼ A)’, we will once again have a
truth- functionally true sentence.

Although the two sentences ‘A ⊃ (B ⊃ A)’ and ‘(A ⊃ B) ⊃ A’ look very
much alike, one is truth-functionally true and the other is not:

ber38413_ch03_069-109.indd Page 78 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 78 16/11/12 1:23 PM user-f396 F-403F-403

3.2 TRUTH-FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 79

 ↓
A B A ⊃ (B ⊃ A)

T T T T T T T
T F T T F T T
F T F T T F F
F F F T F T F

 ↓
A B (A ⊃ B) ⊃ A

T T T T T T T
T F T F F T T
F T F T T F F
F F F T F F F

‘A ⊃ (B ⊃ A)’ is true on every truth-value assignment, whereas ‘(A ⊃ B) ⊃ A’
is not. The latter sentence is truth-functionally indeterminate.

A sentence P of SL is truth-functionally indeterminate if and only if P is neither
truth-functionally true nor truth-functionally false.

A truth-functionally indeterminate sentence is true on at least one truth-value
assignment and false on at least one truth-value assignment. Every atomic sentence
of SL is truth-functionally indeterminate. For example, the truth-table for ‘H’ is

 ↓
H H

T T
F F

‘H’ is true on every truth-value assignment on which it is assigned the truth-
value T, and false on every other truth-value assignment. Truth-tables for sev-
eral truth-functionally indeterminate sentences appeared in Section 3.1. Every
sentence of SL is either truth-functionally true, truth-functionally false, or truth-
functionally indeterminate.

Sometimes we can show that a sentence is not truth-functionally true or
is not truth-functionally false by constructing a shortened truth-table. Consider
the sentence ‘(A & ∼ A) ∨ ∼ A’. If this sentence is truth-functionally true, then
there is no truth-value assignment on which it is false. So, if we can show that the
sentence is false on at least one truth-value assignment, then we can conclude that
it is not truth-functionally true. The following shortened truth-table shows this:

 ↓
A (A & ∼ A) ∨ ∼ A

T T F F T F F T

ber38413_ch03_069-109.indd Page 79 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 79 16/11/12 1:23 PM user-f396 F-403F-403

80 SENTENTIAL LOGIC: SEMANTICS

This shortened truth-table shows that the sentence ‘(A & ∼ A) ∨ ∼ A’ is false
on every truth-value assignment that assigns the truth-value T to ‘A’. Note that
the shortened table shows only that ‘(A & ∼ A) ∨ ∼ A’ is not truth-functionally
true. The table does not show whether the sentence is truth-functionally false
or truth-functionally indeterminate. However, it is easy to show that it is the
latter by constructing a shortened truth-table in which the value under the
main connective is T.

Similarly we may construct a shortened truth-table in order to show that
‘J & (∼ K ∨ ∼ J)’ is not truth-functionally false:

 ↓
J K J & (∼ K ∨ ∼ J)

T F T T T F T F T

This truth-table shows that the sentence is true on every truth-value assignment
that assigns T to ‘J’ and F to ‘K’. We thus know that the sentence is either
truth-functionally indeterminate or truth-functionally true.

There is a systematic way to develop a shortened truth-table that shows
that a sentence is true on at least one truth-value assignment or false on at least
one truth-value assignment. Let’s fi rst consider the previous example, in which
we wanted to show that ‘J & (∼ K ∨ ∼ J)’ is true on at least one truth-value
assignment. We start by placing a T under the main connective:

 ↓
J K J & (∼ K ∨ ∼ J)

 T

Because the main connective is an ampersand, we know that each conjunct
must be true as well:

 ↓
J K J & (∼ K ∨ ∼ J)

 T T T

Whenever we place a T or F under a sentence letter, we repeat it under all
occurrences of that sentence letter:

 ↓
J K J & (∼ K ∨ ∼ J)

T T T T T

Once we have placed a T under ‘J’, we know that we must fi ll in an F under
the tilde preceding ‘J’, since a negation is false if the negated sentence is true:

ber38413_ch03_069-109.indd Page 80 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 80 16/11/12 1:23 PM user-f396 F-403F-403

3.2 TRUTH-FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 81

 ↓
J K J & (∼ K ∨ ∼ J)

T T T T FT

Now we have a true disjunction with one false disjunct, so we know that
the other disjunct must be true (otherwise the disjunction could not be
true):

 ↓
J K J & (∼ K ∨ ∼ J)

T T T T T FT

And if ‘∼ K’ is true, then ‘K’ must be false:

 ↓
J K J & (∼ K ∨ ∼ J)

T F T T T F T FT

Note that we also placed an F under the occurrence of ‘K’ to the left of the
vertical bar. This completes our shortened truth-table, and we have shown that
the sentence is not truth-functionally false.

Now consider the earlier example, in which we wanted to show that
‘(A & ∼ A) ∨ ∼ A’ is false on at least one truth-value assignment (and therefore
not truth-functionally true). We begin by placing an F under the sentence’s
main connective:

 ↓
A (A & ∼ A) ∨ ∼ A

 F

If a disjunction is false, both of its disjuncts must be false:

 ↓
A (A & ∼ A) ∨ ∼ A

 F F F

We have just recorded an F for ‘∼ A’, and since ‘∼ A’ occurs elsewhere in the
sentence, we repeat the F there:

 ↓
A (A & ∼ A) ∨ ∼ A

 F F F F

ber38413_ch03_069-109.indd Page 81 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 81 16/11/12 1:23 PM user-f396 F-403F-403

82 SENTENTIAL LOGIC: SEMANTICS

Note that we have now assigned the value F to one of the conjuncts of
‘(A & ∼ A)’, thus ensuring that the conjunction is false, so it won’t matter if
we end up assigning the value T to the other conjunct. Next we note that if
‘∼ A’ is false then ‘A’ must be true:

 ↓
A (A & ∼ A) ∨ ∼ A

T T F F T F F T

And this completes the shortened truth-table.
In these two examples, every addition to the table was dictated by

some previous truth-value that had been entered: If a conjunction is true, both
conjuncts must be true; if a disjunction is false, both disjuncts must be false; a
negation is true if and only if the negated sentence is false; and a component
of a sentence must have the same truth-value for each of its occurrences. But
sometimes choices have to be made. For example, suppose we want to show
that the sentence ‘(A ⊃ B) � (B ⊃ A)’ is not truth- functionally true. We can
begin constructing a shortened truth-table by placing an F under the sentence’s
main connective:

 ↓
A B (A ⊃ B) � (B ⊃ A)

 F

At this point we have to make a choice, because there are two ways that a
biconditional can be false. Either the fi rst immediate component is true and
the second false, or the fi rst immediate component is false and the second true.
There is no simple rule of thumb to follow in this case. So we’ll try one of the
possibilities and see where it leads:

 ↓
A B (A ⊃ B) � (B ⊃ A)

 T F F

Since ‘(B ⊃ A)’ is false, we know that ‘B’ must be true and ‘A’ false. We’ll add
these values:

 ↓
A B (A ⊃ B) � (B ⊃ A)

F T T F T F F

We also need to add the values under the other occurrences of ‘A’ and ‘B’—but
in doing so we must make sure that these values are consistent with the assignment

ber38413_ch03_069-109.indd Page 82 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 82 16/11/12 1:23 PM user-f396 F-403F-403

3.2 TRUTH-FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 83

of T to the conditional ‘(A ⊃ B)’:

 ↓
A B (A ⊃ B) � (B ⊃ A)

F T F T T F T F F

Fortunately they are: A conditional with a false antecedent and a true con-
sequent is itself true. So we have successfully completed the shortened table.

It turns out that we could have assigned F to the fi rst immediate
component of the biconditional and T to the second and produced another
shortened truth-table representing a different set of truth-value assignments
on which the biconditional is false. But sometimes, when we have a choice,
one possible way of assigning truth-values won’t work while another one will.
Suppose, for example, that we want to show that the sentence ‘(A ⊃ B) ⊃
(B ⊃ ∼ A)’ is not truth-functionally false—that is, that there is at least one
truth-value assignment on which it is true. We start with

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

 T

There are three ways in which a conditional can be true: Both the anteced-
ent and consequent are true, or the antecedent is false and the consequent is
true, or the antecedent is false and the consequent is false. We might try the
fi rst case fi rst:

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

 T T T

We now have two true conditionals whose immediate components do not have
truth-values. We’ll work with the fi rst one, and again, let’s make its antecedent
true and its consequent true:

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

 T T T T T

Filling in T under ‘A’ and ‘B’ wherever they occur—because ‘A’ and ‘B’ have
each been assigned the truth-value T—we get

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T T T T T T T T T

ber38413_ch03_069-109.indd Page 83 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 83 16/11/12 1:23 PM user-f396 F-403F-403

84 SENTENTIAL LOGIC: SEMANTICS

Now we must put F under the tilde:

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T T T T T T T T F T FAILURE!

The problem is that the conditional ‘(B ⊃ ∼ A)’ cannot be true if ‘B’ is true
and ‘∼ A’ is false.

But we must not conclude that the sentence cannot be true. All we
conclude is that we haven’t come up with a way of assigning truth-values that
will make it true. We can go back to

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

 T T T

and try another way to make the conditional ‘(A ⊃ B)’ true—say, by making
‘A’ false and ‘B’ true. This yields

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

F T F T T T T T F

and we can fi ll in a T under the tilde:

 ↓
A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

F T F T T T T T T F

Note that this time the conditional ‘(B ⊃ ∼ A)’ will be true since both of
its immediate components are, so we have produced a shortened truth-table
that shows the sentence is not truth-functionally false. But even if this hadn’t
worked, there are still other possibilities, including trying to make the entire
sentence true by a different assignment of truth- values to its immediate
components.4

Of course, we may fail even when we try all the possibilities—which
means that, although we thought a sentence might be true (or false) on some
truth-value assignment, we were incorrect. Here’s a simple example: We’ll try to

4Sometimes we have to try every possibility before coming up with a correct shortened truth-table (or concluding
that there is no such table). The problem in constructing a shortened truth-table to show that a sentence can
be true or that it can be false is one of a class of problems known to theoreticians as ‘NP-complete problems’.
These are problems for which the only known solutions guaranteed to produce a correct result are solutions
that require us, in the worst case, to try every possibility.

ber38413_ch03_069-109.indd Page 84 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 84 16/11/12 1:23 PM user-f396 F-403F-403

3.2 TRUTH-FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 85

produce a shortened truth-table with an assignment of truth-values that makes
the sentence ‘A ⊃ A’ false:

 ↓
A A ⊃ A

 F

If the conditional is false, the antecedent must be true and the consequent
false:

 ↓
A A ⊃ A

 T F F FAILURE!

We failed because ‘A’ cannot have two different truth-values on the same truth-
value assignment. Here we have, in fact, tried all the possibilities for making
the conditional false (the antecedent must be true and the conclusion must
be false)—unsuccessfully. That’s as it should be, since the sentence is truth-
functionally true.

 3.2E EXERCISES

 1. Construct a full truth-table for each of the following sentences of SL, and
state whether the sentence is truth-functionally true, truth-functionally false,
or truth-functionally indeterminate.

 a. ∼ A ⊃ A
 *b. J ⊃ (K ⊃ J)
 c. (A � ∼ A) ⊃ ∼ (A � ∼ A)
 *d. (E � H) ⊃ (∼ E ⊃ ∼ H)
 e. (∼ B & ∼ D) ∨ ∼ (B ∨ D)
 *f. ([(C ⊃ D) & (D ⊃ E)] & C) & ∼ E
 g. [(A ∨ B) & (A ∨ C)] ⊃ ∼ (B & C)
 *h. ∼ [[(A ∨ B) & (B ∨ B)] & (∼ A & ∼ B)]
 i. (J ∨ ∼ K) � ∼ ∼ (K ⊃ J)
 *j. ∼ B ⊃ [(B ∨ D) ⊃ D]
 k. [(A ∨ ∼ D) & ∼ (A & D)] ⊃ ∼ D
 *l. (M � ∼ N) & (M � N)

 2. For each of the following sentences, either show that the sentence is truth-
functionally true by constructing a full truth-table or show that the sentence
is not truth-functionally true by constructing an appropriate shortened
truth-table.

 a. (F ∨ H) ∨ (∼ F � H) *d. A � (B � A)
 *b. (F ∨ H) ∨ ∼ (∼ F ⊃ H) e. [(C ∨ ∼ C) ⊃ C] ⊃ C
 c. ∼ A ⊃ [(B & A) ⊃ C] *f. [C ⊃ (C ∨ ∼ D)] ⊃ (C ∨ D)

ber38413_ch03_069-109.indd Page 85 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 85 16/11/12 1:23 PM user-f396 F-403F-403

86 SENTENTIAL LOGIC: SEMANTICS

 3. Construct truth-tables to show that the following sentences of SL are truth-
functionally true.

 a. A ⊃ (A ∨ B)
 *b. A ⊃ (B ⊃ A)
 c. A ⊃ [B ⊃ (A & B)]
 *d. (A & B) ⊃ [(A ∨ C) & (B ∨ C)]
 e. (A � B) ⊃ (A ⊃ B)
 *f. (A & ∼ A) ⊃ (B & ∼ B)
 g. (A ⊃ B) ⊃ [(C ⊃ A) ⊃ (C ⊃ B)]
 *h. A ∨ ∼ A
 i. [(A ⊃ B) & ∼ B] ⊃ ∼ A
 *j. (A & A) � A
 k. A ⊃ [B ⊃ (A ⊃ B)]
 *l. ∼ A ⊃ [(B & A) ⊃ C]
 m. (A ⊃ B) ⊃ [∼ B ⊃ ∼ (A & D)]
 *n. [(A ⊃ B) ⊃ A] ⊃ A
 o. ~ (A � B) � (~ A � B)
 *p. (~ A � B) � (A � ~ B)

 4. For each of the following sentences of SL, either show that the sentence is
truth- functionally false by constructing a full truth-table or show that the sen-
tence is not truth-functionally false by constructing an appropriate shortened
truth-table.

 a. (B � D) & (B � ∼ D)
 *b. (B ⊃ H) & (B ⊃ ∼ H)
 c. A � (B � A)
 *d. [(F & G) ⊃ (C & ∼ C)] & F
 e. [(C ∨ D) � C] ⊃ ∼ C
 *f. [∼ (A & F) ⊃ (B ∨ A)] & ∼ [∼ B ⊃ ∼ (F ∨ A)]

 5. Which of the following claims about sentences of SL are true? Explain.
 a. A conjunction with one truth-functionally true conjunct must itself be truth-

functionally true.
 *b. A disjunction with one truth-functionally true disjunct must itself be truth-

functionally true.
 c. A material conditional with a truth-functionally true consequent must itself be

truth-functionally true.
 *d. A conjunction with one truth-functionally false conjunct must itself be truth-

functionally false.
 e. A disjunction with one truth-functionally false disjunct must itself be truth-

functionally false.
 *f. A material conditional with a truth-functionally false consequent must itself be

truth-functionally false.
 g. A sentence is truth-functionally true if and only if its negation is truth-

functionally false.
 *h. A sentence is truth-functionally indeterminate if and only if its negation is

truth-functionally indeterminate.
 i. A material conditional with a truth-functionally true antecedent must itself be

truth-functionally true.
 *j. A material conditional with a truth-functionally false antecedent must itself be

truth-functionally false.

ber38413_ch03_069-109.indd Page 86 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 86 16/11/12 1:23 PM user-f396 F-403F-403

3.3 TRUTH-FUNCTIONAL EQUIVALENCE 87

 6. Where P and Q are sentences of SL, answer the following questions; explain
your answers.

 a. Suppose that P is a truth-functionally true sentence and Q is a truth- functionally
false sentence. On the basis of this information, can you determine whether
P � Q is truth-functionally true, false, or indeterminate? If so, which is it?

 *b. Suppose that P and Q are truth-functionally indeterminate sentences. Does it
follow that P & Q is truth-functionally indeterminate?

 c. Suppose that P and Q are truth-functionally indeterminate. Does it follow that
P ∨ Q is truth-functionally indeterminate?

 *d. Suppose that P is a truth-functionally true sentence and that Q is truth- functionally
indeterminate. On the basis of this information, can you determine whether
P ⊃ Q is truth-functionally true, false, or indeterminate? If so, which is it?

 3.3 TRUTH-FUNCTIONAL EQUIVALENCE

We now introduce the concept of truth-functional equivalence.

Sentences P and Q of SL are truth-functionally equivalent if and only if there
is no truth-value assignment on which P and Q have different truth-values.

To show that P and Q are truth-functionally equivalent, we construct a single
truth-table for both P and Q and show that in each row the two sentences have
the same truth-value. The columns under the main connectives must be identical.

The sentences ‘A & A’ and ‘A ∨ A’ are truth-functionally equivalent,
as shown by the following truth-table:

 ↓ ↓
A A & A A ∨ A

T T T T T T T
F F F F F F F

On any truth-value assignment that assigns T to ‘A’, both sentences are true. On
any truth-value assignment that assigns F to ‘A’, both sentences are false. The sen-
tences ‘(W & Y) ⊃ H’ and ‘W ⊃ (Y ⊃ H)’ are also truth-functionally equivalent:

 ↓ ↓
H W Y (W & Y) ⊃ H W ⊃ (Y ⊃ H)

T T T T T T T T T T T T T
T T F T F F T T T T F T T
T F T F F T T T F T T T T
T F F F F F T T F T F T T
F T T T T T F F T F T F F
F T F T F F T F T T F T F
F F T F F T T F F T T F F
F F F F F F T F F T F T F

ber38413_ch03_069-109.indd Page 87 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 87 16/11/12 1:23 PM user-f396 F-403F-403

88 SENTENTIAL LOGIC: SEMANTICS

The columns under the main connectives of ‘(W & Y) ⊃ H’ and ‘W ⊃
(Y ⊃ H)’ are identical, which shows that the two sentences have the same truth-
value on every truth-value assignment.

Now consider the following truth-table:

 ↓ ↓
E H J E ∨ H (H ∨ J) ∨ E

T T T T T T T T T T T
T T F T T T T T F T T
T F T T T F F T T T T
T F F T T F F F F T T
F T T F T T T T T T F
F T F F T T T T F T F
F F T F F F F T T T F
F F F F F F F F F F F

The table shows that the sentences ‘E ∨ H’ and ‘(H ∨ J) ∨ E’ are not truth-
functionally equivalent, for they have different truth-values on any truth-value
assignment that assigns F to ‘E’ and ‘H’ and T to ‘J’. When a truth-table
shows that two sentences are not truth-functionally equivalent, we will draw a
box around a row of the truth-table in which the sentences do not have the
same truth-value.

All truth-functionally true sentences are truth-functionally equivalent.
This is because every truth-functionally true sentence has the truth-value T on
every truth-value assignment. For example, ‘∼ (C & ∼ C)’ and ‘A ⊃ (B ⊃ A)’
are truth-functionally equivalent:

 ↓ ↓
A B C ∼ (C & ∼ C) A ⊃ (B ⊃ A)

T T T T T F F T T T T T T
T T F T F F T F T T T T T
T F T T T F F T T T F T T
T F F T F F T F T T F T T
F T T T T F F T F T T F F
F T F T F F T F F T T F F
F F T T T F F T F T F T F
F F F T F F T F F T F T F

The columns under the main connectives are identical. Likewise, all truth-
functionally false sentences are truth-functionally equivalent.

But not all truth-functionally indeterminate sentences are truth-
functionally equivalent—for example,

ber38413_ch03_069-109.indd Page 88 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 88 16/11/12 1:23 PM user-f396 F-403F-403

3.3 TRUTH-FUNCTIONAL EQUIVALENCE 89

 ↓ ↓
B D B & D ∼ B & D

T T T T T F T F T
T F T F F F T F F
F T F F T T F T T
F F F F F T F F F

On any truth-value assignment on which ‘B’ and ‘D’ are both true, or ‘B’ is
false and ‘D’ is true, the sentences ‘B & D’ and ‘∼ B & D’ have different truth-
values. Hence they are not truth-functionally equivalent.

If P and Q are not truth-functionally equivalent, we can construct a
shortened truth-table to show this. The shortened truth-table will display a com-
bination of truth-values for which one sentence is true and the other false. For
example, the following shortened truth-table shows that ‘A’ and ‘A ∨ B’ are not
truth-functionally equivalent:

 ↓ ↓
A B A A ∨ B

F T F F T T

The shortened truth-table shows that, on any truth-value assignment that assigns
F to ‘A’ and T to ‘B’, ‘A’ is false and ‘A ∨ B’ is true. Note that, if we construct a
shortened truth-table that includes a row in which both sentences have the same
truth-value, this is not suffi cient to show that they are truth-functionally equivalent.
This is because they are truth-functionally equivalent if and only if they have the
same truth-value on every truth-value assignment. To show this, we must consider
every combination of truth-values that their atomic components might have.

We can construct shortened truth-tables for two (or more) sentences in
a systematic way, just as we did for single sentences in Section 3.2. For example,
we could begin constructing the previous table by assigning the sentence ‘A’
the truth-value F and ‘A ∨ B’ the truth-value T:

 ↓ ↓
A B A A ∨ B

 F T

(We might fi rst have tried to make ‘A’ true and ‘A ∨ B’ false, but this would
not lead to a correct truth-table since we would have a false disjunction with a
true disjunct.) Filling in F under all the other occurrences of ‘A’ yields

 ↓ ↓
A B A A ∨ B

F F F T

ber38413_ch03_069-109.indd Page 89 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 89 16/11/12 1:23 PM user-f396 F-403F-403

90 SENTENTIAL LOGIC: SEMANTICS

Now we can make ‘B’ true, which will secure the truth of the disjunction:

 ↓ ↓
A B A A ∨ B

F T F F T T

In Chapter 2 we noted that compound sentences whose main connective is
‘unless’ can be paraphrased either as disjunctions or as material conditionals.
That is, English sentences of the form

p unless q

can be paraphrased and symbolized in all of the following ways:

Either p or q P ∨ Q

If it is not the case that p then q ~ P ⊃ Q
If it is not the case that q then p ~ Q ⊃ P

These paraphrases and symbolizations are all correct because, as we can now
show, for any sentences P and Q of SL, the sentences P ∨ Q, ~ P ⊃ Q, and
~ Q ⊃ P are truth-functionally equivalent:

 ↓ ↓ ↓
P Q P ∨ Q ~ P ⊃ Q ~ Q ⊃ P

T T T T T F T T T F T T T
T F T T F F T T F T F T T
F T F T T T F T T F T T F
F F F F F T F F F T F F F

Note that the above table is not a truth-table for specifi c sentences of SL,
because ‘P’ and ‘Q’ are not sentences of SL but metavariables ranging over
sentences of SL.

Similarly, for any sentences P and Q of SL, ~ (P & Q) and ~ P ∨ ~ Q
are also truth-functionally equivalent:

 ↓ ↓
P Q ~ (P & Q) ~ P ∨ ~ Q

T T F T T T F T F F T
T F T T F F F T T T F
F T T F F T T F T F T
F F T F F F T F T T F

ber38413_ch03_069-109.indd Page 90 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 90 16/11/12 1:23 PM user-f396 F-403F-403

3.3 TRUTH-FUNCTIONAL EQUIVALENCE 91

as are ~ (P ∨ Q) and ~ P & ~ Q:

 ↓ ↓
P Q ~ (P ∨ Q) ~ P & ~ Q

T T F T T T F T F F T
T F F T T F F T F T F
F T F F T T T F F F T
F F T F F F T F T T F

 3.3E EXERCISES

 1. Determine, by constructing full truth-tables, which of the following pairs of
sentences of SL are truth-functionally equivalent.

 a. ~ (A & B) ~ (A ∨ B)
 *b. A ⊃ (B ⊃ A) (C & ~ C) ∨ (A ⊃ A)
 c. K � H ~ K � ~ H
 *d. C & (B ∨ A) (C & B) ∨ A
 e. (G ⊃ F) ⊃ (F ⊃ G) (G � F) ∨ (~ F ∨ G)
 *f. ~ C ⊃ ~ B B ⊃ C
 g. ~ (H & J) � (J � ~ K) (H & J) ⊃ ~ K
 *h. ~ (D ∨ B) ⊃ (C ⊃ B) C ⊃ (D & B)
 i. [A ∨ ~ (D & C)] ⊃ ~ D [D ∨ ~ (A & C)] ⊃ ~ A
 *j. A ⊃ [B ⊃ (A ⊃ B)] B ⊃ [A ⊃ (B ⊃ A)]
 k. F ∨ ~ (G ∨ ~ H) (H � ~ F) ∨ G

 2. For each of the following pairs of sentences of SL, either show that the sen-
tences are truth-functionally equivalent by constructing a full truth-table or
show that they are not truth-functionally equivalent by constructing an appro-
priate shortened truth-table.

 a. G ∨ H ∼ G ⊃ H
 *b. ∼ (B & ∼ A) A ∨ B
 c. (D � A) & D D & A
 *d. F & (J ∨ H) (F & J) ∨ H
 e. A � (∼ A � A) ∼ (A ⊃ ∼ A)
 *f. ∼ (∼ B ∨ (∼ C ∨ ∼ D)) (D ∨ C) & ∼ B

 3. Symbolize each of the following pairs of sentences and determine which of the
pairs of sentences are truth-functionally equivalent by constructing truth-tables.

 a. Unless the sky clouds over, the night will be clear and the moon will shine
brightly.

 The moon will shine brightly if and only if the night is clear and the sky
doesn’t cloud over.

 *b. Although the new play at the Roxy is a fl op, critics won’t ignore it unless it is
canceled.

 The new play at the Roxy is a fl op, and if it is canceled critics will ignore it.
 c. If the Daily Herald reports on our antics, then the antics are effective.
 If our antics aren’t effective, then the Daily Herald won’t report on them.

ber38413_ch03_069-109.indd Page 91 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 91 16/11/12 1:23 PM user-f396 F-403F-403

92 SENTENTIAL LOGIC: SEMANTICS

 *d. The year 1972 wasn’t a good vintage year, 1973 was, and neither 1974 nor 1975
was.

 Neither 1974 nor 1972 was a good vintage year, and not both 1973 and 1975
were.

 e. If Mary met Tom and she liked him, then Mary didn’t ask George to the
movies.

 If Mary met Tom and she didn’t like him, then Mary asked George to the
movies.

 *f. Either the blue team or the red team will win the tournament, and they won’t
both win.

 The red team will win the tournament if and only if the blue team won’t win
the tournament.

 4. Suppose that sentences P and Q are truth-functionally equivalent.
 a. Are ~ P and ~ Q truth-functionally equivalent? Explain.
 *b. Show that P and P & Q are also truth-functionally equivalent.
 c. Show that ~ P ∨ Q is truth-functionally true.

 5. Suppose we construct two truth-tables, one for ‘A ∨ B’ and another for
‘B ∨ C’, and that the columns of truth-values under the sentences’ main con-
nectives are identical. Does it follow that ‘A ∨ B’ and ‘B ∨ C’ are truth-func-
tionally equivalent? Explain.

 6. Show that for any sentences P and Q of SL, the following pairs of sentences
are truth-functionally equivalent.

 a. P � Q (P ⊃ Q) & (Q ⊃ P)
 *b. P ⊃ Q ~ Q ⊃ ~ P
 c. P & (Q ∨ R) (P & Q) ∨ (P & R)
 *d. P ∨ (Q & R) (P ∨ Q) & (P ∨ R)
 e. ~ (P � Q) ~ P � Q
 *f. P & (Q & R) (P & Q) & R

 3.4 TRUTH-FUNCTIONAL CONSISTENCY

To defi ne truth-functional consistency, we need the notion of a set of sen-
tences, informally introduced in Chapter 1. A set of sentences of SL is a
collection, possibly empty, of zero or more sentences of SL, the members of
the set. We can specify a fi nite set of sentences by listing the names of the
sentences, separated by commas, within a pair of curly brackets. Thus {A,
B ⊃ H, C ∨ A} is the set of sentences consisting of ‘A’, ‘B ⊃ H’, and ‘C ∨ A’.
We adopt the convention that SL sentences occurring between the curly
brackets are being mentioned, so that we do not need to enclose them within
quotation marks.

All sets of sentences of SL that have at least one member are nonempty
sets of sentences. The empty set, denoted by ‘�’, has no members. In what
follows we shall use the variable ‘Γ’ (gamma), with or without a subscript, to
range over sets of sentences of SL.

We can now introduce truth-functional consistency:

ber38413_ch03_069-109.indd Page 92 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 92 16/11/12 1:23 PM user-f396 F-403F-403

3.4 TRUTH-FUNCTIONAL CONSISTENCY 93

The set {A, B ⊃ H, B} is truth-functionally consistent, as is shown by the fol-
lowing truth-table:

 ↓ ↓ ↓
A B H A B ⊃ H B

T T T T T T T T
T T F T T F F T
T F T T F T T F
T F F T F T F F
F T T F T T T T
F T F F T F F T
F F T F F T T F
F F F F F T F F

The truth-table shows that, on any truth-value assignment on which ‘A’, ‘B’, and
‘H’ are all true, all three set members are true. So the set is truth- functionally
consistent. We have drawn a box around the row of the truth-table that shows
this (in this case, there is only one such row).

The set of sentences {L, L ⊃ J, ∼ J} is truth-functionally inconsistent:

 ↓ ↓ ↓
J L L L ⊃ J ∼ J

T T T T T T F T
T F F F T T F T
F T T T F F T F
F F F F T F T F

In each row at least one of the three sentences has the truth-value F under its
main connective. Hence there is no truth-value assignment on which all three
set members are true. The following set of sentences is also truth-functionally
inconsistent: {C ∨ ∼ C, ∼ C & D, ∼ D}.

 ↓ ↓ ↓
C D C ∨ ∼ C ∼ C & D ∼ D

T T T T F T F T F T F T
T F T T F T F T F F T F
F T F T T F T F T T F T
F F F T T F T F F F T F

A set of sentences of SL is truth-functionally consistent if and only if there is
at least one truth-value assignment on which all the members of the set are
true. A set of sentences of SL is truth-functionally inconsistent if and only if it
is not truth-functionally consistent.

ber38413_ch03_069-109.indd Page 93 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 93 16/11/12 1:23 PM user-f396 F-403F-403

94 SENTENTIAL LOGIC: SEMANTICS

In this case it does not matter that one of the sentences, ‘C ∨ ∼ C’, is true on
every truth-value assignment. All that matters for establishing truth-functional
inconsistency is that there is no truth-value assignment on which all three mem-
bers are true.

We can show that a fi nite set of sentences of SL is truth-functionally
consistent by constructing a shortened truth-table that displays one row in
which all the set members are true. For instance, the following shortened truth-
table shows that the set {(E � H) � E, H & ∼ E} is truth-functionally consistent:

 ↓ ↓
E H (E � H) � E H & ∼ E

F T F F T T F T T T F

Note that if we construct a shortened table that displays a row in which not
all the members of the set are true, this is not suffi cient to show that the set
is truth-functionally inconsistent. This is because a set of sentences is truth-
functionally inconsistent if and only if there is no truth-value assignment on
which every member of the set is true. To show this, we have to consider every
combination of truth-values that the atomic components of the set members
might have.

 3.4E EXERCISES

 1. Construct full truth-tables for each of the following sets of sentences and
indicate whether they are truth-functionally consistent or truth-functionally
inconsistent.

 a. {A ⊃ B, B ⊃ C, A ⊃ C}
 *b. {B � (J & K), ∼ J, ∼ B ⊃ B}
 c. {∼ [J ∨ (H ⊃ L)], L � (∼ J ∨ ∼ H), H � (J ∨ L)}
 *d. {(A & B) & C, C ∨ (B ∨ A), A � (B ⊃ C)}
 e. {(J ⊃ J) ⊃ H, ∼ J, ∼ H}
 *f. {U ∨ (W & H), W � (U ∨ H), H ∨ ∼ H}
 g. {A, B, C}
 *h. {∼ (A & B), ∼ (B & C), ∼ (A & C), A ∨ (B & C)}
 i. {(A & B) ∨ (C ⊃ B), ∼ A, ∼ B}
 *j. {A ⊃ (B ⊃ (C ⊃ A)), B ⊃ ∼ A}

 2. For each of the following sets of sentences, either show that the set is truth-
functionally consistent by constructing an appropriate shortened truth-table or
show that the set is truth-functionally inconsistent by constructing a full truth-
table.

 a. {B ⊃ (D ⊃ E), ∼ D & B}
 *b. {H � (∼ H ⊃ H)}
 c. {F ⊃ (J ∨ K), F � ∼ J}
 *d. {∼ (∼ C ∨ ∼ B) & A, A � ∼ C}
 e. {(A ⊃ B) � (∼ B ∨ B), A}
 *f. {H ⊃ J, J ⊃ K, K ⊃ ∼ H}

ber38413_ch03_069-109.indd Page 94 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 94 16/11/12 1:23 PM user-f396 F-403F-403

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 95

 3. Symbolize each of the following passages in SL and determine whether the
resulting set of sentences is truth-functionally consistent. If the set is truth-
functionally consistent, construct a shortened truth-table that shows this. If it
is truth-functionally inconsistent, construct a full truth-table.

 a. If space is infi nitely divisible, then Zeno’s paradoxes are compelling. Zeno’s
paradoxes are neither convincing nor compelling. Space is infi nitely divisible.

 *b. Newtonian mechanics can’t be right if Einsteinian mechanics is. But Einstei-
nian mechanics is right if and only if space is non-Euclidean. Space is non-
Euclidean, or Newtonian mechanics is correct.

 c. Eugene O’Neil was an alcoholic. His plays show it. But The Iceman Cometh must
have been written by a teetotaler. O’Neill was an alcoholic unless he was a fake.

 *d. Neither sugar nor saccharin is desirable if and only if both are lethal. Sugar is
lethal if and only if saccharin is desirable. Sugar is undesirable if and only if
saccharin isn’t lethal.

 e. If the Red Sox win next Sunday, then if Joan bet $5 against them she’ll buy Ed
a hamburger. The Red Sox won’t win, and Joan won’t buy Ed a hamburger.

 *f. Either Johnson or Hartshorne pleaded guilty, or neither did. If Johnson
pleaded guilty, then the newspaper story is incorrect. The newspaper story is
correct, and Hartshorne pleaded guilty.

 4. Where P and Q are sentences of SL,
 a. Prove that {P} is truth-functionally inconsistent if and only if ~ P is truth-

functionally true.
 *b. If {P} is truth-functionally consistent, must {∼ P} be truth-functionally consistent

as well? Show that you are right.
 c. If P and Q are truth-functionally indeterminate, does it follow that {P, Q} is

truth-functionally consistent? Explain your answer.
 *d. Prove that if P � Q is truth-functionally true then {P, ∼ Q} is truth-functionally

inconsistent.

 3.5 TRUTH-FUNCTIONAL ENTAILMENT AND
TRUTH-FUNCTIONAL VALIDITY

Truth-functional entailment is a relation that may hold between a sentence of
SL and a set of sentences of SL.

A set Γ of sentences of SL truth-functionally entails a sentence P of SL if and
only if there is no truth-value assignment on which every member of Γ is
true and P is false.

In other words, Γ truth-functionally entails P just in case P is true on every
truth-value assignment on which every member of Γ is true. We have a special
symbol for truth-functional entailment: the double turnstile ‘|=’. The expression

Γ |= P

is read

Γ truth-functionally entails P.

ber38413_ch03_069-109.indd Page 95 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 95 16/11/12 1:23 PM user-f396 F-403F-403

96 SENTENTIAL LOGIC: SEMANTICS

To indicate that Γ does not truth-functionally entail P, we write

Γ |=/ P

Thus

{A, B & C} |= B

and

{A, B ∨ C} |=/ B

mean, respectively,

{A, B & C} truth-functionally entails ‘B’

and

{A, B ∨ C} does not truth-functionally entail ‘B’.

Here we have adopted the convention that, when using the turnstile notation,
we drop the single quotation marks around the sentence following the turn-
stile. We also have a special abbreviation to indicate that a sentence is truth-
functionally entailed by the empty set of sentences:

|= P

The expression ‘|= P’ is an abbreviation for ‘� |= P’. All and only truth-
functionally true sentences are truth-functionally entailed by the empty set of
sentences; the proof of this is left as an exercise in Section 3.6.

If Γ is a fi nite set, we can determine whether Γ truth-functionally
entails a sentence P by constructing a truth-table for the members of Γ and
for P. If there is a row in the truth-table in which all the members of Γ
have the truth-value T and P has the truth-value F, then Γ does not truth-
functionally entail P. If there is no such row, then Γ does truth-functionally
entail P. We can establish that {A, B & C} |= B by constructing the following
truth-table:

 ↓ ↓ ↓
A B C A B & C B

T T T T T T T T
T T F T T F F T
T F T T F F T F
T F F T F F F F
F T T F T T T T
F T F F T F F T
F F T F F F T F
F F F F F F F F

ber38413_ch03_069-109.indd Page 96 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 96 16/11/12 1:23 PM user-f396 F-403F-403

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 97

There is only one row in which both members of {A, B & C} are true, namely,
the row in which ‘A’, ‘B’, and ‘C’ all have the truth-value T. But since ‘B’ is
true in this row, it follows that there is no truth-value assignment on which ‘A’
and ‘B & C’ are true and ‘B’ is false. Hence {A, B & C} |= B.

The following truth-table shows that {W ∨ J, (W ⊃ Z) ∨ (J ⊃ Z), ∼ Z}
|= ∼ (W & J):

 ↓ ↓ ↓ ↓
J W Z W ∨ J (W ⊃ Z) ∨ (J ⊃ Z) ∼ Z ∼ (W & J)

T T T T T T T T T T T T T F T F T T T
T T F T T T T F F F T F F T F F T T T
T F T F T T F T T T T T T F T T F F T
T F F F T T F T F T T F F T F T F F T
F T T T T F T T T T F T T F T T T F F
F T F T T F T F F T F T F T F T T F F
F F T F F F F T T T F T T F T T F F F
F F F F F F F T F T F T F T F T F F F

The fourth and sixth rows are the only ones in which all the set members are
true, and ‘∼ (W & J)’ is true in these rows as well. The following truth-table
shows that {K ∨ J, ∼ (K ∨ J)} |= K:

 ↓ ↓ ↓
J K K ∨ J ∼ (K ∨ J) K

T T T T T F T T T T
T F F T T F F T T F
F T T T F F T T F T
F F F F F T F F F F

There is no row in which ‘K ∨ J’ and ‘∼ (K ∨ J)’ are both true and hence no
truth-value assignment on which the set members are both true. Con sequently
there is no truth-value assignment on which the members of the set are both
true and ‘K’ is false; so the set truth-functionally entails ‘K’.

On the other hand, {A, B ∨ C} does not truth-functionally entail ‘B’.
The following shortened truth-table shows this:

 ↓ ↓ ↓
A B C A B ∨ C B

T F T T F T T F

This shortened truth-table shows that ‘A’ and ‘B ∨ C’ are both true and ‘B’
is false on any truth-value assignment that assigns T to ‘A’ and ‘C’ and F
to ‘B’.

ber38413_ch03_069-109.indd Page 97 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 97 16/11/12 1:23 PM user-f396 F-403F-403

98 SENTENTIAL LOGIC: SEMANTICS

Put another way, an argument of SL is truth-functionally valid just in case the
conclusion is true on every truth-value assignment on which all of the premises
are true. This means that an argument is truth-functionally valid if and only
if the set consisting of the premises of the argument truth-functionally entails
the conclusion.

We can use full truth-tables to determine whether arguments with a
fi nite number of premises are truth-functionally valid, and we can use short-
ened truth-tables to show truth-functionally invalid arguments with a fi nite
number of premises are truth-functionally invalid. The argument

F � G

F ∨ G

F & G

is truth-functionally valid, as the following truth-table shows:

 ↓ ↓ ↓
F G F � G F ∨ G F & G

T T T T T T T T T T T
T F T F F T T F T F F
F T F F T F T T F F T
F F F T F F F F F F F

The fi rst row displays the only combination of truth-values for the atomic com-
ponents of these sentences for which the premises, ‘F � G’ and ‘F ∨ G’, are
both true, and the conclusion, ‘F & G’, is true in this row as well. Similarly,
the argument

(A & G) ∨ (B ⊃ G)

∼ G ∨ B

∼ B ∨ G

An argument of SL is truth-functionally valid if and only if there is no truth-
value assignment on which all the premises are true and the conclusion is
false. An argument of SL is truth-functionally invalid if and only if it is not
truth-functionally valid.

An argument of SL is a set of two or more sentences of SL, one of which
is designated as the conclusion and the others as the premises.

ber38413_ch03_069-109.indd Page 98 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 98 16/11/12 1:23 PM user-f396 F-403F-403

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 99

is truth-functionally valid, as the following truth-table establishes.

 ↓ ↓ ↓
A B G (A & G) ∨ (B ⊃ G) ∼ G ∨ B ∼ B ∨ G

T T T T T T T T T T F T T T F T T T
T T F T F F F T F F T F T T F T F F
T F T T T T T F T T F T F F T F T T
T F F T F F T F T F T F T F T F T F
F T T F F T T T T T F T T T F T T T
F T F F F F F T F F T F T T F T F F
F F T F F T T F T T F T F F T F T T
F F F F F F T F T F T F T F T F T F

The conclusion, ‘∼ B ∨ G’, is true on every truth-value assignment on which
the premises are true.

The following argument is truth-functionally invalid:

D � (∼ W ∨ G)

G � ∼ D

∼ D

This is shown by the following truth-table:

 ↓ ↓ ↓
D G W D � (∼ W ∨ G) G � ∼ D ∼ D

T T T T T F T T T T F F T F T
T T F T T T F T T T F F T F T
T F T T F F T F F F T F T F T
T F F T T T F T F F T F T F T
F T T F F F T T T T T T F T F
F T F F F T F T T T T T F T F
F F T F T F T F F F F T F T F
F F F F F T F T F F F T F T F

The premises, ‘D � (∼ W ∨ G)’ and ‘G � ∼ D’, are both true on every truth-
value assignment that assigns T to ‘D’ and F to ‘G’ and ‘W’, and the conclusion,
‘∼ D’, is false on these truth-value assignments.

If an argument is truth-functionally invalid, we can show this by con-
structing a shortened truth-table that displays a row in which the premises are
true and the conclusion false. The argument

∼ (B ∨ D)

∼ H

B

ber38413_ch03_069-109.indd Page 99 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 99 16/11/12 1:23 PM user-f396 F-403F-403

100 SENTENTIAL LOGIC: SEMANTICS

is truth-functionally invalid, as the following shortened truth-table shows:

 ↓ ↓ ↓
B D H ∼ (B ∨ D) ∼ H B

F F F T F F F T F F

There is an obvious relationship between validity and entailment: an argument
of SL that has a fi nite number of premises is truth-functionally valid if and
only if the set consisting of the premises of the argument truth-functionally
entails the conclusion of the argument. There is also a relation between an
argument of SL and a sentence called its corresponding material conditional,
namely, the argument is truth-functionally valid if and only if its correspond-
ing material conditional is truth-functionally true. To form an argument’s
corresponding material conditional, we fi rst need the concept of an iterated
conjunction. The iterated conjunction of a sentence P is just P, while the inter-
ated conjunction of sentences P1, P2, . . . , Pn is (. . . (P1 & P2) & . . . &
Pn). (We form a conjunction of the fi rst sentence and the second sentence,
then a conjunction of that conjunction and the third sentence, if any, and so
on.) The corresponding material conditional for an argument of SL with a fi nite
number of premises is the material conditional whose antecedent is the iter-
ated conjunction of the argument’s premises and whose consequent is the
conclusion of the argument.5 So the corresponding material conditional for
the argument

 P1

 ·

 ·

 ·

 Pn

 Q

is

(. . . (P1 & P2)& . . . & Pn) ⊃ Q

We will shortly prove that the argument is truth-functionally valid if and only
if the corresponding material conditional is truth-functionally true, but fi rst we
will consider two examples.

 5Strictly speaking, an argument with more than one premise will have more than one corresponding material
conditional. This is because the premises of an argument can be conjoined in more than one order. But all the
corresponding material conditionals for any one argument are truth-functionally equivalent, and so we speak
loosely of the corresponding material conditional for a given argument.

ber38413_ch03_069-109.indd Page 100 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 100 16/11/12 1:23 PM user-f396 F-403F-403

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 101

We can show that the argument

A

A ⊃ B

B

is truth-functionally valid by showing that the corresponding material condi-
tional ‘[A & (A ⊃ B)] ⊃ B’ is truth-functionally true:

 ↓
A B [A & (A ⊃ B)] ⊃ B

T T T T T T T T T
T F T F T F F T F
F T F F F T T T T
F F F F F T F T F

There is no truth-value assignment on which ‘A & (A ⊃ B)’ is true and ‘B’ is
false, which means that there is no truth-value assignment on which ‘A’ and
‘A ⊃ B’ are both true and ‘B’ is false. And we can show that the argument

∼ A � ∼ B

B ∨ A

∼ A

is truth-functionally invalid by showing that the corresponding material conditional
is not truth-functionally true. The following shortened truth-table shows this:

 ↓
A B ((~ A � ~ B) & (B ∨ A)) ⊃ ~ A

T T F T T F T T T T T F F T

The single row of this table represents truth-value assignments on which the
antecedent is true and the consequent false. On these truth-value assignments
the premises of the argument, ‘∼ A � ∼ B’ and ‘B ∨ A’, are both true and the
conclusion, ‘∼ A’, is false. Hence the argument is truth-functionally invalid.

We now prove that an argument of SL with a fi nite number of premises
is truth-functionally valid if and only if its corresponding material conditional
is truth-functionally true.

Suppose that

P1

·
·
·
Pn

Q

ber38413_ch03_069-109.indd Page 101 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 101 16/11/12 1:23 PM user-f396 F-403F-403

102 SENTENTIAL LOGIC: SEMANTICS

is a truth-functionally valid argument of SL. Then there is no truth-value assign-
ment on which P1, . . . , Pn are all true and Q is false. Because the iterated
conjunction (. . . (P1 & P2) & . . . Pn) has the truth-value T on a truth-value
assignment if and only if all of P1, . . . , Pn have the truth-value T on that
assignment, it follows that there is no truth-value assignment on which the
antecedent of the corresponding material conditional, (. . . (P1 & P2) & . . . &
Pn) ⊃ Q, is true while the consequent is false. Thus, the material conditional
is true on every truth-value assignment and is therefore truth-functionally true.

Now assume that (. . . (P1 & P2) & . . . & Pn) ⊃ Q is truth-functionally
true. Then there is no truth-value assignment on which the antecedent is true
and the consequent false. But the iterated conjunction is true on a truth-value
assignment if and only if the sentences P1, . . . , Pn are all true. So there is no
truth-value assignment on which P1, . . . , Pn are all true and Q is false; hence
the argument is truth-functionally valid.

 3.5E EXERCISES

 1. Construct truth-tables and state whether the following arguments are truth-
functionally valid.

 a. A ⊃ (H & J)

 J � H

 ∼ J

 ∼ A

 *b. B ∨ (A & ∼ C)

 (C ⊃ A) � B

 ∼ B ∨ A

 ∼ (A ∨ C)

 c. (D � ∼ G) & G

 (G ∨ [(A ⊃ D) & A]) ⊃ ∼ D

 G ⊃ ∼ D

 *d. ∼ (Y � A)

 ∼ Y

 ∼ A

 W & ∼ W

 e. (C ⊃ D) ⊃ (D ⊃ E)

 D

 C ⊃ E

ber38413_ch03_069-109.indd Page 102 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 102 16/11/12 1:23 PM user-f396 F-403F-403

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 103

 *f. B ∨ B

 [∼ B ⊃ (∼ D ∨ ∼ C)] & [(∼ D ∨ C) ∨ (∼ B ∨ C)]

 C

 g. (G � H) ∨ (∼ G � H)

 (∼ G � ∼ H) ∨ ∼ (G � H)

 *h. [(J & T) & Y] ∨ (∼ J ⊃ ∼ Y)

 J ⊃ T

 T ⊃ Y

 Y � T

 i. ∼ ∼ F ⊃ ∼ ∼ G

 ∼ G ⊃ ∼ F

 G ⊃ F

 *j. [A & (B ∨ C)] � (A ∨ B)

 B ⊃ ∼ B

 C ∨ A

 2. For each of the following arguments, either show that the argument is truth-
functionally invalid by constructing an appropriate shortened truth-table or show
that the argument is truth-functionally valid by constructing a full truth-table.

 a. (J ∨ M) ⊃ ∼ (J & M)

 M � (M ⊃ J)

 M ⊃ J

 *b. B & F

 ∼ (B & G)

 G

 c. A ⊃ ∼ A

 (B ⊃ A) ⊃ B

 A � ∼ B

 *d. J ∨ [M ⊃ (T � J)]

 (M ⊃ J) & (T ⊃ M)

 T & ∼ M

 e. A & ∼ [(B & C) � (C ⊃ A)]

 B ⊃ ∼ B

 ∼ C ⊃ C

ber38413_ch03_069-109.indd Page 103 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 103 16/11/12 1:23 PM user-f396 F-403F-403

104 SENTENTIAL LOGIC: SEMANTICS

 3. Construct the corresponding material conditional for each of the following
arguments. For each of the arguments, either show that the argument is truth-
functionally invalid by constructing an appropriate shortened truth-table for
the corresponding material conditional or show that the argument is truth-
functionally valid by constructing a full truth-table for the corresponding mate-
rial conditional.

 a. B & C

 B ∨ C

 *b. K � L

 L ⊃ J

 ∼ J

 ∼ K ∨ L

 c. (J ⊃ T) ⊃ J

 (T ⊃ J) ⊃ T

 ∼ J ∨ ∼ T

 *d. (A ∨ C) & ∼ H

 ∼ C

 e. B & C

 B ∨ D

 D

 *f. ∼ [A ∨ ∼ (B ∨ ∼ C)]

 B ⊃ (A ⊃ C)

 ∼ A � ∼ B

 4. Symbolize each of the following arguments and use truth-tables to test for
truth-functional validity. Use full truth-tables to establish truth-functional valid-
ity and shortened truth-tables to establish truth-functional invalidity.

 a. ‘Stern’ means the same as ‘star’ if ‘Nacht’ means the same as ‘day’. But ‘Nacht’
doesn’t mean the same as ‘day’; therefore ‘Stern’ means something different
from ‘star’.

 *b. Many people believe that war is inevitable. But war is inevitable if and only if
our planet’s natural resources are nonrenewable. So many people believe that
our natural resources are nonrenewable.

 c. If Sophie is in her right mind she doesn’t believe in trolls, and she is in
her right mind. If Jason is in his right mind he doesn’t believe in trolls, but he
isn’t in his right mind. So Sophie doesn’t believe in trolls but Jason does.

 d. Sophie doesn’t believe in trolls, but she does believe in Bigfoot. Jason believes
in both trolls and Bigfoot. If Sophie or Jason both believe in trolls, then neither
is a critical thinker. Therefore, Sophie is a critical thinker but Jason isn’t.

ber38413_ch03_069-109.indd Page 104 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 104 16/11/12 1:23 PM user-f396 F-403F-403

3.6 TRUTH-FUNCTIONAL PROPERTIES AND TRUTH-FUNCTIONAL CONSISTENCY 105

 e. Computers can think if and only if they can have emotions. If computers can
have emotions, then they can have desires as well. But computers can’t think
if they have desires. Therefore computers can’t think.

 *f. If the butler murdered Devon, then the maid is lying, and if the gardener
murdered Devon, then the weapon was a slingshot. The maid is lying if and
only if the weapon wasn’t a slingshot, and if the weapon wasn’t a slingshot,
then the butler murdered Devon. Therefore the butler murdered Devon.

 5. Where P, Q, and R are sentences of SL, prove each of the following.
 *a. Show that {P} |= Q and {Q} |= P if and only if P and Q are truth-functionally

equivalent.
 b. Suppose that {P} |= Q ∨ R. Does it follow that either {P} |= Q or {P} |= R? Show

that you are right.
 *c. Show that if {P} |= Q and {Q} |= R, then {P} |= R.

In this section we show that the truth-functional concepts of truth-functional
truth, truth-functional falsehood, truth-functional indeterminacy, truth-
functional equivalence, truth- functional entailment, and truth-functional
validity can all be explicated in terms of truth-functional consistency. This
is important because in Chapter 4 we shall introduce an alternative test for
truth-functional consistency, and the possibility of explicating the other con-
cepts in terms of truth- functional consistency means that we shall be able
to use the test we develop in Chapter 4 to determine whether other truth-
functional properties of sentences and sets of sentences hold.

We will now state how each truth-functional concept other than consist-
ency can be stated in terms of consistency, and prove each statement.

A sentence P of SL is truth-functionally false if and only if {P} is truth-
functionally inconsistent.

Proof: Assume that P is truth-functionally false. Then, by defi nition, there is no
truth-value assignment on which P is true. Consequently, as P is the only member
of the unit set {P}, there is no truth-value assignment on which every member of
that set is true. So {P} is truth-functionally inconsistent. Now assume that {P} is
truth-functionally inconsistent. Then, by defi nition, there is no truth-value assign-
ment on which every member of {P} is true. Since P is the only member of its
unit set, there is no truth-value assignment on which P is true. Hence P is truth-
functionally false.

A sentence P of SL is truth-functionally true if and only if {~ P} is truth-
functionally inconsistent.

Proof: Assume that P is truth-functionally true. Then, by defi nition, P is
true on every truth-value assignment. We know that a sentence is true on

 3.6 TRUTH-FUNCTIONAL PROPERTIES AND TRUTH-FUNCTIONAL
CONSISTENCY

ber38413_ch03_069-109.indd Page 105 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 105 16/11/12 1:23 PM user-f396 F-403F-403

106 SENTENTIAL LOGIC: SEMANTICS

a truth-value assignment if and only if the negation of the sentence is false on
that truth-value assignment. So it follows from our assumption that ~ P is false on
every truth-value assignment; that is, there is no truth-value assignment on which
~ P is true. But then there is no truth-value assignment on which every member of
{~ P} is true, which means that {~ P} is truth-functionally inconsistent. The proof of
the converse, that if {~ P} is truth-functionally inconsistent then P is truth-functionally
true, is left as an exercise.

A sentence P of SL is truth-functionally indeterminate if and only if both {~ P}
and {P} are truth-functionally consistent.

Proof: A sentence P is truth-functionally indeterminate if and only if P is nei-
ther truth-functionally true nor truth-functionally false, and hence, by the previous
results, if and only if both {~ P} and {P} are truth-functionally consistent.

Sentences P and Q of SL are truth-functionally equivalent if and only if
{~ (P � Q)} is truth-functionally inconsistent.

Proof: Where P and Q are sentences of SL, P � Q is their corresponding material bicon-
ditional. It is straightforward to show that P and Q are truth-functionally equivalent if
and only if their corresponding material biconditional is truth-functionally true. Assume
that P and Q are truth-functionally equivalent. Then, by defi nition, P and Q have the
same truth-value on every truth-value assignment. We know that a material biconditional
has the truth-value T on every truth-value assignment on which its immediate sentential
components have the same truth-value. It follows that P � Q is true on every truth-value
assignment and hence is truth-functionally true and therefore, by the second result
above, {~ (P � Q)} is truth-functionally inconsistent. The proof of the converse, that if
{~ (P � Q)} is truth-functionally inconsistent, P and Q are truth-functionally equivalent,
is left as an exercise.

To make these results more concrete, we shall consider an example. The
set {∼ [(A ∨ B) � (∼ A ⊃ B)]} is truth-functionally inconsistent, as shown by the
following truth-table:

 ↓
A B ∼ [(A ∨ B) � (∼ A ⊃ B)]

T T F T T T T F T T T
T F F T T F T F T T F
F T F F T T T T F T T
F F F F F F T T F F F

The set is truth-functionally inconsistent because there is no truth-value assignment
on which every member of the set (in this case there is just one member) is true.
From this we know the following:

 1. ‘∼ [(A ∨ B) � (∼ A ⊃ B)]’ is truth-functionally false. (P is truth-functionally false if
and only if {P} is truth-functionally inconsistent. Here {∼ [(A ∨ B) � (∼ A ⊃ B)]} is
truth-functionally inconsistent. Hence there is no truth-value assignment on which
the only member of that set, ‘∼ [(A ∨ B) � (∼ A ⊃ B)]’, is true. That one member
is thus truth-functionally false.)

ber38413_ch03_069-109.indd Page 106 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 106 16/11/12 1:23 PM user-f396 F-403F-403

3.6 TRUTH-FUNCTIONAL PROPERTIES AND TRUTH-FUNCTIONAL CONSISTENCY 107

 2. ‘(A ∨ B) � (∼ A ⊃ B)’ is truth-functionally true. (P is truth-functionally
true if and only if {∼ P} is truth-functionally inconsistent. We have just
reasoned that ‘∼ [(A ∨ B) � (∼ A ⊃ B)]’ is truth-functionally false.
Hence the sentence of which it is the negation, ‘(A ∨ B) � (∼ A ⊃ B)’,
is true on every truth-value assignment—it is a truth-functionally true
 sentence.)

 3. ‘A ∨ B’ and ‘∼ A ⊃ B’ are truth-functionally equivalent. (P and Q are truth-
functionally equivalent if and only if {∼ (P � Q)} is truth-functionally incon-
sistent. Since ‘(A ∨ B) � (∼ A ⊃ B)’ is truth-functionally true, ‘A ∨ B’ and ‘∼
A ⊃ B’ have the same truth-value on every truth-value assignment—they are
truth-functionally equivalent.)

Of course, each of these claims can be directly verifi ed by examining the truth-
table, but our general proofs show that this is not necessary.

Next we relate the concepts of truth-functional entailment and truth-
functional consistency. Where Γ is a set of sentences of SL and P is any sentence
of SL, we may form a set that contains P and all the members of Γ. This set
is represented as

Γ ∪ {P}

which is read as

the union of gamma and the unit set of P

Thus, if Γ is {A, A ⊃ B} and P is ‘J’, then Γ ∪ {P}—that is, {A, A ⊃ B} ∪ { J}—
is {A, A ⊃ B, J}. Of course, if P is a member of Γ, then Γ ∪ {P} is identical
with Γ. So {A, A ⊃ B} ∪ {A ⊃ B} is simply {A, A ⊃ B}. In the case where Γ
is � (the empty set), Γ ∪ {P} is simply {P}. This follows because � contains
no members.

We can now explicate truth-functional entailment in terms of truth-
functional inconsistency:

A set Γ of sentences of SL truth-functionally entails a sentence P of SL
if and only if Γ ∪ {~ P} is truth-functionally inconsistent.

Proof: Assume that Γ truth-functionally entails P. Then, by the defi nition of
truth-functional entailment, there is no truth-value assignment on which all the
members of Γ are true and P is false. We know that P is false on a truth-value
assignment if and only if ~ P is true on that assignment, so it follows that there
is no truth-value assignment on which all the members of Γ are true and ~ P
is also true. Therefore, Γ ∪ {~ P} is truth-functionally inconsistent. The proof
of the converse, that if Γ ∪ {~ P} is truth-functionally inconsistent then Γ |= P,
is left as an exercise.

ber38413_ch03_069-109.indd Page 107 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 107 16/11/12 1:23 PM user-f396 F-403F-403

108 SENTENTIAL LOGIC: SEMANTICS

An argument of SL is truth-functionally valid if and only if the set
consisting of the premises of the argument and the negation of the
conclusion of the argument is truth-functionally inconsistent.

Proof: This follows immediately from the previous result.
So the argument

(A ⊃ D) & H

F ∨ H

D

is truth-functionally valid if and only if {(A ⊃ D) & H, F ∨ H, ∼ D} is truth-
functionally inconsistent.

 3.6E EXERCISES

 1. Where P and Q are sentences of SL and Γ is a set of sentences of SL, prove
each of the following:

 a. If {∼ P} is truth-functionally inconsistent, then P is truth-functionally true.
 *b. If P � Q is truth-functionally true, then P and Q are truth-functionally equivalent.
 c. If Γ ∪ {∼ P} is truth-functionally inconsistent, then Γ |= P.

 2. Where Γ is a set of sentences of SL and P and Q are sentences of SL, prove
each of the following:

 a. A sentence P is truth-functionally true if and only if � |= P.
 *b. Γ |= P ⊃ Q if and only if Γ ∪ {P} |= Q.
 c. If Γ is truth-functionally inconsistent, then Γ truth-functionally entails every

sentence of SL.
 *d. For any set Γ of sentences of SL and any truth-functionally false sentence P of

SL, Γ ∪ {P} is truth-functionally inconsistent.

 3. Where Γ is a set of sentences of SL and P and Q are sentences of SL, prove
each of the following:

 a. If Γ is truth-functionally consistent and P is truth-functionally true, then Γ ∪ {P}
is truth-functionally consistent.

 *b. If Γ |= P and Γ |= ∼ P, then Γ is truth-functionally inconsistent.
 4. Where Γ and Γ� are sets of sentences of SL and P, Q , and R are sentences of

SL, prove each of the following:
 a. If {P} |= Q and {∼ P} |= R, then Q ∨ R is truth-functionally true.
 *b. If P and Q are truth-functionally equivalent, then {P} |= R if and only if {Q} |= R.
 c. If Γ |= P and Γ� |= Q, then Γ ∪ Γ� |= P & Q, where Γ ∪ Γ� is the set that con-

tains all the sentences in Γ and all the sentences in Γ�.

ber38413_ch03_069-109.indd Page 108 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 108 16/11/12 1:23 PM user-f396 F-403F-403

3.6 TRUTH-FUNCTIONAL PROPERTIES AND TRUTH-FUNCTIONAL CONSISTENCY 109

GLOSSARY

TRUTH-FUNCTIONAL TRUTH: A sentence P of SL is truth-functionally true if and
only if P is true on every truth-value assignment.

TRUTH-FUNCTIONAL FALSITY: A sentence P of SL is truth-functionally false if and
only if P is false on every truth-value assignment.

TRUTH-FUNCTIONAL INDETERMINACY: A sentence P of SL is truth-functionally inde-
terminate if and only if P is neither truth-functionally true nor truth-functionally false.

TRUTH-FUNCTIONAL EQUIVALENCE: Sentences P and Q of SL are truth-functionally
equivalent if and only if there is no truth-value assignment on which P and Q have
different truth-values.

TRUTH-FUNCTIONAL CONSISTENCY: A set of sentences of SL is truth-functionally
consistent if and only if there is at least one truth-value assignment on which all the
members of the set are true. A set of sentences of SL is truth-functionally inconsistent
if and only if the set is not truth-functionally consistent.

TRUTH-FUNCTIONAL ENTAILMENT: A set Γ of sentences of SL truth-functionally
entails a sentence P of SL if and only if there is no truth-value assignment on
which every member of Γ is true and P is false.

TRUTH-FUNCTIONAL VALIDITY: An argument of SL is truth-functionally valid if and
only if there is no truth-value assignment on which all the premises are true and
the conclusion is false. An argument of SL is truth-functionally invalid if and only if
it is not truth-functionally valid.

ber38413_ch03_069-109.indd Page 109 16/11/12 1:23 PM user-f396ber38413_ch03_069-109.indd Page 109 16/11/12 1:23 PM user-f396 F-403F-403

110 SENTENTIAL LOGIC: TRUTH-TREES

Chapter 4

In Section 4.1 we introduce truth-trees, show how they are constructed, and
show that they can be used to test a set of sentences of SL for truth-functional
consistency. In Section 4.2 we lay out how truth-trees can also be used to test
for truth-functional truth, falsity, and indeterminacy as well as truth-functional
equivalence, entailment, and validity.

SENTENTIAL LOGIC:
TRUTH-TREES

 4.1 THE TRUTH-TREE METHOD

In Chapter 3 we used the notion of a truth-value assignment to give formal
accounts of the important semantic concepts of truth-functional logic. At the
end of Chapter 3, we saw that, once truth-functional consistency has been
defi ned based on the concept of a truth-value assignment, the remaining seman-
tic concepts of sentential logic can be explicated in terms of truth-functional
consistency. In this chapter we make use of this fact to provide an additional
method, the truth-tree method, of determining whether truth-functional prop-
erties hold for sentences and sets of sentences of SL. Truth-trees provide a
systematic method of searching for truth-value assignments that are of special
interest—for example, a truth-value assignment on which a given sentence of SL

ber38413_ch04_110-145.indd Page 110 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 110 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 111

is false, or a truth-value assignment on which the premises of a given argument
of SL are true and the conclusion false. The truth-tree method also reveals when
no such truth-value assignments exist.

The truth-table method is mechanical. And the truth-tree method
we develop in this chapter can easily be made so. The advantage of truth-
tables is that they graphically display how the truth-values of truth-functionally
compound sentences are generated from the truth-values of their compo-
nents. The disadvantage of truth-tables is that they become unwieldy when
the number of distinct atomic components of the sentence or sentences being
tested is much greater than 3. Truth-trees, it must be admitted, can also
become unwieldy. However, the size and complexity of truth-trees are not
as direct a function of the number of distinct atomic components of the
sentences being tested as are the size and complexity of truth-tables. Sets
of sentences with a large number of distinct atomic components frequently
have reasonably concise truth-trees. What is of theoretical importance here,
as with truth-tables, is that the truth-tree system can be used, for any fi nite
set of sentences of SL, to yield, in a fi nite number of steps, an answer to the
question ‘Is this set truth-functionally consistent?’ We establish this claim in
Chapter 11.

The rules we will use in constructing truth-trees are derived directly
from the characteristic truth-tables for the fi ve truth-functional connectives.
For this reason, and because truth-value assignments on which all the members
of the set being tested are true can readily be recovered from truth-trees for
consistent sets, we take truth-trees to constitute a second semantic method
of determining whether the truth-functional properties defi ned in Chapter 3
hold for sentences and fi nite sets of sentences of SL.

It is obvious that if a set of sentences of SL is truth-functionally
consistent there must be a truth-value assignment on which all the atomic
sentences in the set are assigned the truth-value T and all the atomic sen-
tences whose negations are members of the set are assigned the truth-value
F. We will call atomic sentences and their negations ‘literals’. In this section
we present the rules we will use to decompose nonliteral sentences of SL.
By using these rules we will be able to determine which atomic components
of these nonliterals must be assigned the truth-value T and which must be
assigned the truth-value F if those nonliterals are to be true on a truth-value
assignment.

We divide the nonliteral sentences of SL into nine groups, one group
for each kind of binary compound (conjunctions, disjunctions, material con-
ditionals, and material biconditionals) and one group for each kind of nega-
tion (negated negations, negated conjunctions, negated disjunctions, negated
material conditionals, and negated material biconditionals). Here are truth-
table templates for these nine kinds of sentences. Note that the templates for
the sentence types on the left have a T under the sentences’s main connective
in exactly one row, while the templates on the right have more than one T under
the main connective.

ber38413_ch04_110-145.indd Page 111 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 111 12/4/12 1:54 PM F-400F-400

112 SENTENTIAL LOGIC: TRUTH-TREES

Group 1 Group 2
Conjunction Negated Conjunction

P Q P & Q P Q ~ (P & Q)

T T T T T F T
T F F T F T F
F T F F T T F
F F F F F T F

Negated Disjunction Disjunction

P Q ~ (P ∨ Q) P Q (P ∨ Q)

T T F T T T T
T F F T T F T
F T F T F T T
F F T F F F F

Negated Material Conditional Material Conditional

P Q ~ (P ⊃ Q) P Q (P ⊃ Q)

T T F T T T T
T F T F T F F
F T F T F T T
F F F T F F T

Negated Negation Material Biconditional

P ~ ~ P P Q (P ⊃ Q)

T T F T T T
F F T T F F
 F T F
 F F T

 Negated Material Biconditional

 P Q ~ (P � Q)

 T T F T
 T F T F
 F T T F
 F F F T

Group 1 sentences are such that they are true on only one combination of
truth-values displayed to the left of the vertical line in their truth-table tem-
plates. That is, if we know that a sentence of the form (P & Q) or ~ (P ∨ Q) or
~ (P ⊃ Q) is true then we also know the truth-value of the components P and
Q. And if we know that a sentence of the form ~ ~ P is true we also know the

ber38413_ch04_110-145.indd Page 112 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 112 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 113

truth-value of P. In contrast, if a Group 2 sentence is true, there are multiple
combinations of truth-values that P and Q can have. Note that the schema for
P & Q, P ∨ Q, P ⊃ Q and their respective negations are paired in the sense
that one member of each pair is in Group 1 and the other in Group 2. However
both P � Q and ~ (P � Q) are in Group 2.

The decomposition rules for Group 1 sentences require that these
sentences be decomposed to sentences whose truth is required for the truth
of the sentences being decomposed, as specifi ed by the foregoing truth-table
templates. Here are the rules for decomposing Group 1 sentences:

Negated Negation Conjunction
Decomposition (~ ~ D) Decomposition (& D)

 ~ ~ P � P & Q �

 P P

 Q

Negated Disjunction Negated Conditional
Decomposition (~ ∨D) Decomposition (~ ⊃D)

 ~ (P ∨ Q) � ~ (P ⊃ Q) �
 ~ P P

 ~ Q ~ Q

A sentence of the form ~ ~ P is true on a truth-value assignment if and only
if P is also true on that assignment, so the answer to the question ‘What
sentence(s) have to be true for ~ ~ P to be true?’ is P, and hence we decom-
pose ~ ~ P to P. Similarly, a sentence of the form P & Q is true on a truth-
value assignment if and only if P and Q are both true on that assignment, so
we decompose P & Q to P and to Q. And a sentence of the form ~ (P ∨ Q)
is true on a truth-value assignment if and only if both ~ P and ~ Q are true
on that assignment. So we decompose ~ (P ∨ Q) to ~ P and to ~ Q. (Recall
that a sentence of the form ~ (P ∨ Q) is equivalent to the corresponding
sentence of the form ~ P & ~ Q.) Finally, a sentence of the form ~ (P ⊃ Q)
is true on a truth-value assignment if and only if its antecedent, P, is true on
that assignment and its consequent, Q, is false on that assignment, that is, if
and only if P and ~ Q are both true on that assignment. So we decompose
~ (P ⊃ Q) to P and to ~ Q.

Before presenting the rules for Group 2 sentences, we will use the
Group 1 rules to construct two truth-trees1. Suppose we want to determine
whether the set { ~ ~ B, C, ~ A, ~ (B ⊃ C)} is truth-functionally consistent.
We begin by listing the members of the set one below the other in the
middle of our work area. We annotate the tree by placing line numbers on

1Truth-trees, unlike real trees, grow from the top down, not from the bottom up.

ber38413_ch04_110-145.indd Page 113 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 113 12/4/12 1:54 PM F-400F-400

114 SENTENTIAL LOGIC: TRUTH-TREES

the left. On the right we enter the notation ‘SM’ (for ‘Set Member’) in a
justifi cation column:

 1 ~ ~ B SM
 2 C SM
 3 ~ A SM
 4 ~ (B ⊃ C) SM

The justifi cation column indicates the reason that a sentence has been added
to the tree. The sentences on lines 2 and 3 are literals and do not need to be
decomposed. The sentence on line 1 is a negated negation, and the rule for
decomposing a negated negation ~ ~ P instructs us to add P to our tree and
to ‘check off’ the sentence ~ ~ P, indicating that it has been decomposed. So
we continue the tree as follows:

 1 ~ ~ B � SM
 2 C SM
 3 ~ A SM
 4 ~ (B ⊃ C) SM
 5 B 1 ~ ~ D

Our justifi cation for entering ‘B’ at line 5 is that it is the result of decomposing
‘~ ~ B’ on line 1 using Negated Negation Decomposition. To complete our tree,
we need to decompose the negated material conditional on line 4. The rule
Negated Material Conditional Decomposition calls for entering the antecedent
of the material conditional and the negation of its consequent on our tree:

 1 ~ ~ B � SM
 2 C SM
 3 ~ A SM
 4 ~ (B ⊃ C) � SM
 5 B 1 ~ ~D
 6 B 4 ~ ⊃D
 7 ~ C 4 ~ ⊃D
 �

Notice that lines 6 and 7 are both justifi ed by Negated Material Conditional
Decomposition, as that rule requires entering two sentences on our tree. The
tree now contains only literals and check-off nonliterals, so we have decom-
posed every sentence that can be decomposed. This is indicated by the fact
that every nonliteral on the tree has been checked off.

Our tree shows that the set we are testing is truth-functionally inconsist-
ent. Each decomposition rule specifi es the sentence(s) that must be true if the
sentence being decomposed is true. That is, if the set members are all true,
so is every other sentence on the tree. In particular, all of the literals on the
tree must be true. So if the set { ~ ~ B, C, ~ A, ~ (B ⊃ C)} is truth-functionally

ber38413_ch04_110-145.indd Page 114 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 114 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 115

consistent, then there must be a truth-value assignment on which ‘C’, ‘~ A’, ‘B’,
and ‘~ C’ are all true. But of course there can be no such assignment, because
‘C’ and ‘~ C’ cannot both be true on the same truth-value assignment.

Where P is any atomic sentence of SL, we call the literals P and ~ P
(such as ‘C’ and ‘~ C’) ‘contradictory literals’. Contradictory literals cannot
both be true on a truth-value assignment, so we used their presence to conclude
that the set we were testing is truth-functionally inconsistent. We have placed an
‘�’ at the bottom of our tree to indicate that a truth-value assignment cannot
be recovered from this tree.

We will now test the set {(D & ~ A), ~ (B ∨ A), ~ ~ D, ~ (~ A ⊃ B)}
for truth-functional consistency. We begin, as always, by listing the mem-
bers of our set, with line numbers on the left and the annotation ‘SM’ on
the right:

 1 D & ~ A SM
 2 ~ (B ∨ A) SM
 3 ~ ~ D SM
 4 ~ (~ A ⊃ B) SM

Note that our set contains no literals. Every member of the set will have to be
decomposed. We can use Ampersand Decomposition to decompose the sen-
tence on line 1, which results in adding two sentences to our tree:

 1 D & ~ A � SM
 2 ~ (B ∨ A) SM
 3 ~ ~ D SM
 4 ~ (~ A ⊃ B) SM
 5 D 1 &D
 6 ~ A 1 &D

Our tree now contains three sentences that have not yet been decomposed
and are not literals. The sentence on line 2 is a negated disjunction. Negated
Disjunction Decomposition specifi es that we add the negations of the two dis-
juncts to the tree:

 1 D & ~ A � SM
 2 ~ (B ∨ A) � SM
 3 ~ ~ D SM
 4 ~ (~ A ⊃ B) SM
 5 D 1 &D
 6 ~ A 1 &D
 7 ~ B 2 ~ ∨D
 8 ~ A 2 ~ ∨D

Our tree now contains three distinct literals, ‘D’, ‘~ A’, and ‘~ B’. So far so
good: we can make all of these literals true, by assigning the truth-value T to
‘D’ and the truth-value F to ‘A’ and to ‘B’. But we still have two sentences

ber38413_ch04_110-145.indd Page 115 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 115 12/4/12 1:54 PM F-400F-400

116 SENTENTIAL LOGIC: TRUTH-TREES

to decompose. The sentence on line 3 is a negated negation. Decomposing
it will result in adding ‘D’ to our tree. The sentence on line 4 is a negated
material conditional. Decomposing it will result in adding both ‘~ A’ and
‘~ B’ to our tree:

 1 D & ~ A � SM
 2 ~ (B ∨ A) � SM
 3 ~ ~ D � SM
 4 ~ (~ A ⊃ B)� SM
 5 D 1 &D
 6 ~ A 1 &D
 7 ~ B 2 ~ ∨D
 8 ~ A 2 ~ ∨D
 9 D 3 ~ ~D
 10 ~ A 4 ~ ⊃D
 11 ~ B 4 ~ ⊃D
 o

Every sentence on our tree is now either a literal or a checked-off nonliteral,
so the tree is complete. Note that several times (on lines 8, 9, 10, and 11) we
added a literal to our tree even though it already occurred on the tree. While
these duplicate literals add no new information to the tree, the decomposition
rules require adding the results of each decomposition, even if those results
already occur on the tree.

We have placed a lower case ‘o’ at the bottom of our tree to indicate
that the tree is complete and is open, that is, it does not contain contradictory
literals. This tree shows that that the set we are testing is truth-functionally
consistent. Moreover, we can use the literals on the tree to recover a set of
truth-value assignments on which all the sentences in the set we are testing are
true. The literals on the tree and consequently every member of our set will
be true on every truth-value assignment that makes the following assignments
to ‘A’, ‘B’, and ‘D’:

 A B D

 F F T

So far we have laid out the rules for decomposing SL sentences that are not lit-
erals and that, when decomposed, yield one or two sentences that are entered
one below the other on our tree (because all of these sentences have to be
true for the decomposed sentences to be true). But if we are to be able to
construct trees for all fi nite SL sets we will need more rules than we have so far.

The rules for Group 1 sentences are called ‘non-branching rules’
because they do not introduce new branches to a truth-tree. The decomposi-
tion rules for Group 2 sentences do add branches and are accordingly called
‘branching rules’. Here are the rules for decomposing disjunctions and mate-
rial conditionals:

ber38413_ch04_110-145.indd Page 116 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 116 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 117

Disjunction Conditional
Decomposition (∨D) Decomposition (⊃ D)

 P ∨ Q � P ⊃ Q �

 P Q ~ P Q

A disjunction is true if either disjunct is true. So our rule for decomposing
disjunctions branches to represent these possibilities. It might appear that the
rule for decomposing disjunctions should be more complicated, as a disjunc-
tion is true when both disjuncts are true as well as when one disjunct, but not
the other, is true. However, the rule is correct as given. Neither the branch
with P nor the branch with Q requires that the other disjunct be false. That
is, the rule does not require us to add ~ Q to the left branch or ~ P to the
right branch.

Our rule for decomposing material conditionals refl ects the fact that
if a material conditional is true, then either its antecedent is false or its con-
sequent is true; and similar to the rule for disjunction, it allows for both pos-
sibilities. Keeping in mind that sentences of the form P ⊃ Q are equivalent to
sentences of the form P ∨ Q may make it easier to remember this rule.

The negation of a conjunction is true if and only if at least one of the
conjunction’s conjuncts is false. Hence the rule

 Negated Conjunction
 Decomposition (~ & D)

 ~ (P & Q) �

 ~ P ~ Q

Keeping in mind that sentences of the form ~ (P & Q) are equivalent to sen-
tences of the form ~ P ∨ ~ Q may make it easier to remember this rule.

A material biconditional is true if and only if both of its immediate
components are true or both are false, and a negated material biconditional
is true if and only if its immediate components have different truth-values. So
the relevant decomposition rules are

Biconditional Negated Biconditional
Decomposition (~ � D) Decomposition (�D)

 P � Q � ~ (P � Q) �

 P ~ P P ~ Q
 Q ~ Q ~ Q P

We now have all the rules needed to construct truth-trees for any fi nite set of
sentences of SL.

ber38413_ch04_110-145.indd Page 117 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 117 12/4/12 1:54 PM F-400F-400

118 SENTENTIAL LOGIC: TRUTH-TREES

The following tree for the set {A ⊃ (B ∨ C), A & ~ C} uses two branching rules,
Conditional Decomposition and Disjunction Decomposition:

 1 A ⊃ (B ∨ D) � SM
 2 A & ~ C � SM
 3 A 2 &D
 4 ~ C 2 &D

 5 ~ A B ∨ D � 1 ⊃D
 �

 6 B C 5 ∨D
 o �

We start by decomposing the sentence on line 2, ‘A & ~ C’, using Conjunction
Decomposition and entering the results, ‘A’ and ‘~ C,’ on lines 3 and 4, respec-
tively. We next use Conditional Decomposition to decompose ‘A ⊃ (B ∨ C)’. The
result is a branch on the left ending in ‘~ A’ and one on the right containing
‘B ∨ C’. The left branch closes immediately because contradictory literals, ‘A’ and
‘~ A’ occur on that branch. The right branch remains open as of line 5. We next
decompose ‘B ∨ C’, using the branching rule Disjunction Decomposition and
entering ‘B’ on the left and ‘C’ on the right. The branch ending in ‘C’ closes,
as it contains the contradictory literals ‘~ C’ (at line 4) and ‘C’ (at line 6). The
branch ending in ‘B’ remains open. As all non-literals on this branch have been
decomposed we enter an ‘o’ below ‘B’ to indicate that we have a completed
open branch. From that branch we can recover a set of truth-value assignments
on which every member of the set {A ⊃ (B ∨ C), A & ~ C} is true, namely the set
of truth-value assignments that assign T to ‘A’ and to ‘B’ and F to ‘C’.

We note that the sentences on lines 1-4, which constitute the trunk
of the tree, occur on all three branches of the tree. ‘B ∨ C’, which occurs on
line 5, occurs on both the middle branch and the right-hand branch. ‘B’ and
‘C’, which occur on line 6, each occur on only one branch, ‘B’ on the middle
branch and ‘C’ on the right-hand branch.

We will next construct a truth-tree for the set {A ⊃ (B & ~ C), C �
~ A}. This tree will also have multiple branches. After listing the members of
the set, we decompose ‘A ⊃ (B & ~ C)’, a material conditional, at line 3. The
rule for decomposing material conditionals is a branching rule, so we enter
‘~ A’ to the left and ‘B & ~ C’ to the right.

 1 A ⊃ (B & ~ C) � SM
 2 C � ~ A SM

 3 ~ A B & ~ C 1 ⊃D

‘B & ~ C’ occurs on the right branch, but not on the left branch. Accordingly,
we enter the results of decomposing it only on the right branch.

ber38413_ch04_110-145.indd Page 118 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 118 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 119

 1 A ⊃ (B & ~ C) � SM
 2 C � ~ A SM

 3 ~ A B & ~ C � 1 ⊃D
 4 B 3 &D
 5 ~ C 3 &D

‘C � ~ A’ occurs on both branches (both branches pass through it), so the
results of decomposing ‘C � ~ A’ must be entered on both branches. Because
the rule for decomposing material biconditionals is a branching rule, the result-
ing tree has four branches:

1 A ⊃ (B & ~ C) � SM
2 C � ~ A � SM

3 ~ A B & ~ C � 1 ⊃D
4 B 3 &D
5 ~ C 3 &D

6 C ~ C C ~ C 2 �D
7 ~ A ~ ~ A ~ A ~ ~ A 2 �D
 o �

One of the resulting four branches, the third from the left, contains a literal and its
negation (‘C’ and ‘~ C’), so we put an ‘�’ below that branch. The only sentences
on the leftmost branch are the literals ‘~ A’ and ‘C’ and nonliteral sentences that
have been checked off. Therefore, all the sentences on this branch that can be
decomposed have been decomposed. This branch is open, that is, it does not
contain contradictory literals, and we have indicated this by placing a lower case
‘o’ below the branch. The fact that this branch is open demonstrates that our set
is consistent. From this branch we can recover two sets of truth-value assignments
on which every member of the set we are testing is true. This is because while both
‘~ A’ and ‘C’ occur on the branch, neither ‘B’ nor ‘~ B’ does. The signifi cance of
this is that so long as ‘A’ is assigned the truth-value F (because ‘~ A’ occurs on the
branch) and ‘C’ is assigned the truth-value T (because ‘C’ occurs on the branch),
every member of the set we are testing will be true, no matter what truth-value is
assigned to ‘B’. The two sets of truth-value assignments we can recover are

 A B C

 F T T
 F F T

We have shown that the set we are testing is consistent, even though our truth-
tree is not complete. ‘~ ~ A’ occurs on the second branch from the left and on
the rightmost branch, and this sentence has not been decomposed. If all we
want to know is whether the set we are testing is truth-functionally consistent we
can stop at this point, for we have shown that it is. Completing the tree will give

ber38413_ch04_110-145.indd Page 119 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 119 12/4/12 1:54 PM F-400F-400

120 SENTENTIAL LOGIC: TRUTH-TREES

us additional information, which we may or may not be interested in, namely,
completing the tree will show whether there are additional sets of truth-value
assignments on which every member of the set is true. We complete the tree
by decomposing ‘~ ~ A’ to ‘A’, entering ‘A’ on each of the open branches.

1 A ⊃ (B & ~ C) � SM
2 C � ~ A � SM

3 ~ A B & ~ C � 1 ⊃D
4 B 3 &D
5 ~ C 3 &D

6 C ~ C C ~ C 2 �D
7 ~ A ~ ~ A � ~ A ~ ~ A � 2 �D
8 o A � A 7 ~ ~ D
 � o

The second branch from the left now contains contradictory literals (‘A’ and
‘~ A’), so we have placed an ‘�’ below that branch. The rightmost branch con-
tains only literals and checked-off nonliteral sentences, and it does not contain
contradictory literals, so we place an ‘o’ below the branch. This branch reveals
that every member of our set will be true on every truth-value assignment that
assigns the following values to ‘A’, ‘B’, and ‘C’:

 A B C

 T T F

We have recovered an additional set of truth-value assignments on which all
the members of the set we are testing are true. Note that we decomposed both
occurrences of ‘~ ~ A’ in one step, entering the results of both decompositions
on line 8. We were able to do this because the two instances of ‘~ ~ A’ occur
on the same line and because we use the same rule to decompose them.

It is time to formally defi ne the terms associated with truth-trees:

Closed branch: A branch on which contradictory literals occur.
Open branch: A branch that is not closed.
Completed open An open branch on which every sentence is either
branch: a literal or has been decomposed (checked off).
Closed truth-tree: A truth-tree each of whose branches is closed.
Open truth-tree: A truth-tree that is not closed.
Completed A truth-tree each of whose branches is either
truth-tree: closed or a completed open branch.

A fi nite set � of sentences of SL is truth-functionally consistent if and only if �
has a truth-tree with at least one completed open branch.
A fi nite set � of sentences of SL of SL is truth-functionally inconsistent if and
only if � has a closed truth-tree.

ber38413_ch04_110-145.indd Page 120 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 120 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 121

The construction of truth-trees is not, as we have developed it, a mechanical
process, though it could be made mechanical by mandating the order in which
nonliteral sentences are to be decomposed. Because we have not mandated such
an order a single set of sentences of SL can have many distinct truth-trees, each
constructed in accordance with the rules we have given. However, all completed
truth-trees for a given set will yield the same result: either all the trees will be closed
(showing that the set is truth-functionally inconsistent) or all the trees will have at
least one completed open branch. In the latter case, all of the trees will yield the
same sets of truth-value assignments on which all the members of the set are true.

For practical purposes, we would like the truth-trees we construct to
be as concise and clear as possible. Adhering to the following guidelines will
help produce such trees.

1. Stop when a tree yields the answer to the question being asked.
2. Give priority to decomposing sentences whose decomposition does not

require branching.
3. Give priority to decomposing sentences whose decompositions result in

the closing of one or more branches.

For example, the last tree we constructed had a completed open branch as of
line 7. At that point we knew the set we were testing is truth-functionally con-
sistent. So we could have stopped there if that was what we wanted to know.
Of course, if the question we wanted to answer had been ‘What are all of the
truth-value assignments on which the m embers of this set are true?’ we would
have had to complete the tree to recover all of the truth-value assignments.

The following truth-tree is not constructed in accordance with our sec-
ond guideline:

 1 ~ A ⊃ (B ⊃ ~ C) � SM
 2 ~ (B ⊃ D) � SM
 3 ~ (A ∨ C) � SM

 4 ~ ~ A B ⊃ ~ C 1 ⊃D

 5 ~ B ~ C 4 ⊃D
 6 B B B 2 ~ ⊃D
 7 ~ D ~ D ~ D 2 ~ ⊃D
 8 ~ A � ~ A 3 ~ ∨D
 9 ~ C ~ C 3 ~ ∨D
10 A o 4 ~ ~D
 �

Decomposing the sentence on line 1, a material conditional, requires the
use of a branching rule and the result is a tree with two open branches
as of line 4. Decomposing ‘B ⊃ ~ C’ on line 4 adds an additional branch
to the tree. A more concise tree can be constructed by decomposing the

ber38413_ch04_110-145.indd Page 121 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 121 12/4/12 1:54 PM F-400F-400

122 SENTENTIAL LOGIC: TRUTH-TREES

sentences on lines 2 and 3 fi rst, for their decomposition does not add new
branches to the tree:

 1 ~ A ⊃ (B ⊃ ~ C) � SM
 2 ~ (B ⊃ D) � SM
 3 ~ (A ∨ C) � SM
 4 B 2 ~ ⊃D
 5 ~ D 2 ~ ⊃D
 6 ~ A 3 ~ ∨D
 7 ~ C 3 ~ ∨D

 8 ~ ~ A � B ⊃ ~ C � 1 ⊃ D
 9 A
10 � ~ B ~ C 8 ⊃ D
 � o

The same set of truth-value assignments can be recovered from both trees,
namely, the set of truth-value assignments that assign the following truth-values
to the four sentence letters:

 A B C D

 F T F F

To illustrate the value of the third guideline, suppose that we want to
show that the set {A ⊃ B, B ⊃ A, ~ A} is truth-functionally consistent. We fi rst
list the members of the set:

1 A ⊃ B SM
2 B ⊃ A SM
3 ~ A SM

We now have to decide which nonliteral to decompose fi rst, the one on line
1 or the one on line 2. Both sentences are material conditionals, so both
decompositions will produce a tree with two branches. A little thought will
show that it is better to decompose the sentence on line 2 fi rst, for doing
so will produce a tree with ‘~ B’ on the left branch and ‘A’ on the right branch,
and the right branch will close, leaving only one open branch. Decomposing
‘A ⊃ B’ fi rst will produce a tree with ‘~ A’ on the left branch and ‘B’ on the
right branch, and both will remain open. Here are the two resulting trees:

1 A ⊃ B � SM
2 B ⊃ A � SM
3 ~ A SM

4 ~ B A 2 ⊃ D
 x

5 ~ A B 1 ⊃ D
 o x

ber38413_ch04_110-145.indd Page 122 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 122 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 123

This tree follows our third guideline. The following tree does not do so and is
somewhat more complex than is our fi rst tree.

1 A ⊃ B � SM
2 B ⊃ A � SM
3 ~ A SM

4 ~ A B 1 ⊃D

5 ~ B A ~ B A 2 ⊃D
 o x x x

Both trees have a completed open branch, so the set we are testing is truth-func-
tionally consistent. And the trees yield the same set of truth-value assignments:

 A B

 F F

Next consider the set {A ⊃ (B & ~ C), ~ (C ∨ A), C � ~ A}. In con-
structing a truth-tree for this set, we start by listing the members of the set, one
below the other:

 1 A ⊃ (B & ~ C) SM
 2 ~ (C ∨ A) SM
 3 C � ~ A SM

No member of the set is a literal; hence all are candidates for decomposition.
The sentence on line 1, a material conditional, will branch when decomposed.
So will the sentence on line 3, a material biconditional. But the sentence on line
2, a negated disjunction, will not branch, so we decompose it fi rst. This leaves
two undecomposed sentences on the tree that are not literals, ‘A ⊃ (B & ~ C)’
and ‘C � ~ A’, both of which will branch when decomposed. Decomposing the
material conditional will yield two open branches, one ending in ‘~ A’ and the
other in ‘B & ~ C’. Neither of these branches will close immediately. However,
decomposing the material biconditional yields an immediate branch closure:

 1 A ⊃ (B & ~ C) SM
 2 ~ (C ∨ A)� SM
 3 C � ~ A� SM
 4 ~ C 2 ~ ∨ D
 5 ~ A 2 ~ ∨ D

 6 C ~ C 3 � D
 7 ~ A ~ ~ A 3 � D
 �

We are now left with just one open branch. There are two undecomposed non-
literals on that branch, ‘A ⊃ (B & ~ C)’ and ‘~ ~ A’. We decompose ‘~ ~ A’ fi rst,
since negated negations do not branch when decomposed. Moreover, when we

ber38413_ch04_110-145.indd Page 123 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 123 12/4/12 1:54 PM F-400F-400

124 SENTENTIAL LOGIC: TRUTH-TREES

decompose ‘~ ~ A’, we add ‘A’ to the one open branch of our tree and thus
close that branch and the tree:

 1 A ⊃ (B & ~ C) SM
 2 ~ (C ∨ A)� SM
 3 C � ~ A� SM
 4 ~ C 2 ~ ∨D
 5 ~ A 2 ~ ∨D

 6 C ~ C 3 �D
 7 ~ A ~ ~ A� 3 �D
 �
 8 A 7 ~ ~ D
 �

Several aspects of this tree are of interest. First, the tree is closed, and the
set we are testing, {A ⊃ (B & ~ C), ~ (C ∨ A), C � ~ A}, is therefore truth-
functionally inconsistent. Every attempt to fi nd a set of truth-value assign-
ments on which every member of that set is true ended in failure. Second,
we have shown that the set is inconsistent without decomposing every non-
literal on the tree. The sentence on line 1 was never decomposed, since
decomposing the other nonliterals on the tree generated a closed tree.
What this shows is that the set we are testing would be inconsistent even without
its fi rst member, ‘A ⊃ (B & ~ C)’. Whenever a branch closes we are through
with that branch, even if it contains one or more undecomposed nonliterals.

This fairly concise tree was generated by following our strategies of
giving priority to sentences whose decomposition does not require branch-
ing and to sentences whose decomposition generates one or more closed
branches. Had we ignored these strategies and simply worked straight
down the tree, always decomposing every nonliteral on a given level before mov-
ing to a lower level, the result would have been the following more complex tree:

1
2
3

4
5
6

7
8

9
10
11

A ⊃ (B & ∼ C)�
 ∼ (C ∨ A)�
 C � ∼ A�

SM
SM
SM

1 ⊃D
2 ∼ ∨D
2 ∼ ∨D

3 �D
3 �D

4 &D
4 &D
8 ∼ ∼ D

∼ A
∼ C
∼ A

B & ∼ C�
 ∼ C
 ∼ A

 C
∼ A

 �

 ∼ C
∼ ∼ A�

 C
 ∼ A
 �

 ∼ C
 ∼ ∼ A�

 B
 ∼ C
 A
 �

A
�

ber38413_ch04_110-145.indd Page 124 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 124 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 125

Here we have four branches, whereas in the earlier tree we had only two.
Moreover this tree takes eleven lines to construct; the earlier one took only
eight. But the difference between the trees is only one of complexity. Each tree
shows equally well that the set of sentences we are testing is truth-functionally
inconsistent, for each tree is closed.

The last of the preceding trees can be used to illustrate two important
aspects of tree construction. Note that when we decompose ‘~ (C ∨ A)’ at
lines 5 and 6, the tree already has two open branches. Hence the results of
decomposing this sentence must be entered on each of these open branches.
The results of decomposing a sentence must always be entered on every open
branch that runs through the sentence being decomposed.

Consider the tree after line 8 is completed: Two branches are closed,
but two are open. We next decompose ‘B & ~ C’ on the right-hand branch
only, at lines 9 and 10 (not on the left-hand branch because, although it is
open, it does not go through ‘B & ~ C’). We then decompose each occurrence
of ‘~ ~ A’ on line 8 by writing ‘A’ on line 11, at the end of each branch (since
each branch does go through ‘~ ~ A’). Why didn’t we put ‘A’ on the left-hand
branch at line 9 at the same time that we put ‘B’ on the right-hand branch at
line 9? It is because the policy we follow is this: Trees are to be so constructed that
every line of the tree is fully justifi ed either by writing ‘SM’ in the justifi cation column
or by entering the number of one and only one earlier line and one and only one rule
abbreviation in the justifi cation column. All the entries made on line 7 come from
line 3, and they are all obtained by one rule, Material Biconditional Decom-
position. Had we tried to write ‘A’ at line 9 on the second branch from the
left, we would have had two entries on that line coming from two different
lines, by the use of two different rules, and thus would have been forced to
enter both ‘8 ~ ~ D’ and ‘4 &D’ in the justifi cation column for line 9, in clear
violation of our policy.

We have so far specifi ed three guidelines for keeping truth-trees con-
cise. We repeat them here and add a fourth:

Guidelines for Constructing Truth-Trees

1. Stop when a tree yields the answer to the question being asked.
2. Give priority to decomposing sentences whose decomposition does not

require branching.
3. Give priority to decomposing sentences whose decompositions result in

the closing of one or more branches.
4. When guidelines 1–3 are not applicable, decompose the more complex

sentences fi rst.

The rationale for the fi rst three strategies should be clear by now. The fourth
strategy is designed to save tedious work, for a complex sentence takes more
work to decompose than does a less complex one. Moreover, if a complex

ber38413_ch04_110-145.indd Page 125 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 125 12/4/12 1:54 PM F-400F-400

126 SENTENTIAL LOGIC: TRUTH-TREES

sentence is decomposed early in a tree, chances are there will be only a few
open branches on which the results must be entered. If complex sentences are
left until the end, it is likely that the results of decomposing them will have to
be entered on many open branches. Roughly speaking, a sentence P is more
complex than a sentence Q if decomposing P requires entering more sentences
or longer sentences on a tree than does decomposing Q. In this sense longer
sentences are generally more complex than shorter ones, and material bicondi-
tionals and negations of material biconditionals are more complex than other
sentences of approximately the same length.

The guidelines we have presented are just that, guidelines, not
rules, for constructing truth-trees. Disregarding one or more of them may
produce a more complex tree than is necessary but will never yield a com-
pleted open branch where following them would yield a closed tree, or
vice versa.

As a fi nal example we construct a truth-tree for {(C & ~ D) � A,
(A & C) ⊃ ~ (D ∨ A)}:

(C & ∼ D) � A�
(A & C) ⊃ ∼ (D ∨ A)�

C & ∼ D� ∼ (C & ∼ D)�

∼ (A & C)�∼ (A & C)�

A
C

∼ D

∼ A

∼ A ∼ A∼ C

∼ C

∼ (D ∨ A)� ∼ (D ∨ A)�
∼ D
∼ A

∼ D
∼ A

SM
SM

1 �D
1 �D
3 &D
3 &D

2 ⊃D
7 ∼ ∨D

7 ∼ &D

3 ∼ &D
11 ∼ ∼ D

7 ∼ ∨D
�

�

 � o o
 o o o

�

∼ ∼ D� ∼ C ∼ ∼ D�
D

∼ C

∼ C ∼ ∼ D�
 D D

1
2

3
4
5
6

7
8
9

10

11
12

This tree has fi ve completed open branches. The literals occurring on the left-
most completed open branch are ‘~ C’ and ‘~ A’. Hence this branch tells us
that, to make all the sentences in the set we are testing true, it is suffi cient to
make ‘~ C’ and ‘~ A’ both true, and, to do this, we must assign the truth-value
F to both ‘A’ and ‘C’. But note that ‘D’ is also an atomic component of both
members of that set. No assignment has yet been made to ‘D’ because neither
‘D’ nor ‘~ D’ occurs on the open branch just examined. The signifi cance of

ber38413_ch04_110-145.indd Page 126 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 126 12/4/12 1:54 PM F-400F-400

4.1 THE TRUTH-TREE METHOD 127

the nonoccurrence of both ‘D’ and ‘~ D’ is this: It does not matter which
truth-value we assign to ‘D’; the sentences we are testing will both be true as
long as we assign the truth-value F to ‘A’ and to ‘C’, no matter what we assign
to ‘D’. Thus we can recover two sets of truth-value assignments from the left-
hand open branch, those that assign the values in the fi rst row and those that
assign the values in the second row:

 A C D

 F F T
 F F F

The next open branch we come to contains the literals ‘D’ and ‘~ A’.
Neither ‘C’ nor ‘~ C’ occurs on this second open branch. Hence we can expect
to recover two sets of truth-value assignments from this branch as well, those
that assign the values indicated in the fi rst row below and those that assign the
values indicated in the second row:

 A C D

 F T T
 F F T

In fact, only the fi rst of these rows specifi es a new set of truth-value assign-
ments; the second set we also obtained from the fi rst open branch. The
third open branch contains the same literals as the fi rst, so here there are
no new truth-value assignments to be recovered. The fourth open branch
contains the literals ‘D’, ‘~ C’, and ‘~ A’; from this branch we can recover
the set of truth-value assignments that assign the following values to ‘A’,
‘C’, and ‘D’:

 A C D

 F F T

This set is also yielded by the other three open branches we have examined.
The last open branch contains the literals ‘~ C’, ‘~ A’, and ‘~ D’ and so yields
the set of truth-value assignments that assign the following values to ‘A’, ‘C’,
and ‘D’:

 A C D

 F F F

This is also not a new set of truth-value assignments; we can recover
this set from the fi rst and third open branches as well. In sum, we have fi ve
completed open branches on our tree, and these branches yield three distinct

ber38413_ch04_110-145.indd Page 127 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 127 12/4/12 1:54 PM F-400F-400

128 SENTENTIAL LOGIC: TRUTH-TREES

sets of truth-value assignments. The number of open branches on a completed
truth-tree is, again, no guide to the number of distinct sets of truth-value assign-
ments that can be recovered from that tree. Of course, to show that a set of
sentences is truth-functionally consistent, we need only show that there is at
least one truth-value assignment on which all the members of the set are true.
And, to show that there is such an assignment, it suffi ces to recover one set of
truth-value assignments.

Sets of truth-value assignments can be recovered only from completed
open branches. Closed branches represent unsuccessful attempts to fi nd such
assignments. Thus the branches of a truth-tree should not be thought of as
corresponding to the rows of a truth-table. They do not. However, constructing
a truth-tree for a set of sentences does tell us a lot about what the truth-table
for the same set of sentences would be like. If the tree is closed, we know
that there is no row in the corresponding truth-table in which every member
of the set in question has a T under its main connective. If the tree has a
completed open branch, we know that there is at least one row in that table
in which every member of the set in question has a T under its main connec-
tive. And, if we count the number of distinct sets of truth-value assignments
we can recover, we know that there will be exactly that many rows in the cor-
responding truth-table such that every member of the set in question has a T
under its main connective.

 4.1E EXERCISES

 1. Construct truth-trees to test each of the following sets of sentences for truth-
functional consistency. If a set is consistent, recover one set of truth-value
assignments from your tree that shows this.

 a. {H ∨ G, ~ G & ~ H}
 *b. {K ∨ (M & ~ M), J & ~ C}
 c. {H � J, ~ H ∨ B}
 *d. {~ (M & ~ N), ~ (K ∨ M) & ~ ~ M}
 e. {~ (A ⊃ B), ~ (B ⊃ A)}
 *f. {H & (~ K ⊃ M), ~ K, ~ (H ⊃ M)}
 g. {B ⊃ (D ⊃ E), D & B}
 *h. {(A & B) ∨ (A & C), ~ (A & B)}
 i. {H � G, ~ (H ⊃ G)}
 *j. {~ [~ A ⊃ (B ⊃ C)], A ⊃ C}
 k. {L � (J & K), ~ J, ~ L ⊃ L}
 *l. {H � ~ G, H ⊃ G}
 m. {~ [(A � B) � A]}
 *n. {A ⊃ ~ (A � B), ~ (A ⊃ B)}
 o. {~ [(A ⊃ ~ B) ⊃ (B ⊃ A)], ~ (~ A ⊃ ~ B)}
 *p. {A ⊃ [B ⊃ (C ⊃ A)], ~ (B ⊃ ~ A)}
 q. {(A & ~ C) ∨ (A & ~ B), A ⊃ B, C}
 *r. {~ (A & ~ B) ⊃ ~ A, ~ (~ A & B) ⊃ ~ B, B & ~ A}

ber38413_ch04_110-145.indd Page 128 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 128 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 129

 2. Which of the following claims are true? Explain your reasoning.
 a. If a completed truth-tree contains at least one open branch, then at least one

set of truth-value assignments on which all the members of the set being tested
are true can be recovered from that open branch.

 *b. A completed open branch of a truth-tree yields at most one set of truth-value
assignments on which every member of the set being tested is true.

 c. If a set of sentences has a truth-tree with a completed open branch, then that
set is truth-functionally consistent.

 *d. If a truth-tree is closed, there are no open branches on the tree.
 e. If a truth-tree is closed, the set of sentences being tested is truth-functionally

inconsistent.
 *f. If a truth-tree is closed, every sentence on the tree either has been decomposed

or is a literal.
 g. If there are eight distinct atomic components of the members of a set � of

sentences of SL, then a completed tree for � will have eight branches.
 *h. A completed truth-tree with at least one open branch and at least one closed

branch is an open tree.
 i. If a tree has a closed branch, then there is a truth-value assignment on which

all the members of the set being tested are false.
 *j. If a set � of sentences of SL has a tree with a completed open branch, then

every nonempty subset of � also has a tree with a completed open branch.
 k. If no member of a set � of sentences of SL contains a tilde, then no tree for

� will have a closed branch.

 4.2 USING TRUTH-TREES TO TEST FOR OTHER
TRUTH-FUNCTIONAL PROPERTIES

Because the core concepts of sentential logic other than truth-functional
consistency can be explicated in terms of truth-functional consistency, truth-
trees can be used to determine when these concepts apply to sentences
and sets of sentences of SL. We know that each sentence of SL is either
truth-functionally true, truth-functionally false, or truth-functionally indeter-
minate. Truth-trees can be used to determine into which of these categories
a particular sentence of SL falls. Suppose that we want to know whether
a sentence P is truth-functionally false. Remember that, if P is not truth-
functionally false, there is some truth-value assignment on which it is true;
hence the unit set {P} will be truth-functionally consistent. However, if P is
truth-functionally false, there is no truth-value assignment on which it is true;
hence there is no assignment on which every member of {P} is true, and so
{P} is truth-functionally inconsistent.

A sentence P of SL is truth-functionally false if and only if {P} has a closed
truth-tree.

ber38413_ch04_110-145.indd Page 129 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 129 12/4/12 1:54 PM F-400F-400

130 SENTENTIAL LOGIC: TRUTH-TREES

All the branches of this tree do close, so there is no truth-value assignment on which
the one member of the set we are testing is true. Hence the set is truth-functionally
inconsistent, and its single member is truth-functionally false. In constructing this
tree we were able to save work at lines 5 and 6 by decomposing two sentences,
‘~ (A ⊃ B)’ and ‘~ (A ⊃ C)’, in one step. We could do so because these sentences
occur on the same line, line 4, and are decomposed by the same rule, Negated
Conditional Decomposition. Of course, we also could have done them separately.

Next we use the tree method to determine whether ‘A ⊃ [B ⊃ (A ⊃ B)]’
is truth-functionally false:

1
2
3

4
5
6

7

8
9

[A ⊃ (B & C)] & [∼ (A ⊃ B) ∨ ∼ (A ⊃ C)]�
 A ⊃ (B & C)�

 ∼ (A ⊃ B) ∨ ∼ (A ⊃ C)�

SM
1 &D
1 &D

3 ∨D
4 ∼ ⊃D
4 ∼ ⊃D

2 ⊃D

7 &D
7 &D

∼ (A ⊃ B)�
 A
∼ B

∼ (A ⊃ C)�
 A
∼ C

B & C� ∼ A
 �

∼ A
 �

B & C�

B
C
�

B
C
�

1

2

3

4

A ⊃ [B ⊃ (A ⊃ B)]� SM

1 ⊃D

2 ⊃D

3 ⊃D

∼ A
 o

∼ B
 o

B
o

B ⊃ (A ⊃ B)�

A ⊃ B�

∼ A
 o

This tree obviously has a completed open branch (in fact it has four), so the
unit set we are testing is truth-functionally consistent. Hence there is at least
one truth-value assignment on which the one member of that set is true, and
that sentence is thus not truth-functionally false. (Note that we could have
stopped at line 2, where the fi rst completed open branch ends.)

Although we know that ‘A ⊃ [B ⊃ (A ⊃ B)]’ is not truth-functionally false,
we do not yet know whether this sentence is truth-functionally indeterminate

Here is a tree for the set {[A ⊃ (B & C] & [~ (A ⊃ B) ∨ ~ (A ⊃ C)]}:

ber38413_ch04_110-145.indd Page 130 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 130 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 131

or truth-functionally true. We can fi nd out by constructing another tree.
Suppose that the sentence we are concerned with, ‘A ⊃ [B ⊃ (A ⊃ B)]’, is
truth-functionally true. Then its negation, ‘~ (A ⊃ [B ⊃ (A ⊃ B)])’, must be
truth-functionally false. So we can determine whether the sentence is truth-
functionally true by testing whether its negation is truth-functionally false, that
is, by seeing whether the unit set of its negation has a closed tree. Here is a
tree for that set:

 1 ~ (A ⊃ [B ⊃ (A ⊃ B)])� SM
 2 A 1 ~ ⊃D
 3 ~ [B ⊃ (A ⊃ B)]� 1 ~ ⊃D
 4 B 3 ~ ⊃D
 5 ~ (A ⊃ B)� 3 ~ ⊃D
 6 A 5 ~ ⊃D
 7 ~ B 5 ~ ⊃D
 �

The tree is closed. So there is no truth-value assignment on which the sentence
‘~ (A ⊃ [B ⊃ (A ⊃ B)])’ is true. Since that sentence is a negation, there is
no truth-value assignment on which the sentence of which it is a negation, ‘A
⊃ [B ⊃ (A ⊃ B)]’, is false. That sentence is therefore truth-functionally true.

A sentence P of SL is truth-functionally true if and only if {~ P} has a
closed tree.

A sentence is truth-functionally indeterminate if and only if it is neither truth-
functionally true nor truth-functionally false. Therefore

A sentence P of SL is truth-functionally indeterminate if and only if neither {P}
nor {~ P} has a closed tree.

When we are interested in determining the truth-functional status
of a sentence, the trees we construct will be trees for unit sets of sentences.
However, we shall allow ourselves to talk informally of constructing a tree
for P or for ~ P. Such talk is to be understood as shorthand for talk of trees
for unit sets.

When determining the truth-functional status of a sentence P, we shall
sometimes end up constructing two trees, one for P and one for ~ P. Of course,
if we suspect that P is truth-functionally true, we should fi rst do a truth-tree for
~ P; if we suspect that P is truth-functionally false, we should fi rst do a truth-
tree for P itself.

Recall that all of the branches of our tree for ‘A ⊃ [B ⊃ (A ⊃ B)]’
were completed open branches. One might think that it follows from this
alone that ‘A ⊃ [B ⊃ (A ⊃ B)]’ is truth-functionally true, for surely, if that

ber38413_ch04_110-145.indd Page 131 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 131 12/4/12 1:54 PM F-400F-400

132 SENTENTIAL LOGIC: TRUTH-TREES

sentence were not truth-functionally true, a tree for that sentence would have
at least one closed branch. But this reasoning is mistaken. Many sentences
that are not truth-functional truths have trees all of whose branches are
completed open branches, and many truth-functional truths have trees with
some closed branches. Consider the truth-tree for the simple disjunction
‘A ∨ B’:

1

2

A ∨ B� SM

1 ∨DA
o

B
o

Both branches of this tree are completed open branches. Yet we know that
‘A ∨ B’ is not a truth-functional truth. Its truth-table will mirror the charac-
teristic truth-table for disjunctions; that is, the fi rst three rows under its main
connective will contain T, and the fourth row will contain F.

To see that not all truth-functional truths have completed truth-trees
all of whose branches are open, consider the sentence ‘(A ∨ ~ A) ⊃ (B ⊃ B)’.
This sentence is a truth-functional truth inasmuch as its consequent is a truth-
functional truth (its antecedent is as well), and for this reason there is no
truth-value assignment on which ‘(A ∨ ~ A) ⊃ (B ⊃ B)’ is false. But this tree
for the sentence does have one closed branch:

1

2
3
4
5
6

(A ∨ ∼ A) ⊃ (B ⊃ B)� SM

1 ⊃D
2 ∼ ∨D
2 ∼ ∨D
4 ∼ ∼ D
2 ⊃D

 ∼ (A ∨ ∼ A)�
 ∼ A

 ∼ ∼ A�
 A
 �

B ⊃ B�

∼ B B
oo

There is a way we can avoid constructing two truth-trees for one sen-
tence. Suppose that we construct a tree for a sentence P, thinking it may be
truth--functionally false, but the tree does not close. We now know that P is
either truth-functionally true or truth-functionally indeterminate. If it is true
on all truth-value assignments, it is truth-functionally true; if it is true on only
some assignments, it is truth-functionally indeterminate. We can fi nd out which
is the case by counting the number of distinct sets of truth-value assignments
that are recoverable from the completed open tree—for these sets correspond
to the rows of the truth-table for the sentence being tested in which there is
a T under that sentence’s main connective. If P has n atomic components, we

ber38413_ch04_110-145.indd Page 132 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 132 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 133

shall recover 2n distinct sets of truth-value assignments from our tree if and
only if P is truth-functionally true.

Recall our tree for ‘A ∨ B’, which has two open and no closed
branches. The only literal occurring on the left-hand branch is ‘A’, so from
that branch we can recover two sets of truth-value assignments, one set
assigning the truth-value T to ‘B’ and one set assigning the truth-value F
to ‘B’:

 A B

 T T
 T F

We can also recover two sets of truth-value assignments from the right-hand
open branch. But only one of these is a new set:

 A B

 F T

From neither branch can we recover the set of truth-value assignments that
assign the truth-value F to both ‘A’ and ‘B’, and this is just what we expected,
for a disjunction is false when (and only when) both its disjuncts are false.
By identifying all of the recoverable sets of truth-value assignments—and
fi nding that there are only three such sets—we have shown that ‘A ∨ B’ is
truth-functionally indeterminate, without having to construct two trees for
that sentence.

We can use this same procedure to verify that ‘(A ∨ ~ A) ⊃ (B ⊃ B)’
is indeed truth-functionally true. This sentence has two atomic components, so
we can expect to recover four distinct sets of truth-value assignments from the
tree for this sentence, each set representing one combination of values that the
atomic components ‘A’ and ‘B’ can have. The tree has two completed open
branches. The only literal on the left-hand branch is ‘~ B’, so this branch yields
two sets of truth-value assignments:

 A B

 T F
 F F

The only literal occurring on the right-hand branch is ‘B’, so this branch yields
two new fragments:

 A B

 T T
 F T

ber38413_ch04_110-145.indd Page 133 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 133 12/4/12 1:54 PM F-400F-400

134 SENTENTIAL LOGIC: TRUTH-TREES

We have recovered four distinct sets of truth-value assignments, thus showing
that the sentence being tested is true on every truth-value assignment. We have
verifi ed that it is truth-functionally true, even though the tree for that sentence
has one closed branch.

Suppose we suspect that a sentence P is truth-functionally true and
accordingly construct a tree for the negation of that sentence, ~ P. Suppose
also that our tree has at least one completed open branch, and thus that
in this case our suspicion were wrong: P is not truth-functionally true. The
standard procedure would now be to construct a tree for P to see whether
that sentence is truth-functionally false or truth-functionally indeterminate.
Instead, we can see which distinct sets of truth-value assignments can be
recovered from the tree we have already constructed for ~ P. The sets of
truth-value assignments we can recover are those on which ~ P is true. If we
can recover all sets of truth-value assignments, each set assigning a distinct
combination of values to the atomic components of P, then we know that
~ P is true on every truth-value assignment and is thus truth-functionally
true. And if ~ P is truth-functionally true, P is truth-functionally false. If
we cannot recover all sets of truth-value assignments from our tree, we
know that there is at least one set of truth-value assignments on which ~ P
is false, and hence on which P is true. In this case P is truth-functionally
indeterminate.

The method of recovering truth-value assignments always allows us to
avoid constructing a second tree. However, to use the method, we must com-
plete the tree we are working with (rather than stopping when we have one
completed open branch). As a result, when the tree is complex and the number
of distinct combinations of truth-values that can be assigned to the atomic com-
ponents of a sentence is relatively large—eight, sixteen, thirty-two, or more—it
is often easier to construct a second tree than to recover and count distinct
sets of truth-value assignments.

Sentences P and Q of SL are truth-functionally equivalent if and
only if there is no truth-value assignment on which P and Q have different
truth-values. It follows that sentences P and Q are truth-functionally equiva-
lent if and only if their corresponding material biconditional, P � Q, is
truth-functionally true. And that material biconditional is truth-functionally
true if and only if its negation is truth-functionally false. Since a sentence
of SL is truth-functionally false if and only if its unit set has a closed tree,
it follows that:

Sentences P and Q of SL are truth-functionally equivalent if and only if
{~ (P � Q)} has a closed tree.

In Chapter 3, we showed that ‘(W & Y) ⊃ H’ is truth-functionally equi-
valent to ‘W ⊃ (Y ⊃ H)’ by producing a truth-table revealing that these two
sentences have the same truth-value on every truth-value assignment. We can

ber38413_ch04_110-145.indd Page 134 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 134 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 135

This tree is closed. The sentence at the top of the tree is therefore false on
every truth-value assignment, and the biconditional of which it is the negation
is therefore true on every truth-value assignment. So the immediate compo-
nents of that biconditional, ‘(W & Y) ⊃ H’ and ‘W ⊃ (Y ⊃ H)’, are truth-
functionally equivalent.

In Chapter 3 we also showed that ‘E ∨ H’ and ‘(H ∨ J) ∨ E’ are not
truth-functionally equivalent. We can now show this by using the truth-tree
method. These sentences are truth-functionally equivalent if and only if their
corresponding material biconditional, ‘(E ∨ H) � [(H ∨ J) ∨ E]’, is truth-

1

2
3
4
5
6
7

8

9

 10
11
12
13

14

15

SM

1 ∼ �D
1 ∼ �D
3 ∼ ⊃D
3 ∼ ⊃D
5 ∼ ⊃D
5 ∼ ⊃D

2 ⊃D

8 ∼ &D

2 ∼ ⊃D

10 &D
10 &D

3 ⊃D

14 ⊃D

∼ ((W & Y) ⊃ H] � [W ⊃ (Y ⊃ H)])�

(W & Y) ⊃ H�
 ∼ [W ⊃ (Y ⊃ H)]�
 W
∼ (Y ⊃ H)�
 Y
 ∼ H

∼ [(W & Y) ⊃ H]�
 W ⊃ (Y ⊃ H)�

∼ (W & Y)�

H
�

H
�

∼ W
�

∼ Y
�

∼ Y
�

W & Y�
 ∼ H
 W
 Y

2 ∼ ⊃D

∼ W
�

Y ⊃ H�

now use the truth-tree method to reach the same result. To show that these
sentences are equivalent, we need show only that their corresponding material
biconditional is truth-functionally true, and we can do this by showing that the
negation of that biconditional has a closed truth-tree.

ber38413_ch04_110-145.indd Page 135 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 135 12/4/12 1:54 PM F-400F-400

136 SENTENTIAL LOGIC: TRUTH-TREES

1

2
3
4
5
6
7

8

9
10

11

12

SM

1 ∼ �D
1 ∼ �D
3 ∼ ∨D
3 ∼ ∨D
4 ∼ ∨D
4 ∼ ∨D

2 ∨D

2 ∼ ∨D
2 ∼ ∨D

3 ∨D

11 ∨D

∼ ((E ∨ H) � [(H ∨ J) ∨ E])�

∼ (E ∨ H)�
 (H ∨ J) ∨ E�

 E ∨ H�
∼ [(H ∨ J) ∨ E]�
 ∼ (H ∨ J)�
 ∼ E
 ∼ Η
 ∼ J

E
�

H
�

E
�

H
�

∼ E
∼ H

H ∨ J�

J
 o

Since this truth-tree has a completed open branch, there is at least one truth-
value assignment on which the sentence at the top of the tree is true. That sen-
tence is therefore not truth-functionally false, and the biconditional of which it
is the negation is thus not truth-functionally true. It follows that the sentences
that are the immediate components of that biconditional, ‘E ∨ H’ and ‘(H ∨ J)
∨ E’, are not truth-functionally equivalent. They have different truth-values on
every truth-value assignment that assigns the following values to ‘E’, ‘H’, and ‘J’:

 E H J

 F F T

We can use truth-trees to test for truth-functional entailment. Recall that,
where P is a sentence of SL and � is a set of sentences of SL, � truth-functionally
entails P if and only if there is no truth-value assignment on which every member
of � is true and P is false. It follows that a set � of sentences truth-functionally
entails a sentence P if and only if the set of sentences � ∪ � {~P} is truth-
functionally inconsistent. Hence, to see if a fi nite set � truth-functionally
entails P, we construct a tree for the members of � ∪ {~ P}. Here we have
to be careful to negate the allegedly entailed sentence before constructing
the tree.

functionally true. And that biconditional is truth-functionally true if and only
if the tree for its negation closes:

ber38413_ch04_110-145.indd Page 136 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 136 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 137

1
2
3
4
5

6

7

SM
SM
SM
3 ∼ ⊃D
3 ∼ ⊃D

1 ∨D

2 ⊃D

 ∼ J ∨ S�
 S ⊃ E�
 ∼ (J ⊃ E)�
 J
 ∼ E

∼ J
 �

∼ S
 �

 E
 �

S

A fi nite set � of sentences of SL truth-functionally entails a sentence P of SL
if and only if � ∪ {~ P} has a closed truth-tree.

Does the set {B & K, N ⊃ ~ K, K ∨ ~ K} truth-functionally entail ‘B ⊃ N’?
We can fi nd out by constructing a tree for {B & K, N ⊃ ~ K, K ∨ ~ K, ~ (B ⊃ N)}:

1
2
3
4
5
6
7
8

9

10

 B & K�
 N ⊃ ∼ K�
 K ∨ ∼ K�
∼ (B ⊃ N)�
 B
 K
 B
 ∼ N

SM
SM
SM
SM
1 &D
1 &D
4 ∼ ⊃D
4 ∼ ⊃D

3 ∨D

2 ⊃D

K

o

∼ K
 �

∼ K
 �

∼ N

Since this truth-tree has a completed open branch, there is a truth-value assign-
ment on which all the sentences we are testing are true. Hence there is an
assignment on which the members of the set {B & K, N ⊃ ~ K, K ∨ ~ K} are all
true and the sentence ‘B ⊃ N’ is false. So the entailment does not in fact hold.
The set members are true while ‘B ⊃ N’ is false on every truth-value assignment
that assigns the following values to ‘B’, ‘K’, and ‘N’:

 B K N

 T T F

On the other hand, {~ J ∨ S, S ⊃ E} does truth-functionally entail ‘J ⊃ E’, as
the following closed truth-tree shows:

ber38413_ch04_110-145.indd Page 137 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 137 12/4/12 1:54 PM F-400F-400

138 SENTENTIAL LOGIC: TRUTH-TREES

This truth-tree is closed. So we know that the set consisting of the sentences
we are testing is truth-functionally inconsistent, and hence that the argu-
ment from which the set was formed is truth-functionally valid. Our reason-
ing is this: The closed tree shows that there is no truth-value assignment
on which the premises of our argument are all true and the negation of
the conclusion is also true. Therefore there is no truth-value assignment on
which those premises are true and the conclusion false, so the argument is
truth-functionally valid.

An argument is truth-functionally valid if and only if there is no truth-
value assignment on which the premises are true and the conclusion false. It
follows that an argument is truth-functionally valid if and only if there is no
truth-value assignment on which both the premises and the negation of the
conclusion are true. Hence an argument is truth-functionally valid if and only
if the set consisting of the premises and the negation of the conclusion is truth-
functionally inconsistent:

An argument of SL with a fi nite number of premises is truth-functionally valid
if and only if the set consisting of the premises and the negation of the
conclusion has a closed truth-tree.

In our next example we use the tree method to determine whether the
following argument is truth-functionally valid:

 (~ B ∨ ~ H) ⊃ M
 K & ~ M

 B
Trees here are no different from the trees we have already constructed, but
we must remember to construct a tree for the premises and the negation of the
conclusion, rather than for the premises and the conclusion:

1
2
3
4
5

6

7
8
9

SM
SM
SM
2 &D
2 &D

1 ⊃D

6 ∼ ∨D
6 ∼ ∨D
7 ∼ ∼ D

 (∼ B ∨ ∼ H) ⊃ M�
 K & ∼ M�

∼ B
 K
∼ M

∼ (∼ B ∨ ∼ H)� M
�

∼ ∼ B�
∼ ∼ H

 B
 �

ber38413_ch04_110-145.indd Page 138 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 138 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 139

As another example, we’ll construct a truth-tree to test the following
argument:

 ~ W & ~ L
 (J ⊃ ~ W) � ~ L
 H

 J & H

Our tree for this argument follows. Again, it is the negation of the conclusion
that we use along with the premises, not the conclusion itself:

1
2
3
4
5
6

7
8
9

10

12

SM
SM
SM
SM
1 &D
1 &D

2 �D
2 �D
8 ∼ ∼ D

7 ⊃D

4 ∼ &D

∼ W & ∼ L�
 (J ⊃ ∼ W) � ∼ L�

H
∼ (J & H)�

 ∼ W
∼ L

J ⊃ ∼ W�
∼ L

∼ (J ⊃ ∼ W)
∼ ∼ L�

 L
 �

∼ J

∼ J
 o o

∼ H
�

∼ W

∼ J ∼ H
�

Because this tree has at least one completed open branch, we can recover
a set of truth-value assignments on which the premises and the negation of
the conclusion are true, and hence on which the premises are true and the
conclusion false. So the argument we are testing is truth-functionally invalid.
The recoverable truth-value assignments assign the following values to the four
atomic sentences that occur in the premises and conclusion:

 H J L W

 T F F F

Because an argument is truth-functionally valid if and only if the set con-
sisting of the premises of that argument truth-functionally entails the conclusion
of that argument, the procedures for constructing truth-trees to test for truth-
functional validity and for truth-functional entailment are similar. In the case
of testing for truth-functional validity, the conclusion is negated; in the case of
testing for truth-functional entailment, the allegedly entailed sentence is negated.

ber38413_ch04_110-145.indd Page 139 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 139 12/4/12 1:54 PM F-400F-400

140 SENTENTIAL LOGIC: TRUTH-TREES

 4.2E. EXERCISES

 1. For each of the following sentences, use the truth-tree method to determine
its truth-functional status—that is, whether it is truth-functionally true, truth-
functionally false, or truth-functionally indeterminate.

 a. M & ~ M
 *b. M ∨ ~ M
 c. ~ M ∨ ~ M
 *d. (C ⊃ R) ⊃ [~ R ⊃ ~ (C & J)]
 e. (C ⊃ R) & [(C ⊃ ~ R) & ~ (~ C ∨ R)]
 *f. (K � W) ∨ (A & W)
 g. (~ A � ~Z) & (A & ~ Z)
 *h. [L ∨ (J ∨ ~ K)] & (K & [(J ∨ L) ⊃ ~ K])
 i. (A ∨ B) & ~ (A ∨ B)
 *j. (A ∨ B) ⊃ ~ (A ∨ B)
 k. (A ∨ B) � ~ (A ∨ B)
 *l. ~ (D ∨ F) � ~ (D & F)
 m. ~ (D ∨ F) � (~ D ∨ ~ F)
 *n. ~ (D ∨ F) � (~ D & ~ F)

 2. Construct truth-trees to determine which of the following sentences are truth-
functionally true.

 a. (B ⊃ L) ∨ (L ⊃ B)
 *b. (B ⊃ L) & (L ⊃ B)
 c. (A � K) ⊃ (A ∨ K)
 *d. (A � K) ⊃ (~ A ∨ K)
 e. [(J ⊃ Z) & ~ Z] ⊃ ~ J
 *f. [(J ⊃ Z) & ~ J] ⊃ ~ Z
 g. (B ⊃ (M ⊃ H)) � [(B ⊃ M) ⊃ (B ⊃ H)]
 *h. M ⊃ [L � (~ M � ~ L)]
 i. [(A ⊃ B) ⊃ A] ⊃ A
 *j. (A & ~ B) ⊃ ~ (A & B)
 k. [(A & B) ⊃ C] � [(A ⊃ ~ B) ∨ C]
 *l. (D � ~ E) � ~ (D � E)
 m. [A ⊃ (B & C)] ⊃ [A ⊃ (B ⊃ C)]
 *n. [A ⊃ (B & C)] � [A ⊃ (B ⊃ C)]
 o. [(A & B) ⊃ C] � [A ⊃ (B ⊃ C)]

 3. For each of the following sentences, use the truth-tree method to determine
its truth-functional status—that is, whether it is truth-functionally true, truth-
functionally false, or truth-functionally indeterminate. In each case construct
a tree only for the given sentence. If the tree does not close, determine the
truth-functional status of the sentence by recovering and counting distinct sets
of truth-value assignments.

 a. ~ (~ A ⊃ A)
 *b. J ⊃ (K ⊃ L)
 c. (A � ~ A) ⊃ ~ (A � ~ A)
 *d. (E � H) ⊃ (~ E ⊃ ~ H)
 e. (~ B & ~ D) ∨ ~ (B ∨ D)
 *f. ([(C ⊃ D) & (D ⊃ E)] & C) & ~ E

ber38413_ch04_110-145.indd Page 140 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 140 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 141

 g. [(A ∨ B) & (A ∨ C)] ⊃ ~ (B & C)
 *h. ~ ([(A ∨ B) & (B ∨ C)] & (~ A & ~ B))
 i. (J ∨ ~ K) � ~ ~ (K ⊃ J)
 *j. ~ B ⊃ [(B ∨ D) ⊃ D]

 4. Decide which of the following claims are true and which are false. In each case
explain and defend your reasoning. Use examples where appropriate.

 a. If a completed tree for the unit set of P, {P} has at least one open branch and
at least one closed branch, then P is truth-functionally indeterminate.

 *b. If P is truth-functionally true and has four atomic components, then a com-
pleted tree for {P} will have four open branches.

 c. If a completed tree for {P} has all open branches, then P is truth-functionally
true.

 *d. If {P} has a closed tree and {Q} has a closed tree, then the unit set of every
truth-functionally compound sentence whose immediate components are P
and Q will also have a closed tree.

 e. If {P} and {Q} each has a tree with at least one completed open branch, then
the unit set of every truth-functionally compound sentence that has P and
Q as its immediate components will have a completed tree with an open
branch.

 *f. If a completed truth-tree for {P} has exactly one open branch, then ~ P is
truth-functionally indeterminate.

 g. If P and Q are both truth-functionally true, then P & Q, P ∨ Q, P ⊃ Q, and
P � Q will each have a completed tree all of whose branches are open.

 *h. If P and Q are both truth-functionally true, then P & Q, P ∨ Q, P ⊃ Q, and
P � Q will each have a tree with at least two completed open branches.

 i. If P and Q are both truth-functionally false, then P & Q, P ∨ Q, P ⊃ Q, and
P � Q will each have a closed tree.

 *j. If P and Q are both truth-functionally false, then P & Q, P ∨ Q, P ⊃ Q, and
P � Q will each have a completed tree with at least one closed branch.

 k. If P is truth-functionally true and Q is truth-functionally false, then P & Q,
P ∨ Q, P ⊃ Q, and P � Q will each have a completed tree with at least one
open branch and one closed branch.

 5. Use the truth-tree method to determine whether the following pairs of
sentences are truth-functionally equivalent. For those pairs that are not
truth-functionally equivalent, recover a set of truth-value assignments that
shows this.

 a. ~ (Z ∨ K) ~ Z & ~ K
 *b. ~ (Z ∨ K) ~ Z ∨ ~ K
 c. (B & C) ⊃ R (B ⊃ R) & (C ⊃ R)
 *d. (B ∨ C) ⊃ R (B ⊃ R) & (C ⊃ R)
 e. A & (B ∨ C) (A & B) ∨ (A & C)
 *f. A ∨ (B & C) (A ∨ B) & (A ∨ C)
 g. D ⊃ (L ⊃ M) (D ⊃ L) ⊃ M
 *h. J ⊃ (K � L) (J ⊃ K) � (J ⊃ L)
 i. A ⊃ A B ⊃ B
 *j. A & ~ A B & ~ B
 k. A & ~ B ~ A ∨ B
 *l. ~ (A ∨ B) ~ (A & B)
 m. ~ (A � B) ~ A � ~ B

ber38413_ch04_110-145.indd Page 141 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 141 12/4/12 1:54 PM F-400F-400

142 SENTENTIAL LOGIC: TRUTH-TREES

 *n. A ⊃ (B ⊃ C) (A ⊃ B) ⊃ C
 o. A & (B ∨ C) (A & B) ∨ (A & C)
 *p. A ⊃ (B ⊃ C) A ⊃ (B & C)

 6. Decide which of the following claims are true and which are false. In each
case explain and defend your reasoning. If P and Q are truth-functionally
equivalent, then

 a. A completed truth-tree for {P � Q} will be open.
 *b. A completed truth-tree for {P � ~ Q} will be open.
 c. A completed truth-tree for the set {P, Q} will be open.
 *d. A completed truth-tree for {~ P � ~ Q} will be open.

 7. Use the truth-tree method to determine which of the following claims are
true and which are false. For those that are false, recover a set of truth-value
 assignments that shows this.

 a. {A ⊃ (B & C), C � B, ~ C} |= ~ A
 *b. {K ⊃ H, H ⊃ L, L ⊃ M} |= K ⊃ M
 c. {~ (A � B), ~ A, ~ B} |= C & ~ C
 *d. {~ (~ A & ~ B)} |= A & B
 e. {~ ~ F ⊃ ~ ~ G, ~ G ⊃ ~ F} |= G ⊃ F
 *f. {A & (B ⊃ C)} |= (A & C) ∨ (A & B)
 g. {[(C ∨ D) & H] ⊃ A, D} |= H ⊃ A
 *h. {(G � H) ∨ (~ G � H)} |= (~ G � ~ H) ∨ ~ (G � H)
 i. {(J ∨ M) ⊃ ~ (J & M), M � (M ⊃ J)} |= M ⊃ J
 *j. |= [A ∨ ((K ⊃ ~ H) & ~ A)] ∨ ~ A
 k. |= ~ (A � B) ⊃ (~ A � ~ B)
 *l. |= ~ (C � C) � (C ∨ ~ C)
 m. |= [(A ⊃ B) ⊃ (C ⊃ D)] ⊃ [C ⊃ (B ⊃ D)]

 8. Use the truth-tree method to determine which of the following arguments are
truth-functionally valid and which are truth-functionally invalid. For those that
are truth-functionally invalid, recover a set of a truth-value assignments that
show this.

 a. M ⊃ (K ⊃ B)

 ~ K ⊃ ~ M

 L & M

 B

 *b. (~ J ∨ K) ⊃ (L & M)

 ~ (~ J ∨ K)

 ~ (L & M)

 c. A & (B ∨ C)

 (~ C ∨ H) & (H ⊃ ~ H)

 A & B

 *d. (D � ~ G) & G

 [G ∨ ((A ⊃ D) & A)] ⊃ ~ D

 G ⊃ ~ D

 e. (M � K) ∨ ~ (K & D)

 ~ M ⊃ ~ K

 ~ D ⊃ ~ (K & D)

 M

 *f. (J ⊃ T) ⊃ J

 (T ⊃ J) ⊃ T

 ~ J ∨ ~ T

ber38413_ch04_110-145.indd Page 142 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 142 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 143

 9. Symbolize each of the following arguments and then use the truth-tree method
to determine whether the symbolized argument is truth-functionally valid. If an
argument is not truth-functionally valid, recover a set of truth-value assignments
that show this.

 a. The social security system will succeed if and only if more money is collected
through social security taxes. Unless the social security system succeeds, many
senior citizens will be in trouble. Although members of Congress claim to be
sympathetic to senior citizens, more money won’t be collected through social
security taxes. Hence the social security system will not succeed.

 *b. Either the president and the senators will support the legislation, or the
president and the representatives will support it. Moreover, the representa-
tives will support the legislation, provided that a majority of the people
support it. The people don’t support it. Thus the senators will support the
legislation.

 c. If the president acts quickly the social security system will be saved, and if the
social security system is saved, senior citizens will be delighted. If the president
is pressured by members of the Senate, by members of the House of Repre-
sentatives, or by senior citizens, he will act quickly. However, neither members
of the Senate nor members of the House will pressure the president, but senior
citizens will. Therefore senior citizens will be delighted.

 *d. The president won’t veto the bill if Congress passes it, and Congress will pass it
if and only if both the Senate passes it and the House of Representatives passes
it. But the House of Representatives will pass it only if a majority of Democrats
will vote for it; and indeed, a majority of Democrats will vote for it. Therefore
the president won’t veto the bill.

 e. At most, one of the two houses of Congress will pass the bill. If either
the House of Representatives or the Senate passes it, the voters will be
pleased; but if both houses of Congress pass the bill, the president will
not be pleased. If the president is not pleased, not all the members of the
White House will be happy. Hence some members of the White House will
not be happy.

 g. B & (H ∨ Z)

 ~ Z ⊃ K

 (B � Z) ⊃ ~ Z

 ~ K

 M & N

 *h. A ∨ ~ (B & C)

 ~ B

 ~ (A ∨ C)

 A

 i. A & (B ⊃ C)

 (A & C) ∨ (A & ~ B)

 *j. (G � H) ∨ (~ G � H)

 (~ G � ~ H) ∨ ~ (G � H)

 k. A ⊃ ~ A

 (B ⊃ A) ⊃ B

 A � ~ B

 *l. B ∨ (A & ~ C)

 (C ∨ A) � B

 ~ B ∨ A

 ~ (A ∨ C)

ber38413_ch04_110-145.indd Page 143 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 143 12/4/12 1:54 PM F-400F-400

144 SENTENTIAL LOGIC: TRUTH-TREES

 10. Show that constructing a tree for the premises and conclusion (not the
negation of the conclusion) of an argument of SL yields no useful informa-
tion concerning the validity of the argument by completing the following
exercises.

 a. Give two arguments of SL, one valid and the other invalid, such that the
trees for the premises and conclusion of these arguments both have at least
one completed open branch. Construct the trees and explain why they are
not useful in determining whether the arguments in question are truth-
functionally valid.

 *b. Give two arguments of SL, one valid and the other invalid, such that the trees
for the premises and conclusion of these arguments are both closed. Construct
the trees and explain why they are not useful in determining whether the argu-
ments in question are truth-functionally valid.

 c. Explain why (a) and (b) together constitute a proof that there is no useful
information concerning the validity of an argument to be obtained by doing
a tree for the premises and conclusion of the argument.

 11. Suppose we defi ne a new connective, ‘|’, thus:

P Q P|Q

T T F
T F T
F T T
F F T

 To accommodate this new connective, we have to add two new rules to our
truth-tree system, one for decomposing sentences of the form P|Q and one for
decomposing sentences of the form ~ (P|Q).

 a. Give the rules needed for sentences of these two forms.
 b. Use the new rules to test the sentences ‘A|B’ and ‘(A|A) ∨ (B|B)’ for truth-

functional equivalence, using the truth-tree method. State your result.

GLOSSARY

Core Logical Concepts
TRUTH-FUNCTIONAL CONSISTENCY: A fi nite set � of sentences of SL is truth-

functionally consistent if and only if � has a truth-tree with at least one completed
open branch.

TRUTH-FUNCTIONAL INCONSISTENCY: A fi nite set � of sentences of SL is truth-
functionally inconsistent if and only � has a closed truth-tree.

TRUTH-FUNCTIONAL FALSITY: A sentence P of SL is truth-functionally false if and
only if {P} has a closed truth-tree.

TRUTH-FUNCTIONAL TRUTH: A sentence P of SL is truth-functionally true if and
only if {~ P} has a closed truth-tree.

TRUTH-FUNCTIONAL INDETERMINACY: A sentence P of SL is truth-functionally
indeterminate if and only if neither {P} nor {~ P} has a closed truth-tree.

TRUTH-FUNCTIONAL EQUIVALENCE: Sentences P and Q of SL are truth-
functionally equivalent if and only if {~ (P � Q)} has a closed truth-tree.

ber38413_ch04_110-145.indd Page 144 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 144 12/4/12 1:54 PM F-400F-400

4.2 USING TRUTH-TREES TO TEST FOR OTHER TRUTH-FUNCTIONAL PROPERTIES 145

TRUTH-FUNCTIONAL ENTAILMENT: A fi nite set � of sentences of SL truth-functionally
entails a sentence P of SL if and only if � ∪ {~ P} has a closed truth-tree.

TRUTH-FUNCTIONAL VALIDITY: An argument of SL with a fi nite number of
premises is truth-functionally valid if and only if the set consisting of the premises
and the negation of the conclusion has a closed truth-tree.

Key Truth-Tree Concepts
CLOSED BRANCH: A branch on which contradictory literals occur.
OPEN BRANCH: A branch that is not closed.
COMPLETED OPEN BRANCH: An open branch on which every sentence is either a

literal or has been decomposed (checked off).
CLOSED TRUTH-TREE: A truth-tree each of whose branches is closed.
OPEN TRUTH-TREE: A truth-tree that is not closed.
COMPLETED TRUTH-TREE: A truth-tree each of whose branches is either closed or

a completed open branch.

ber38413_ch04_110-145.indd Page 145 12/4/12 1:54 PM ber38413_ch04_110-145.indd Page 145 12/4/12 1:54 PM F-400F-400

146 SENTENTIAL LOGIC: DERIVATIONS

Chapter 5

In Section 5.1 we introduce the derivation system SD and the concept of a
derivation. In Section 5.2 we introduce syntactic analogues of core logical
concepts: derivable in SD, valid in SD, theorem in SD, equivalent in SD, and
inconsistent in SD. Section 5.3 is devoted to developing strategies for con-
structing derivations in SD, and Section 5.4 introduces the derivation system
SD�, which is an expansion of SD.

SENTENTIAL LOGIC:
DERIVATIONS

 5.1 THE DERIVATION SYSTEM SD

In Chapter 3 we presented semantic accounts of consistency, validity, equiva-
lence, entailment, logical truth, and logical falsity. The semantic truth-table and
truth-tree tests we developed for these properties in Chapters 3 and 4 show
whether there is or is not a truth-value assignment of a particular kind for a
particular sentence or group of sentences. These test procedures can hardly be
said to refl ect the reasoning we do in everyday discourse when we are trying
to show, for example, that an argument is valid or that a set of sentences is
inconsistent. In this chapter we develop techniques that do, at least in broad
outline, parallel the kind of reasoning we do make use of in everyday discourse.
These techniques rely on the form or structure of sentences of SL and are

ber38413_ch05_146-225.indd Page 146 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 146 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 147

not intended to reveal whether there is or is not a truth-value assignment of a
certain sort. These are therefore syntactic techniques.

Consider the following argument:

If Marshall survives the current scandal and if her opponent doesn’t
outspend her then Marshall will be reelected. If it continues to be poli-
tics as usual Marshall will survive the latest scandal. The scandal is no
longer front page news, so it is going to be politics as usual. Marshall’s
opponent will not outspend her. So Marshall will be reelected.

How might we, in everyday discourse, convince ourselves that the foregoing
argument is valid? We will start by providing an explicit paraphrase of the
premises and conclusion of this argument:

If (Marshall will survive the current scandal and it is not the case
that Marshall’s opponent outspends Marshall) then Marshall will be
reelected.

If it continues to be politics as usual then Marshall will survive the
current scandal.

It is not the case that the scandal is still front page news and it
 continues to be politics as usual.

It is not the case that Marshall’s opponent outspends Marshall.

Marshall will be reelected.

Note that we paraphrased the third premise as a conjunction. The task before
us is to show that starting with the premises as assumptions we can, by a series
of obvious inferences, reach the conclusion. We can do this as follows.

1 If (Marshall will survive the current
scandal and it is not the case that
Marshall’s opponent outspends Marshall)
then Marshall will be reelected. Assumption

2 If it continues to be politics as usual
then Marshall will survive the current
scandal. Assumption

3 It is not the case that the scandal is
still front page news and it continues
to be politics as usual. Assumption

4 It is not the case that Marshall’s
opponent outspends Marshall. Assumption

5 It continues to be politics as usual. From 3
6 Marshall will survive the current scandal. From 2 and 5

ber38413_ch05_146-225.indd Page 147 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 147 12/4/12 2:49 PM F-400F-400

148 SENTENTIAL LOGIC: DERIVATIONS

7 Marshall will survive the current scandal
and it is not the case that Marshall’s
opponent outspends Marshall. From 6 and 4

8 Marshall will be reelected. From 1 and 7

The structure of our reasoning may be more apparent when we symbolize these
paraphrases in SL and indicate how each step of our reasoning is justifi ed:

1 (S & ~ O) ⊃ R Assumption
2 C ⊃ S Assumption
3 ~ F & C Assumption
4 ~ O Assumption
5 C From 3
6 S From 2 and 5
7 S & ~ O From 6 and 4
8 R From 1 and 7

In this section we develop the derivation system SD (‘SD’ for ‘Sentential
Derivation’), which consists of eleven derivation rules. Each of the inferences rep-
resented by lines 5 through 8 above will be justifi ed by a syntactic rule of SD. These
rules specify that if we have a sentence or sentences of such and such form or
forms, then we may infer a sentence of a specifi ed form. The rules are called ‘deri-
vation rules’ and the structures we construct using them are called ‘derivations’.

The simplest derivation rule of SD is Reiteration:

Reiteration (R)

 P

� P

Here, and in the rule schema presented below, the ‘�’ sign indicates the sen-
tence that can be inferred or derived using the rule in question. Here is a
simple and admittedly uninteresting use of Reiteration:

1 C Assumption

2 C 1 R

Reiteration is often used in strategies that involve subderivations, which we
introduce later in this section.

The language SL includes fi ve kinds of compound sentences: Negations,
Conjunctions, Disjunctions, Material Conditionals, and Material Biconditionals—
and there are two derivation rules of SD associated with each kind of compound.
One rule is for deriving a sentence from a compound of the specifi ed sort and

ber38413_ch05_146-225.indd Page 148 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 148 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 149

the other is for deriving a compound of the specifi ed sort. The former are
elimination rules. A sentence derived by an elimination rule may have a main
connective other than that after which the rule is named, or no main connec-
tive. The latter are introduction rules, so called because they yield an SL sen-
tence whose main connective is the one after which the rule is named. Some
of these ten rules make use of subderivations. We fi rst present the rules that
do not use subderivations.

5.1.1 THE NON-SUBDERIVATION RULES OF SD

The derivation rules that do not make use of subderivations are

Reiteration (R)

 P

� P

Conjunction Elimination (&E) Conjunction Introduction (&I)

 P & Q P & Q P

� P � Q Q

 � P & Q

Disjunction Introduction (∨I) Conditional Elimination (⊃E)

 P P P ⊃ Q

� P ∨ Q � Q ∨ P P

 � Q

Biconditional Elimination (�E)

 P � Q P � Q

 P Q

� Q � P

These rules are all quite straightforward. The abbreviation for each rule is given
in parentheses following the rule name. In each case the sentence the ‘�’
symbol points to can be derived if the one or two sentences occurring above it
have already been derived. Some of these rules have two versions.

Conjunction Elimination specifi es that if a conjunction occurs on an
earlier line of a derivation then we may enter on a subsequent line
either the left conjunct or the right conjunct of the conjunction.

ber38413_ch05_146-225.indd Page 149 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 149 12/4/12 2:49 PM F-400F-400

150 SENTENTIAL LOGIC: DERIVATIONS

Conjunction Introduction specifi es that if P and Q occur on earlier
lines of a derivation then we may enter P & Q on a subsequent line.
Here the rule template should not be taken as specifying the order in
which P and Q must be derived before P & Q can be entered.

Disjunction Introduction specifi es that if a sentence P occurs on an
earlier line of a derivation then we may enter on a subsequent line
either P ∨ Q or Q ∨ P, where Q is any sentence of SL.

Conditional Elimination specifi es that if P ⊃ Q and P occur on earlier lines
of a derivation, in either order, then we may enter Q on a subsequent line.

Biconditional Elimination specifi es that if a sentence of the form P � Q
and one of its immediate components (P or Q) occur on earlier lines
of a derivation, in either order, then we may enter on a subsequent
line the other immediate component.

Reiteration, which may seem to be a somewhat strange rule, is often used
in strategies that involve subderivations, which we introduce later in this section.

Here is a derivation that uses both Conjunction Introduction and Con-
junction Elimination:

1 B Assumption
2 C & ~ D Assumption

3 ~ D 2 &E
4 B & ~ D 1, 3 &I

The sentences on lines 1 and 2 are assumptions, as is indicated in the justifi ca-
tion column. The sentence on line 3 is obtained from line 2 by Conjunction
Elimination. And the sentence on line 4 is obtained from lines 1 and 3 by
Conjunction Introduction.

Disjunction Introduction may seem to be an odd rule, for given a sen-
tence P why would we want to obtain P ∨ Q or Q ∨ P, both of which are clearly
weaker than the sentence from which they can be obtained? The following
derivation illustrates an application of Disjunction Introduction and why it is
useful, as well as an application of Conditional Elimination:

Derive: H

1 F Assumption
2 (F ∨ G) ⊃ H Assumption

3 F ∨ G 1 ∨I
4 H 2, 3 ⊃E

In this derivation our goal was to obtain ‘H’ from our two assumptions. We indi-
cated this by entering the word ‘Derive:’ followed by the sentence to be derived,
in this case ‘H’, at the top of the derivation. Hereafter we will always so specify
the sentence to be derived. The sentence on line 2 is a material conditional whose

ber38413_ch05_146-225.indd Page 150 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 150 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 151

consequent is ‘H’. We saw that we could derive ‘H’ from this line if we also had
the antecedent, ‘F ∨ G’. This was not one of our assumptions. We did have ‘F’, at
line 1. But from ‘F’ we knew we could derive ‘F ∨ G’ by Disjunction Introduction,
and we did so on line 3. ‘H’ then followed by Conditional Elimination on line 4.

The following derivation uses Biconditional Elimination and Conjunc-
tion Elimination (each twice) as well as Disjunction Introduction and Conjunc-
tion Introduction.

Derive: ~ A & (B ∨ C)

1 B � (D � ~ A) Assumption
2 B & D Assumption

3 B 2 &E
4 D � ~ A 1, 3 �E
5 D 2 &E
6 ~ A 4, 5 �E
7 B ∨ C 3 ∨I
8 ~ A & (B ∨ C) 6, 7 &I

We will discuss strategies for constructing derivations at length later in this chapter.
Here we note that the overall strategy we use in constructing derivations is to try to
fi gure out how the desired sentence might be derived—which sentences we need to
derive in order to derive that sentence, and then which sentences we need to derive
to obtain those sentences, and so on, until we see a path from the given assumptions
to the desired sentence. In the foregoing derivation we noted that the sentence to
be derived is a conjunction and that conjunctions can be obtained by Conjunction
Introduction. So we set about trying to derive the conjuncts of that conjunction,
‘~ A’ and ‘B ∨ C’. We reasoned that ‘~ A’ could be derived from line 1 by two uses
of Biconditional Elimination if we could derive both ‘B’ and ‘D’, and we saw that we
could derive both from line 2, by two uses of Conjunction Elimination. And once we
had ‘B’ on line 3 it was easy to derive ‘B ∨ C’ on line 7 by Disjunction Introduction.

Our next derivation uses all of the Introduction and Elimination rules
of SD we have so far introduced:

Derive: ~ C

1 ~ A � (B & ~ C) Assumption
2 B & D Assumption
3 (D ∨ C) ⊃ ~ A Assumption

4 D 2 &E
5 D ∨ C 4 ∨I
6 ~ A 3, 5 ⊃E
7 B & ~ C 1, 6 �E
8 ~ C 7 &E

Our goal in this derivation was to derive ‘~ C’, and ‘~ C’ is a component of the
sentence on line 1. We realized that ‘~ C’ could be derived from line 1 in two
steps if we could fi rst derive ‘~ A’ and that because ‘~ A’ is the consequent of

ber38413_ch05_146-225.indd Page 151 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 151 12/4/12 2:49 PM F-400F-400

152 SENTENTIAL LOGIC: DERIVATIONS

the material conditional on line 3, it could be derived by Conditional Elimina-
tion if we could fi rst derive ‘D ∨ C’. The latter sentence follows from ‘D’ by
Disjunction Introduction, and ‘D’ follows from the sentence on line 2, ‘B & D’,
by Conjunction Elimination.

 5.1.1E EXERCISES

 1. Complete the following derivations by entering justifi cations for the derived
sentences:

 a. Derive: A & B

1 A Assumption
2 A ⊃ B Assumption

3 B
4 A & B

 *b. Derive: ~ C

1 A ⊃ (B & ~ C) Assumption
2 A & B Assumption

3 A
4 B & ~ C
5 ~ C

 c. Derive: ~ (A � ~ B)

1 ~ (A � ~ B) � (~ C ∨ ~ D) Assumption
2 A ⊃ (~ D & C) Assumption
3 D & A Assumption

4 A
5 ~ D & C
6 ~ D
7 ~ C ∨ ~ D
8 ~ (A � ~ B)

 *d. Derive: (E & D) & (~ B & C)

1 ~ B ⊃ (D & E) Assumption
2 (A & ~ B) & C Assumption

3 A & ~ B
4 ~ B
5 D & E
6 D
7 E
8 E & D
9 C

10 ~ B & C
11 (E & D) & (~ B & C)

ber38413_ch05_146-225.indd Page 152 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 152 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 153

 e. Derive: F ⊃ ~ G

1 (E ∨ H) ⊃ (F ⊃ ~ G) Assumption
2 (C ∨ D) � (E & ~ H) Assumption
3 C Assumption

4 C ∨ D
5 E & ~ H
6 E
7 E ∨ H
8 F ⊃ ~ G

 *f. Derive: ~ G

1 (H & ~ I) ⊃ ~ G Assumption
2 (F ∨ ~ G) � H Assumption
3 F & ~ I Assumption

4 F
5 F ∨ ~ G
6 H
7 ~ I
8 H & ~ I
9 ~ G

 g. Derive: D � ~ B

1 (A & ~ B) ⊃ C Assumption
2 (C ∨ D) ⊃ (D � ~ B) Assumption
3 ~ B & A Assumption

4 A
5 ~ B
6 A & ~ B
7 C
8 C ∨ D
9 D � ~ B

 *h. Derive: M & ~ N

1 (K & ~ L) & (~ I & J) Assumption
2 ~ L ⊃ M Assumption
3 (K & ~ I) ⊃ ~ N Assumption

4 K & ~ L
5 ~ L
6 M
7 K
8 ~ I & J
9 ~ I

10 K & ~ I
11 ~ N
12 M & ~ N

ber38413_ch05_146-225.indd Page 153 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 153 12/4/12 2:49 PM F-400F-400

154 SENTENTIAL LOGIC: DERIVATIONS

 i. Derive: ~ D & ~ F

1 (A ∨ ~ B) � (A & ~ F) Assumption
2 C � ~ B Assumption
3 C & ~ D Assumption

4 ~ D
5 C
6 ~ B
7 A ∨ ~ B
8 A & ~ F
9 ~ F

10 ~ D & ~ F

 *j. Derive: ~ (A ∨ B)

1 A ⊃ [~ B ⊃ ~ (A ∨ B)] Assumption
2 C � (A & ~ B) Assumption
3 ~ D & C Assumption

4 C
5 A & ~ B
6 A
7 ~ B ⊃ ~ (A ∨ B)
8 ~ B
9 ~ (A ∨ B)

 2. Complete the following derivations.
 a. Derive: D & ~ B

1 A & ~ B Assumption
2 (A ∨ ~ C) ⊃ D Assumption

 *b. Derive: F & ~ H

1 F � ~ G Assumption
2 D ⊃ ~ G Assumption
3 ~ H & D Assumption

 c. Derive: ~ D ∨ E

1 A & ~ B Assumption
2 ~ B � (A � ~ D) Assumption

 *d. Derive: ~ E ∨ (G & ~ F)

1 D � (C & ~ E) Assumption
2 F & (F � D) Assumption

ber38413_ch05_146-225.indd Page 154 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 154 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 155

 e. Derive: H & ~ I

1 ~ F & ~ G Assumption
2 ~ G ⊃ H Assumption
3 (H & ~ F) � ~ I Assumption

 f. Derive: D & ~ D

*1 (~ A & B) ⊃ (B � D) Assumption
2 B ⊃ (C & ~ A) Assumption
3 ~ D & B Assumption

 g. Derive: F & ~ G

1 (F ∨ ~ G) ⊃ (F & ~ H) Assumption
2 ~ H ⊃ ~ G Assumption
3 (~ H ⊃ ~ G) � F Assumption

5.1.2 THE SUBDERIVATION RULES OF SD

All fi ve of the derivation rules we are about to introduce make use of sub-
derivations. A subderivation is useful when we want to show that if we add an
assumption to those we already made then we can derive a sentence that we
may not be able to derive without the additional assumption. But every time
we use a subderivation—which adds a new assumption—we must eventually end
that subderivation and discontinue reliance on the assumption that starts that
subderivation. Each subderivation rule provides a way of ending the subderiva-
tion it relies on. Once the way subderivations work is understood, it is fairly easy
to master the subderivation rules. Our explication of Conditional Introduction
will illustrate how subderivations work.

Conditional Introduction (⊃I)

 P

 Q
� P ⊃ Q

Suppose we are trying to complete the following derivation:

Derive: A ⊃ H

1 A ⊃ G Assumption
2 G ⊃ H Assumption

 A ⊃ H

Here we have entered the sentence we want to derive, ‘A ⊃ H’, some distance
below our assumptions—because we want the last line of our derivation to be

ber38413_ch05_146-225.indd Page 155 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 155 12/4/12 2:49 PM F-400F-400

156 SENTENTIAL LOGIC: DERIVATIONS

‘A ⊃ H’ but we don’t yet know how we can get from our assumptions to ‘A ⊃ H’.
Intuitively, we might reason as follows. We have ‘A ⊃ G’ as an assumption. If
we also had ‘A’, we could derive ‘G’ by Conditional Elimination. And once we
have ‘G’, we can derive ‘H’ by Conditional Elimination. That is, given ‘A ⊃ G’
and ‘G ⊃ H’ we can derive ‘H’ if we also have ‘A’. We can encapsulate this
reasoning in a subderivation:

Derive: A ⊃ H

1 A ⊃ G Assumption
2 G ⊃ H Assumption

3 A A / ⊃I

4 G 1, 3 ⊃E
5 H 2,4 ⊃E
6 A ⊃ H 3–5 ⊃I

At line 3 we started a derivation within our existing derivation—hence the
name ‘subderivation’. In this case our purpose in doing so was to show that
once we assume ‘A’ we can derive ‘H’ (in two steps), using our original
assumptions and the assumption that starts our subderivation. Lines 3–5 show
that, given our original assumptions, if we have ‘A’ we can derive ‘H’. Note
that this does not show that ‘H’ is a consequence of our original assumptions.
Rather, we have shown that the conditional ‘A ⊃ H’ is a consequence of the
original assumptions because we have shown how to derive ‘H’ given ‘A’. It is
the entire subderivation, which occupies lines 3–5, that justifi es our entering
‘A ⊃ C’ on line 6. We indicate this by entering, in the justifi cation column,
‘3–5 ⊃I’, not ‘3,5 ⊃I’. This notation references the entire subderivation, not
just lines 3 and 5.

We often use the reasoning process that is captured by Conditional
Introduction in everyday reasoning. For example, suppose we know that if
Jean gets an A in Biology 400 her grade point average will be 3.8, and that
if her grade point average is 3.8 she will graduate with honors. If we assume
she does get an A in Biology 400 it follows that she will have a grade point
average of 3.8, and from this and what we know about the requirements for
graduating with honors, it follows that Jean will graduate with honors. Of
course, we do not conclude that Jean will graduate with honors, but rather
that if she gets an A in Biology 400 then she will graduate with honors. If
we use ‘A’ to symbolize ‘Jean will get an A in Biology 400’, ‘G’ to symbol-
ize ‘Jean will have a grade point average of 3.8’, and ‘H’ to symbolize ‘Jean
will graduate with honors’, the derivation we constructed using Conditional
Introduction formalizes this reasoning about Jean and her graduating with
honors.

There are several points to note before introducing the remaining
subderivation rules. First, the vertical lines in a derivation are called ‘scope
lines’. Assumptions with just one scope line to their left are the primary

ber38413_ch05_146-225.indd Page 156 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 156 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 157

assumptions of a derivation. Primary assumptions hold and are available for
the entire derivation, as is indicated by the scope line to their immediate
left that continues to the end of the derivation. Each subderivation begins
with an auxiliary assumption, and the scope line to the immediate left of the
auxiliary assumption indicates how far the scope of that assumption extends;
the auxiliary assumption may be appealed to only so long as the scope line
to its immediate left continues. In the above example there is one subderiva-
tion, occupying lines 3 through 5. The assumption of that subderivation is in
force only through line 5.

We construct subderivations so that we can use rules that require sub-
derivations. In the above example we constructed the subderivation so that we
could use the rule Conditional Introduction. This rule calls for assuming, as
an auxiliary assumption, the antecedent of the material conditional we wish to
derive, and then deriving the consequent of that material conditional within
the subderivation. In the justifi cation column for a sentence entered as an aux-
iliary assumption, we write ‘A’ (for ‘Assumption’) and the abbreviation for the
rule that calls for a subderivation of the sort we are constructing (here ‘⊃I’),
separated by a slash (‘/’).

We end a subderivation by using the rule indicated on the assumption
line of the subderivation to derive a sentence outside the scope of the subderi-
vation, citing the entire subderivation. It is the entire subderivation that justi-
fi es applying a subderivation rule. When a subderivation is ended (by using
a rule that cites the entire subderivation) we say that the assumption of that
subderivation has been discharged and is closed. The scope of an assumption
includes the assumption itself and all sentences and subderivations that occur
subsequent to the assumption but before it is discharged. Once an assumption
is discharged, neither it nor any sentence or subderivation lying within its scope
can be appealed to in justifying subsequent lines of a derivation. We refer to
assumptions that have not been discharged as being open, and to those that
have been discharged as being closed. In our example, the scope of the assump-
tion on line 3 extends only to line 5.

We can now give an informal account of accessibility: A sentence or
subderivation is accessible at line n of a derivation (can be appealed to in
justifying line n) if and only if every scope line to the left of the sentence or
subderivation is also to the left of the sentence on line n.

Thus, scope lines, the vertical lines to the left of the sentences of a
derivation, provide a visual way of telling when a sentence or subderivation is
accessible. The leftmost vertical line is the scope line for the entire derivation.
Primary assumptions, if any, appear to the immediate right of this scope line
at the top of the derivation. Every auxiliary assumption has its own scope line,
a line that continues only so long as that assumption remains open. A sen-
tence is accessible only as long as the scope lines to its left continue. Primary
assumptions, of course, are never discharged. If a sentence or subderivation is
accessible at a given line of a derivation then it can be appealed to in justify-
ing the sentence entered on that line.

ber38413_ch05_146-225.indd Page 157 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 157 12/4/12 2:49 PM F-400F-400

158 SENTENTIAL LOGIC: DERIVATIONS

Here is another derivation that uses Conditional Introduction:

Derive: A ⊃ (B ⊃ C)

1 C Assumption

2 A A / ⊃I

3 B A / ⊃I

4 C 1 R
5 B ⊃ C 3–4 ⊃I
6 A ⊃ (B ⊃ C) 2–5 ⊃I

This derivation contains two subderivations, one nested within the other.
The innermost subderivation occupies lines 3–4; the outer subderivation
lines 2–5. At line 4 we were able to use Reiteration to derive ‘C’ because
every scope line to the left of ‘C’ on line 1 (there is only one) is also to
the left of the sentence we entered on line 4. And on line 5 we were able
to enter ‘B ⊃ C’ by Horseshoe Introduction because every scope line to the
left of ‘B ⊃ C’ at line 5 (there are two) is also to the left of the subderiva-
tion occupying lines 3–4. Note that while there are three scope lines to the
left of the sentences on lines 3 and 4, the rightmost of these is part of the
subderivation occupying lines 3–4. So there are 2, not 3, scope lines to the
left of that subderivation. Neither ‘A’, the auxiliary assumption that begins
the subderivation occupying lines 2–5, nor ‘B’, the auxiliary assumption that
begins the subderivation occupying lines 3–4, was appealed to in deriving
the sentences ‘B ⊃ C’ and ‘C’ within those subderivations. It is often the case
that the auxiliary assumption that begins a subderivation is not appealed
to until the subderivation is ended (when it is appealed to as part of the
entire subderivation).

The following variant of the previous derivation is also constructed in
accordance with the rules of SD.

Derive: A ⊃ (B ⊃ C)

1 C Assumption

2 A A / ⊃I

3 B A / ⊃I

4 B & C 1, 3 &I
5 C 4 &E
6 B ⊃ C 3–5 ⊃I
7 A ⊃ (B ⊃ C) 2–6 ⊃I

At line 4 both ‘C’ on line 1 and ‘B’ on line 3 are accessible, so our use of Conjunc-
tion Introduction is allowed. However, we did not choose to construct this deriva-
tion, because it is one line longer than our earlier derivation of ‘A ⊃ (B ⊃ C)’ from

ber38413_ch05_146-225.indd Page 158 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 158 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 159

‘C’. On the other hand, the following variation is not constructed in accordance
with the rules of SD.

Derive: A ⊃ (B ⊃ C)

1 C Assumption

2 A A / ⊃I

3 B A / ⊃I

4 C 1 R
5 B ⊃ C 3–4 ⊃I
6 A ⊃ (B ⊃ C) 2–5 ⊃I
7 B & C 3, 4 &I MISTAKE!

Neither the sentence on line 3 nor that on line 4 is accessible from line 7.
There are two scope lines to the left of the sentences on lines 3 and 4 that do
not extend to the left of the sentence we tried to enter on line 7 (the assump-
tions on lines 2 and 3 were closed before line 7, so sentences falling within the
scope of either assumption cannot be appealed to on line 7).

The remaining four subderivation rules are as follows:

Negation Introduction (~ I) Negation Elimination (~ E)

 P ~ P

 Q Q

 ~ Q ~ Q

� ~ P � P

Disjunction Elimination (∨E) Biconditional Introduction (�I)

 P ∨ Q P

 P Q

 R Q

 Q P

 R � P � Q

� Q

Negation Introduction specifi es that if we can derive a sentence and
its negation, Q and ~ Q, within the scope of an auxiliary assumption
P, then we may end the subderivation and enter ~ P on the following
line. Here and with the remaining subderivation rules the template
should not be taken as specifying the order in which sentences must
be derived within the subderivation.

ber38413_ch05_146-225.indd Page 159 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 159 12/4/12 2:49 PM F-400F-400

160 SENTENTIAL LOGIC: DERIVATIONS

Negation Elimination specifi es that if we can derive a sentence and
its negation, Q and ~ Q, within the scope of an auxiliary assump-
tion ~ P, then we may end the subderivation and enter P on a sub-
sequent line.

Disjunction Elimination specifi es that if P ∨ Q occurs on an earlier
line of a derivation and subsequent to it there are two subderivations,
one of R from P and the other of R from Q, then R may be entered
on a subsequent line.

Biconditional Introduction specifi es that if the derivation contains two
subderivations, one of Q from P and one of P from Q, then P � Q
may be entered on a subsequent line.

Negation Introduction and Negation Elimination both parallel a pat-
tern of reasoning we often use in everyday life, reductio ad absurdum reasoning.
In this reasoning, we make an assumption and then show that an absurd result
follows from that assumption and whatever other assumptions we may already
have made. To avoid the absurdity we reject one of our assumptions. Here is
an example of reductio ad absurdum reasoning. Suppose we know the following:

Billings was shot to death in New York City during the evening hours
of October 25. Billings’ partner, Jenkins, became sole owner of their
company as a result of Billing’s death, and Jenkins is in dire fi nancial
straits and has always hated his partner.

We want to explore the possibility that Jenkins shot Billings, and we do so by
assuming that he did. Further investigation reveals that Jenkins was seen sitting
in a Pizza Uno restaurant in Chicago the entire evening of the shooting. We
now reason as follows:

Suppose Jenkins shot Billings. Then Jenkins was in New York on the
evening of the 25th. But we know he was in Chicago that entire evening,
so he was not in New York. Therefore, Jenkins did not shoot Billings.

The assumption that Jenkins shot Billings, along with our knowledge that
he was in Chicago the entire evening of October 25, leads to the absurd-
ity the Billings was both in New York City and not in New York City that
evening. So we rejected our assumption and concluded that Jenkins did not
shoot Billings.

Both Negation Introduction and Negation Elimination mirror this kind
of reasoning. In both cases we make an assumption and then derive a sentence
and its negation (Q and ~ Q). It would be absurd to remain committed to both
a sentence and its negation. But we are so committed as long as we can derive
both. So we reject the assumption that starts the subderivation—we close the
subderivation and enter P (if our assumption was ~ P) or ~ P (if our assump-
tion was P).

ber38413_ch05_146-225.indd Page 160 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 160 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 161

Here are some fairly simple derivations in which Negation Introduction
and Negation Elimination are used:

Derive: ~ H

1 H ⊃ F Assumption
2 ~ F Assumption

3 H A / ~ I

4 F 1, 3 ⊃E
5 ~F 2 R
6 ~ H 3–5 ~ I

Derive: N

1 ~ N ⊃ S Assumption
2 S ⊃ C Assumption
3 C ⊃ N Assumption

4 ~ N A / ~ E

5 S 1, 4 ⊃E
6 C 2, 5 ⊃E
7 N 3, 6 ⊃E
8 ~N 4 R
9 N 4–8 ~ E

We noted when we introduced the rule Reiteration that it would often be useful
in derivations involving subderivations, and we have used Reiteration in both
of these derivations (as we did in an earlier use of Conditional Introduction).
Next we present a derivation that uses both Negation Introduction and Nega-
tion Elimination:

Derive: ~ A & B

1 ~ (A ~∨ B) Assumption

2 A A / ~ I

3 A ~∨ B 2 ∨I
4 ~ (A ~∨ B) 1 R
5 ~ A 2–4 ~ I
6 ~ B A / ~ E

7 A ~∨ B 6 ∨I
8 ~ (A ~∨ B) 1 R
9 B 6–8 ~ E

10 ~ A & B 5, 9 &I

In this derivation the sentence to be derived is a conjunction, so we opted to
derive it by Conjunction Introduction. Having made that decision, we were left

ber38413_ch05_146-225.indd Page 161 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 161 12/4/12 2:49 PM F-400F-400

162 SENTENTIAL LOGIC: DERIVATIONS

with two goals: deriving ‘~ A’ and deriving ‘B’. We derived ‘~ A’ by Negation
Introduction and ‘B’ by Negation Elimination. One key to constructing this
derivation was recognizing that our primary assumption, ‘~ (A ∨ ~ B)’, was a
negation and hence was a candidate for serving as the negation ~ Q that would
be needed within both our Negation Introduction and our Negation Elimina-
tion subderivations. The other key was recognizing that the sentence Q in this
case, ‘A ∨ ~ B’, could be derived by Disjunction Introduction from the assump-
tion ‘A’ in the fi rst subderivation and from ‘~ B’ in the second.

Disjunction Elimination also parallels a pattern of reasoning we use in
everyday life. Here is an example:

The CEO is incompetent and will either resign or be fi red. If she resigns
she will move to Boston to be near her son. If she is fi red she will move
to Boston to live with her son. So the CEO will move to Bostson.

In this example we know the CEO will either resign or be fi red. If the fi rst
happens, she will end up in Boston, and if the second happens, she will also
end up in Boston. So whichever happens, the CEO will end up in Boston. The
following derivation formalizes this reasoning:

Derive: B

1 I & (R ∨ F) Assumption
2 R ⊃ (B & N) Assumption
3 F ⊃ (B & L) Assumption

4 R ∨ F 1 & E
5 R A / ∨E

6 B & N 2, 5 ⊃E
7 B 6 &E

8 F A / ∨E

9 B & L 3, 8 ⊃E
10 B 9 &E
11 B 4, 5–7, 8–10 ∨E

In this derivation we derived a disjunction on line 4 and then constructed two
subderivations. The fi rst has ‘R’, the left disjunct of ‘R ∨ F’, as its auxiliary
assumption. The subderivation shows that given ‘R’, ‘B’ can be derived. The
second subderivation shows that ‘B’ can also be derived from the right disjunct,
‘F’. Having derived ‘B’ from each disjunct, we entered ‘B’ on line 11. The jus-
tifi cation for line 11 cites the disjunction on line 4 and the two subderivations,
one occupying lines 5–7 and the other lines 8–10.

Material biconditionals of SL, sentences of the form P � Q, have the
force of two material conditionals, (P ⊃ Q) and (Q ⊃ P). Hence it should not
be surprising that Biconditional Introduction requires two subderivations, one

ber38413_ch05_146-225.indd Page 162 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 162 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 163

in which Q is derived from P and one in which P is derived from Q. Here is
a simple use of Biconditional Introduction:

Derive: A � B

1 A ⊃ B Assumption
2 B ⊃ A Assumption

3 A A / �I

4 B 1, 3 ⊃E

5 B A / �I

6 A 2, 5 ⊃E
7 A � B 3–4, 5–6 �I

The following derivation uses both Biconditional Elimination and Biconditional
Introduction:

Derive: A � C

1 A � B Assumption
2 B � C Assumption

3 A A / �I

4 B 1, 3 �E
5 C 2, 4 �E
6 C A / �I

7 B 2, 6 �E
8 A 1, 7 �E
9 A � C 3–5, 6–8 �I

 5.1.2E EXERCISES

 1. Complete the following derivations by entering the appropriate justifi cations:
 a. Derive: (A ⊃ B) & (A ⊃ ~ D)

1 A ⊃ (B & ~ D) Assumption

2 A

3 B & ~ D
4 B
5 A ⊃ B
6 A

7 B & ~ D
8 ~ D
9 A ⊃ ~ D

10 (A ⊃ B) & (A ⊃ ~ D)

ber38413_ch05_146-225.indd Page 163 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 163 12/4/12 2:49 PM F-400F-400

164 SENTENTIAL LOGIC: DERIVATIONS

 *b. Derive: A ⊃ [B ⊃ (C ∨ D)]

1 (A & B) ⊃ C Assumption

2 A

3 B

4 A & B
5 C
6 C ∨ D
7 B ⊃ (C ∨ D)
8 A ⊃ [B ⊃ (C ∨ D)]

 c. Derive: B

1 ~ B ⊃ B Assumption

2 ~ B

3 B
4 ~ B
5 B

 *d. Derive: A ⊃ ~ B

1 A ⊃ (B ⊃ C) Assumption
2 ~ C Assumption

3 A

4 B ⊃ C
5 B

6 C
7 ~ C
8 ~ B
9 A ⊃ ~ B

 e. Derive: E ∨ D

1 A ∨ (B & ~ C) Assumption
2 A ⊃ D Assumption
3 ~ C ⊃ E Assumption

4 A

5 D
6 E ∨ D
7 B & ~ C

8 ~ C
9 E

10 E ∨ D
11 E ∨ D

ber38413_ch05_146-225.indd Page 164 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 164 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 165

 *f. Derive: E

1 F ⊃ (~ G ∨ ~ H) Assumption
2 (~ G ⊃ E) & (~ E ⊃ H) Assumption
3 F Assumption

4 ~ G ∨ ~ H
5 ~ G

6 ~ G ⊃ E
7 E
8 ~ H

9 ~ E ⊃ H
10 ~ E

11 H
12 ~ H
13 E
14 E

 g. Derive: F � ~ G

1 (F ⊃ ~ G) & (~ G ⊃ F) Assumption

2 F

3 F ⊃ ~ G
4 ~ G
5 ~ G

6 ~ G ⊃ F
7 F
8 F � ~ G

 *h. Derive: H � J

1 (H & I) � J Assumption
2 H � I Assumption

3 H

4 I
5 H & I
6 J
7 J

8 H & I
9 H

10 H � J

ber38413_ch05_146-225.indd Page 165 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 165 12/4/12 2:49 PM F-400F-400

166 SENTENTIAL LOGIC: DERIVATIONS

 2. Complete the following derivations.
 a. Derive: A � B

1 A Assumption
2 B Assumption

 *b. Derive: ~ B

1 B ⊃ ~ B Assumption

 c. Derive: A

1 ~ ~ A Assumption

 *d. Derive: H & ~ I

1 I & ~ I Assumption

 e. Derive: B

1 ~ B ⊃ C Assumption
2 ~ C � A Assumption
3 A Assumption

 *f. Derive: A � C

1 A � ~ B Assumption
2 ~ B � C Assumption

 g. Derive: ~ H

1 H ⊃ I Assumption
2 ~ I Assumption

 *h. Derive: ~ G

1 ~ F ⊃ ~ G Assumption
2 ~ F ∨ H Assumption
3 H � ~ G Assumption

 i. Derive: ~ (F ∨ G)

1 (F ∨ G) ⊃ (H & I) Assumption
2 ~ H Assumption

 *j. Derive: ~ (F & G)

1 F � (~ G & H) Assumption

ber38413_ch05_146-225.indd Page 166 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 166 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 167

5.1.3 CONCLUDING COMMENTS

All the derivation rules of SD have been introduced. We repeat them here, for easy
reference. Rather than listing the rules that do not use subderivations separately
from those that do use subderivations, we here arrange the derivation rules by the
kind of compound that is either appealed to or introduced. The rules can also be
found on the inside front cover of this text.

 Reiteration (R)

 P

� P

Conjunction Introduction (&I) Conjunction Elimination (&E)

 P P & Q P & Q

 Q � P � Q

� P & Q

Conditional Introduction (⊃I) Conditional Elimination (⊃E)

 P P ⊃ Q

 Q P

� P ⊃ Q � Q

Negation Introduction (~ I) Negation Elimination (~ E)

 P ~ P

 Q Q

 ~ Q ~ Q

� ~ P � P

Disjunction Introduction (∨I) Disjunction Elimination (∨E)

 P P P ∨ Q

� P ∨ Q � Q ∨ P P

 R

 Q

 R
 � R

ber38413_ch05_146-225.indd Page 167 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 167 12/4/12 2:49 PM F-400F-400

168 SENTENTIAL LOGIC: DERIVATIONS

Biconditional Introduction (�I) Biconditional Elimination (�E)

 P P � Q P � Q

 Q P Q

 Q � Q � P

 P
 P � Q

We have presented the derivation rules of SD and constructed a fair
number of derivations. But we haven’t actually defi ned the term ‘derivation in
SD’. We do so now:

A derivation in SD is a series of sentences of SL, each of which is either
an assumption or is obtained from previous sentences by one of the rules
of SD.

We will continue to annotate our derivations with line numbers, scope and
assumption lines, and line justifi cations. However, these annotations are not,
as the above defi nition makes clear, offi cially parts of derivations.

There are many truth-preserving templates we do not include as rules
of either SD or SD�. Why are some included and others not? For SD the
answer is fairly simple. We want a derivation system to be truth-preserving
(include no rule that ever takes us from truths to a falsehood). A system
that has this property, never taking us from truths to a falsehood, is said to
be sound. We also want our derivation systems to be complete. A derivation
system is complete if and only if every sentence that is truth-functionally
entailed by a set of sentences can be derived from that set. SD is complete
in this sense and it is a fairly minimalist derivation system—it includes only
two rules for each connective.1 SD� will also be complete but includes addi-
tional derivation rules, some because they mirror reasoning patterns that are
common in everyday discourse, some because they have historically been
included in derivation systems. We prove that both SD and SD� are complete
in Chapter 6.

Before ending this section we will take time to caution against some
mistakes that are commonly made while constructing derivations. First, the
derivation rules of SD are rules of inference, which is to say that when they
appeal to a line earlier in the derivation they appeal to the entire sentence on
that line, not to a sentence that is a component of a longer sentence. Here is

1Two rules of SD, Reiteration and Negation Introduction, could be dropped without making the system incom-
plete. This is not true of any of the other rules of SD.

ber38413_ch05_146-225.indd Page 168 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 168 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 169

an attempt at a derivation that misuses Conjunction Elimination by appealing
to a component of a longer sentence.

Derive A ⊃ C

1 A ⊃ (B & C) Assumption

2 A A / ⊃I

3 C l &E MISTAKE!
4 A ⊃ C 2–3 ⊃I

The mistake at line 3 results from trying to apply Conjunction Elimination to
a component of a longer sentence. The sentence on line 1 is not of the form
P & Q, and while a component of that sentence, ‘B & C’, is of that form, rules
of inference work, again, on sentences that are not themselves parts of longer
sentences. A correct derivation for this problem is

Derive A ⊃ C

1 A ⊃ (B & C) Assumption

2 A A / ⊃I

3 B & C 1, 2 ⊃E
4 C 3 &E
5 A ⊃ C 2–4 ⊃I

The sentence on line 3 is of the form P & Q. It is not part of a longer sen-
tence on that line. So we can apply Conjunction Elimination to it and obtain
‘C’ at line 4.

Here is a similar misuse of a derivation rule.

Derive: C

1 B ⊃ (A ⊃ C) Assumption
2 A Assumption

3 C 1, 2 ⊃E MISTAKE!

Here an attempt has been made to apply Conditional Elimination to a com-
ponent, ‘A ⊃ C’ of the longer sentence ‘B ⊃ (A ⊃ C)’ and this cannot be
done. In this case there is no correct derivation. ‘C’ does not follow from the
assumptions on lines 1 and 2.

Another common mistake is to appeal to lines or subderivations that
are not accessible. In a derivation a sentence or subderivation is accessible
at line n (it can be appealed to when justifying a sentence on line n) if
and only if that sentence or subderivation does not lie within the scope of
a closed assumption, that is, an assumption that has been discharged prior

ber38413_ch05_146-225.indd Page 169 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 169 12/4/12 2:49 PM F-400F-400

170 SENTENTIAL LOGIC: DERIVATIONS

to line n. Here is an attempt at a derivation that twice violates the acces-
sibility requirement:

Derive: B

1 B A / ⊃I

2 A A / ⊃I

3 B 1 R
4 A ⊃ B 2–3 ⊃I
5 B ⊃ (A ⊃ B) 1–4 ⊃I
6 A ⊃ B 2–3 ⊃I MISTAKE!
7 B 2, 6 ⊃E MISTAKE!

Line 6 is a mistake because it appeals to a subderivation, that occurring on
lines 2 through 3, that is no longer accessible. It is not accessible at line 6,
because not every scope line to the left of that subderivation (there are two)
continues to line 6. The auxiliary assumption occurring on line 2 was dis-
charged at line 4, when Conditional Introduction was used. (We also cannot
use Reiteration to obtain A ⊃ B on line 6, because the sentence on line 4 is
inaccessible at that point.) Line 7 is a mistake because it appeals to a line,
line 2, which is no longer accessible. Of course, it is also a mistake because
it appeals to a line, line 6, which is itself a mistake. In fact, neither line 6
nor line 7 can be derived in a derivation that has no primary assumptions.
On the other hand, part of the above attempt, namely the part consisting
of lines 1 through 5, is correct, demonstrating that some sentences can be
derived starting from no primary assumptions. ‘B ⊃ (A ⊃ B)’ is one such
sentence.

The following derivation is correctly done.

Derive: ~ U ⊃ ~ S

1 ~ U ⊃ ~ W Assumption
2 ~ W ⊃ ~ S Assumption

3 ~ U A / ⊃I

4 ~W 1, 3 ⊃E
5 ~ S 2, 4 ⊃E
6 ~ U ⊃ ~S 3–5 ⊃I

Line 4 cites lines 1 and 3, which are both accessible at line 4. The sentences
on lines 1 and 3 do not lie within the scope of an assumption that has been
discharged prior to line 4. (Neither the sentence on line 1 nor the sentence on
line 3 has a scope line to its left that is not also to the left of the sentence on
line 4.) Similarly line 5 cites lines 2 and 4, which are both accessible at line 5.
Line 6 cites the subderivation from lines 3–5. This subderivation is accessible at
line 6 because the subderivation does not lie within the scope of an assumption
that has been closed prior to line 6.

ber38413_ch05_146-225.indd Page 170 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 170 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 171

Here is another example in which an inaccessible subderivation is cited:

Derive A � C

1 ~ C Assumption
2 B ⊃ C Assumption
3 ~ A & ~ B Assumption

4 A A / �I

5 ~ B A / ~ E

6 ~ A 3 &E
7 A 4 R
8 B 5–7 ~E
9 C 2, 8 ⊃E

10 C A / �I

11 ~ B ⊃ A 5–7 ⊃I MISTAKE!
12 ~ B 3 &E
13 A 11, 12 ⊃E
14 A � C 4–9, 10–13 �I

The mistake at line 11 is that of citing a subderivation that is not accessible
from line 11. That it is not accessible is indicated by there being a scope line to
the left of the subderivation, the scope line running from line 4 through line
9, that is not to the left of the sentence entered at line 11. More substantively,
‘A’ was derived at line 7 by Reiteration on line 4. The assumption at line 4 is
not accessible at line 11, and neither are results obtained while it was available.

In fact, it is possible to derive ‘A � C’ from the above primary assump-
tions. Here is a derivation that does so.

Derive A � C

1 ~ C Assumption
2 B ⊃ C Assumption
3 ~ A & ~ B Assumption

4 A A / �I

5 ~ C A / ~ E

6 ~ A 3 &E
7 A 4 R
8 C 5–7 ~ E
9 C A / ~ I

10 ~ A A / ~ E

11 C 9 R
12 ~ C 1 R
13 A 10–12 ~ E
14 A � C 4–8, 9–13 �I

ber38413_ch05_146-225.indd Page 171 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 171 12/4/12 2:49 PM F-400F-400

172 SENTENTIAL LOGIC: DERIVATIONS

It is possible to use a single auxiliary assumption to generate a sub-
derivation that allows the use of two different subderivation rules. Here is
such a case:

Derive: C & (A ⊃ C)

1 A ∨ B Assumption
2 A ⊃ D Assumption
3 B ⊃ D Assumption
4 ~ C ⊃ ~ D Assumption

5 A A / ∨E / ⊃I

6 ~ C A / ~ E

7 ~ D 4, 6 ⊃E
8 D 2, 5 ⊃E
9 C 6–8 ~ E

10 B A / ∨E

11 ~ C A / ~ E

12 ~ D 4, 11 ⊃E
13 D 3, 10 ⊃E
14 C 11–13 ~ E
15 C 1, 5–9, 10–14 ∨E
16 A ⊃ C 5–9 ⊃I
17 C & (A ⊃ C) 15, 16 &I

Notice that the subderivation occupying lines 5 through 9 is cited twice, once
as part of an application of the rule Disjunction Elimination (at line 15) and
once as the basis for entering a conditional at line 16. In the present case it is
unlikely that when the assumption at line 5 is made it was foreseen that the sub-
derivation to be constructed would be used in both of the above indicated ways.
So most likely at the time the assumption was made the only notation entered
in the justifi cation column was ‘A / ∨E’. It is only after reaching ‘C’ at line 15
and wondering how ‘A ⊃ C’ can be obtained that it became apparent that work
already done, the subderivation on lines 5 through 9, could be reused. So the
extra notation ‘/ ⊃I’ was added to line 5 when line 16 was entered.

In the above example identical subderivations occur on lines 6 through
8 and lines 11 through 13. We had to do this work twice because when trying to
get from ‘B’ at line 10 to ‘C’ on a subsequent line the subderivation occupying
lines 6 through 8 is no longer accessible.

Finally, it is possible to end a subderivation at any time, without
using one of the introduction rules that requires a subderivation. This is
likely to occur when one decides the strategy being pursued is unproduc-
tive and simply abandons the work done within the subderivation. Here is
an example:

ber38413_ch05_146-225.indd Page 172 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 172 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 173

Derive: A ⊃ (B ⊃ A)

1 A A / ⊃I

2 ~ (B ⊃ A) A / ~ E

3 A 1 R
4 B A / ⊃I

5 A 1 R
6 B ⊃ A 4–5 ⊃I
7 A ⊃ (B ⊃ A) 1–6 ⊃I

Here the subderivation on lines 2–3 is in effect wasted work, work we have
thrown away. It does no harm, but neither does it do any good.

 5.1.3E EXERCISES

 1. Complete each of the following derivations by entering the appropriate
justifi cations.

 a. Derive: (A & C) ∨ (B & C)

1 (A ∨ B) & C

2 A ∨ B
3 C
4 A

5 A & C
6 (A & C) ∨ (B & C)

7 B

8 B & C
9 (A & C) ∨ (B & C)

10 (A & C) ∨ (B & C)

 *b. Derive: A ⊃ (B ⊃ C)

1 (A & B) ⊃ C

2 A

3 B

4 A & B
5 C
6 B ⊃ C
7 A ⊃ (B ⊃ C)

 c. Derive: ∼ B

1 B ⊃ (A & ∼ B)

2 B

3 A & ∼ B
4 ∼ B
5 B
6 ∼ B

 *d. Derive: A ⊃ B

 1 (A & ∼ B) ⊃ (∼ B & C)
 2 C ⊃ ∼ A

 3 A

 4 ∼ B

 5 A & ∼ B
 6 ∼ B & C
 7 C
 8 ∼ A
 9 A
10 B
11 A ⊃ B

ber38413_ch05_146-225.indd Page 173 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 173 12/4/12 2:49 PM F-400F-400

174 SENTENTIAL LOGIC: DERIVATIONS

 e. Derive: C ⊃ (~ A & B)

1 ∼ D
2 C ⊃ (A � B)
3 (D ∨ B) ⊃ ∼ A
4 (A � B) ⊃ (D & E)
5 ∼ B ⊃ D

6 C

7 A � B
8 D & E
9 D

10 D ∨ B
11 ∼ A
12 ∼ B

13 D
14 ∼ D
15 B
16 ∼ A & B
17 C ⊃ (∼ A & B)

 *f. Derive: A ⊃ (B ∨ C)

1 (∼ B & ∼ C) ⊃ ∼ A

2 A

3 ∼ (B ∨ C)

4 B

5 B ∨ C
6 ∼ (B ∨ C)

7 ∼ B
8 C

9 B ∨ C
10 ∼ (B ∨ C)

12 ∼ C
13 ∼ B & ∼ C
14 ∼ A
15 A
16 B ∨ C
17 A ⊃ (B ∨ C)

 g. Derive: A � B

1 ∼ A & ∼ B

2 A

3 ∼ B

4 ∼ A
5 A
6 B

7 B

8 ∼ A

9 B
10 ∼ B
11 A
12 A � B

 *h. Derive: A � (B ∨ C)

1 (A � B) & (A � C)

2 A

3 A � B
4 B
5 B ∨ C

6 B ∨ C

7 B

8 A � B
9 A

10 C

11 A � C
12 A
13 A
14 A � (B ∨ C)

ber38413_ch05_146-225.indd Page 174 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 174 12/4/12 2:49 PM F-400F-400

5.2 BASIC CONCEPTS OF SD 175

We now defi ne the key concepts of SD. These are all syntactical concepts as
each is defi ned by reference to there being a derivation of a certain sort—no
reference is made in any of these defi nitions either to truth-values or to truth-
value assignments.

Derivability: A sentence P of SL is derivable in SD from a set � of sen-
tences of SL if and only if there is a derivation in SD in which all the
primary assumptions are members of � and P occurs in the scope of
only those assumptions.

Valid in SD: An argument of SL is valid in SD if and only if the con-
clusion of the argument is derivable in SD from the set consisting of
the premises. An argument of SL is invalid in SD if and only if it is
not valid in SD.

Theorem in SD: A sentence P of SL is a theorem in SD if and only if P
is derivable in SD from the empty set.

Equivalence in SD: Sentences P and Q are equivalent in SD if and only
if Q is derivable in SD from {P} and P is derivable in SD from {Q}.

Inconsistency in SD: A set � of sentences of SL is inconsistent in SD if
and only if there is a sentence P such that both P and ~ P are deriv-
able in SD from �. A set � is consistent in SD if and only if it is not
inconsistent in SD.

A few additional notational conventions will be useful. We will use the
single turnstile, ‘| ’ to assert derivability, and will read

� | P

as ‘P is derivable from �’. We will read ‘� |/ P’ as ‘P is not derivable from �’.
This parallels our use of the double turnstile in previous chapters, where we
read

� |= P

as ‘� truth-functionally entails P’ and ‘� |=/ P’ as ‘� does not truth-functionally
entail P’. The parallelism is for good reason. It will turn out that for any fi nite
set � of sentences of SL and any sentence P of SL,

� | P in SD if and only if � |= P.

This is a key claim of metatheory that we prove in Chapter 6. Finally, we will read

| P

 5.2 BASIC CONCEPTS OF SD

ber38413_ch05_146-225.indd Page 175 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 175 12/4/12 2:49 PM F-400F-400

176 SENTENTIAL LOGIC: DERIVATIONS

as ‘P is a theorem’. This notation derives from ‘� | P’, which is read ‘P is
derivable from the empty set’. And of course a sentence of SL is a theorem of
SD if and only if it is derivable in SD from the empty set. We will also refer to
a derivation of a sentence of SL from no primary assumptions as a proof of
the theorem that is the last line of that derivation.

The careful reader will recall that there are seven key semantical
concepts of SL: Truth-functional consistency, truth-functional truth, truth-
functional falsity, truth-functional indeterminacy, truth-functional equivalence,
truth-functional validity, and truth-functional entailment. We have syntactic par-
allels for only fi ve of those concepts. These pair up as follows:

Truth-functional consistency Consistency in SD

Truth-functional truth Theorem in SD

Truth-functional equivalence Equivalence in SD

Truth-functional validity Valid in SD

Truth-functional entailment Derivability in SD

There is no syntactic counterpart to either truth-functional falsity or truth-
functional indeterminacy. Introducing such counterparts is easy enough—we
could defi ne an anti-theorem of SD as a sentence P of SL whose negation, ~ P, is
a theorem of SD. And we could take a sentence P of SL to be syntactically unde-
termined in SD if and only if neither it nor its negation is a theorem of SD. We
would then have syntactic counterparts to all seven central semantic concepts,
but historically logicians have never felt the need to add these or equivalent
defi nitions. We will follow their lead.

Below we construct a derivation that establishes that the following sim-
ple argument is valid in SD:

A ⊃ B
~ B

~ A

 Derive: ~ A

1 A ⊃ B Assumption
2 ~ B Assumption

3 A A /~ I

4 B 1, 3 ⊃E
5 ~ B 2 R
6 ~ A 3–5 ~ I

This derivation establishes that the above argument is valid in SD. (The conclu-
sion of the argument has been derived from the set consisting of the premises
of the argument.)

ber38413_ch05_146-225.indd Page 176 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 176 12/4/12 2:49 PM F-400F-400

5.2 BASIC CONCEPTS OF SD 177

On the other hand, the following does not establish the validity of the
above argument:

 Derive: ~ A

1 A ⊃ B Assumption
2 ~ B Assumption

3 ~ A A

4 ~ A 3 R

Here ‘~ A’, the conclusion of the argument, has not been derived from the
set consisting of the premises of the argument. Rather, it has been derived
from those sentences and ‘~ A’—that is, from the primary assumptions and an
auxiliary assumption. We have not shown that ‘~ A’ is derivable from the set
consisting of the premises A ⊃ B and ~ A.

Note that no notation has been made on line 3 as to the reason for
assuming ‘~ A’. Someone constructing a derivation such as this may well have
reasoned “I want to obtain ‘~ A’. Since I can assume anything, I will assume
what I want, namely ‘~ A’, and then use Reiteration to derive my goal, ‘~ A’.”
It is true that any sentence of SL can be assumed at any time. But there is no
point to assuming a sentence unless one has a rule in mind for discharging
that assumption. This is why we require the justifi cation column for auxiliary
assumptions to include both the indication that the sentence just entered
is an assumption (‘A’) and an indication of what rule will be used to dis-
charge the assumption. There are only fi ve rules (Conditional Introduction,
Disjunction Elimination, Negation Introduction, Negation Elimination, and
Biconditional Introduction) that require the construction of a subderiva-
tion. These are also the only rules that involve discharging an assumption.
Requiring a notation that indicates what rule will be used to discharge an
assumption largely prevents the making of assumptions that do not serve a
strategic purpose.

A theorem of SD is a sentence of SL that can be derived from no pri-
mary assumptions. A derivation of such a sentence is said to be a proof of that
sentence. Here is a proof of the theorem ‘[A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]’:

 Derive: [A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]

1 A ⊃ (B ⊃ C) A / ⊃I

2 A & B A / ⊃I

3 A 2 &E
4 B ⊃ C 1, 3 ⊃E
5 B 2 &E
6 C 4, 5 ⊃E
7 (A & B) ⊃ C 2–6 ⊃I
8 [A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C] 1–7 ⊃I

ber38413_ch05_146-225.indd Page 177 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 177 12/4/12 2:49 PM F-400F-400

178 SENTENTIAL LOGIC: DERIVATIONS

There are no primary assumptions in this derivation, and every auxiliary assump-
tion has been discharged. The sentence ‘[A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]’ on
the last line does not lie within the scope of any assumption. Hence it has been
derived from the empty set and is a theorem of SD.

As one would expect, the sentences ‘A � B’ and ‘B � A’ are equiva-
lent in SD, as the following two derivations show. Establishing the equiva-
lence in SD of two distinct sentences of SL requires two derivations because
we must establish that each sentence is derivable from the unit set of
the other.

 Derive: B � A

1 A � B Assumption

2 B A / �I

3 A 1, 2 �E

4 A A / �I

5 B 1, 4 �I

6 B � A 2–3, 4–5 �I

Having derived ‘B � A’ from ‘A � B’, we next derive ‘A � B’ from ‘B � A’.

 Derive: A � B

1 B � A Assumption

2 A A / �I

3 B 1, 2 �E

4 B A / �I

5 A 1, 4 �I

6 A � B 2–3, 4–5 �I

These two derivations establish that ‘A � B’ and ‘B � A’ are equivalent
in SD.

When P and Q are distinct sentences we need two derivations to
show that they are equivalent, one of Q from {P} and one of P from {Q}.
But when P and Q are identical, the same sentence, we need only one
derivation to show they are equivalent (the one sentence is equivalent to
itself) because in this case the derivation of Q from {P} is also a derivation
of P from {Q}. A sentence can be derived from its own unit set in just one
step, using Reiteration:

1 P Assumption

2 P 1 Reiteration

ber38413_ch05_146-225.indd Page 178 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 178 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 179

 5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD

Derivations are unlike truth-tables and truth-trees in two important respects. First,
when one of the syntactic properties we have defi ned holds (for a sentence, a
pair of sentences, an argument, etc.) there is a derivation that demonstrates that
this property holds. For example, if an argument is valid in SD it is the existence
of a derivation of the conclusion of the argument from the set consisting of
the argument’s premises that makes this so. But if an argument is invalid in SD
there is no derivation that demonstrates this. Rather, it is the absence of a deriva-
tion that makes an argument invalid in SD. While one can use the derivation
system SD to show that there is a derivation of a certain sort (by producing such
a derivation), one cannot use it to show that there is no derivation of a certain
sort. No number of unsuccessful attempts to construct a derivation of a certain
sort proves that there is no such derivation. Hence, the system SD can be used
to establish validity in SD, but not invalidity. So too for equivalence in SD, incon-
sistency in SD, and theoremhood in SD. That is, one cannot use the system SD
to prove that the members of a pair of sentences are not equivalent in SD, that
a set is consistent in SD, or that a sentence is not a theorem in SD. In this way
the derivation system is unlike truth-tables and truth-trees, for those procedures
are able to establish, for each key semantic concept of SL, whether that concept
holds or does not hold for a sentence or set of sentences of SL.

A second important difference between truth-tables and truth-trees and
derivations is that while it is fairly easy to see how an explicit procedure can be
developed for constructing truth-tables and truth-trees such that following the
procedure does not call for making any choices and always results in a truth-
table or truth-tree that yields an answer to the question being asked (e.g., is this
set truth-functionally consistent?), it is considerably harder to specify such an
explicit procedure for constructing derivations. Procedures that do determine
every step of the construction process, whether for truth-tables, trees, or deri-
vations, are said to be mechanical procedures. While mechanical procedures
for constructing derivations in systems like SD (derivation systems for senten-
tial logic)—procedures that will always produce a derivation of a certain sort
when one does exist—have been formulated, they are very complex and we will
make no attempt to present such a procedure here.2 There are thus two ways
in which one’s efforts to construct a derivation of a certain sort might end in
frustration—where there is no such derivation and where there is one but all
attempts one makes to fi nd it fail. Of course these are very different situations;
the fi rst results from trying to do what is impossible, the second from failing
to fi nd a solution that does exist.

While we will not present a mechanical procedure for constructing
derivations we will provide some useful strategies, strategies that can help avoid

2These procedures are generally called theorem provers because what the procedure does, in the fi rst instance,
is give mechanical instructions for constructing a proof of a theorem. These procedures are very complicated. It
is also important to note that such procedures, when applied to a sentence that is not a theorem of the system,
will produce no result that shows the sentence in question is not a theorem.

ber38413_ch05_146-225.indd Page 179 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 179 12/4/12 2:49 PM F-400F-400

180 SENTENTIAL LOGIC: DERIVATIONS

frustration of the second sort just alluded to. The overarching strategy is that of
goal analysis. In every derivation the goal is to derive a sentence, or sentences,
from primary assumptions where there are such, otherwise from no assump-
tions. Goal analysis is the process of determining how a goal sentence can be
derived, and involves working backward from the intended last line of the deri-
vation as well as forward from the primary assumptions, if any, of the derivation.

No matter what the goal sentence is, the derivation step that produces
that sentence might be the application of any of the elimination rules. To see
this one need only remember that the elimination rules tell us nothing about
the derived sentence—in each case it might be an atomic sentence, a conjunc-
tion, a disjunction, a conditional, a negation, or a biconditional. On the other
hand, the introduction rules do tell us a lot about the sentence derived by
using one of these rules. First, atomic sentences cannot be derived by using
an introduction rule, for all such rules produce truth-functionally compound
sentences. Second, we know, for each introduction rule, what the main connec-
tive is of a sentence obtained by that rule. Conjunction Introduction produces
conjunctions, Disjunction Introduction disjunctions, and so on.

The fi rst step in goal analysis is therefore to determine what kind of a
sentence the goal sentence is. If it is an atomic sentence it must be obtained
by one of the elimination rules (or by Reiteration). If it is a truth-functional
compound sentence it might be obtained by any of the elimination rules or by
the appropriate introduction rule, namely the introduction rule that produces
sentences whose main connective is the main connective of the goal sentence.
The bottom line, of course, is that there will always be multiple ways in which
the goal sentence might be derived. But some ways will generally be more
plausible than others, as we will soon see.

Having picked one way in which a goal sentence can be obtained,
the next step is to determine whether this way of obtaining the goal sentence
generates one or more new goal sentences, and then to ask of each of these
how they might be obtained. The idea is that eventually the rule picked as a
way of obtaining the current goal can be applied directly to currently available
sentences, thus completing the derivation. Multiple examples will, we hope,
make all of this much clearer.

We here enumerate the strategies we will use throughout the rest of
this chapter:

• If the current goal sentence can be obtained by Reiteration, use that
rule, otherwise

• If the current goal sentence can be obtained by using a non-subderi-
vation rule, or a series of such rules, do so; otherwise

• Try to obtain the goal sentence by using an appropriate subderivation
rule.

• When using a negation rule, try to use an already accessible nega-
tion (if there is one) as the ~ Q that the negation rules require be
derived.

ber38413_ch05_146-225.indd Page 180 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 180 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 181

Most of the derivations we will construct and most of the derivations
called for by exercises will involve using multiple strategies, as most will involve
deriving one or more subgoals before the fi nal goal can be derived. In practice,
this means that most of the time in constructing derivations we work both from
the bottom up and from the top down. That is, we work from the bottom up
by noting what sentence or sentences we need to obtain before we can obtain
the sentence we are trying to derive, and make them subgoals. We work from the
top down by deriving from accessible lines and subderivations sentences that will
be useful in obtaining our fi nal goal sentence. We will shortly work through
the construction of derivations that illustrate this process. Finally, it will often
be the case that two or more strategies appear to be viable ways of obtaining
a goal sentence. For example, if the current goal sentence is a material condi-
tional and one of the accessible sentences is a disjunction, then both Disjunc-
tion Elimination and Conditional Introduction suggest themselves as possible
strategies. Rather than puzzling over which strategy is most likely to succeed
or which will produce the shortest derivation it is often wise to just pick one
and pursue it.

Suppose we are trying to derive ‘(A & B) ⊃ C’ from {A ⊃ C}. The
derivation will obviously have just one primary assumption. So we start work
as follows:

 Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

G (A & B) ⊃ C

Our current goal is the sentence ‘(A & B) ⊃ C’. We have indicated this by
writing ‘G’ where a line number will eventually be placed. We will follow this
convention, of indicating goal sentences by writing ‘G’ where the number of
the line will eventually be, throughout the rest of this section. Readers should
follow this convention when constructing their own derivations only if they
are working in pencil and can erase these goal sentence markers and replace
them with line numbers as appropriate. We write this goal sentence a substan-
tial distance below the primary assumptions, because we do not know, at this
stage, how many steps it will take to derive this sentence. At this early stage
we know neither the line number nor the justifi cation for the fi nal line of the
derivation. We note that the goal sentence is a material conditional. Hence, in
principle it could come by any one of the elimination rules, by Reiteration, or
by Conditional Introduction. Reiteration is not plausible, as the goal sentence
is not among the primary assumptions (there is only one). An elimination rule
is not a likely way of generating the goal sentence because the only accessible

ber38413_ch05_146-225.indd Page 181 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 181 12/4/12 2:49 PM F-400F-400

182 SENTENTIAL LOGIC: DERIVATIONS

sentence is the conditional on line 1 and Conditional Elimination requires
that we have both a conditional and the antecedent of that conditional. In this
case we do not have the antecedent of ‘A ⊃ C’, and even if we did the result
of applying Conditional Elimination would be ‘C’, not ‘(A & B) ⊃ C’. So Con-
ditional Introduction seems to be the most likely rule to have produced our
goal sentence. We now note that to use Conditional Introduction we need a
subderivation whose assumption is the antecedent of our goal sentence, namely
‘A & B’, and we need to derive the consequent of our goal sentence, ‘C’, within
the scope of that assumption. That is, we know our derivation will look like this:

 Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

2 A & B A / ⊃I

G C
G (A & B) ⊃ C 2–__ ⊃I

We still do not know the line number of the last line of our derivation, but we
do know we will use Conditional Introduction to obtain it and that we will cite
a subderivation that begins on line 2. We note this in the justifi cation column
for the last line by entering ‘2–__ ⊃I’ where the underscore marks the space
where we will subsequently enter the number of the preceding line. We also
know that line 2 will be an auxiliary assumption made for the purpose of doing
Conditional Introduction. We are now in a position to stop wondering how
‘(A & B) ⊃ C’ will be obtained. We have a strategy for obtaining that sentence,
Conditional Introduction. Accordingly we now switch our focus to how we can
complete the subderivation we have started. That is, how can we get from our
two assumptions, one primary and one auxiliary, to ‘C’? ‘C’ is an atomic sen-
tence, so we know we will not use an introduction rule to obtain this sentence.
Nor will Reiteration generate ‘C’. So we are left with the elimination rules.
Which elimination rule seems promising? Here it is important to learn to “see”
what is available to us at this point in our work. We have two sentences to work
from, ‘A ⊃ C’ and ‘A & B’. We want ‘C’. We know that ‘C’ can be obtained from
‘A ⊃ C’ by Conditional Elimination if we have ‘A’. We do not currently have
‘A’. But we do have ‘A & B’, and ‘A’ can be obtained from ‘A & B’ by Conjunc-
tion Elimination. So we now see a path to the completion of our derivation:

 Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

2 A & B A / ⊃I

3 A 2 &E
4 C 1, 3 ⊃E
5 (A & B) ⊃ C 2–4 ⊃I

ber38413_ch05_146-225.indd Page 182 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 182 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 183

We will spend the rest of this section illustrating how the strategies we have
enumerated can be used to construct derivations. We will fi rst construct
derivations that establish validity in SD, then ones that establish that a sen-
tence is a theorem in SD, then ones that establish the equivalence in SD of
a pair of sentences, and fi nally ones that establish inconsistency in SD. We
again note that while derivations can be used to establish such results, they
cannot be used to establish that an argument is invalid in SD, that a pair of
sentences are not equivalent in SD, or that a set of sentences is consistent
in SD. Nor, except in special cases, can derivations be used to show that a
sentence is not a theorem in SD.

ARGUMENTS

Consider next the following argument.

~ N

(~ N ⊃ L) & [D � (~ N ∨ A)]

L & D

To show that this argument is valid in SD we need to derive the conclusion
from the set consisting of the premises. So we start as follows:

 Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

G L & D —, — &I

Our goal is a conjunction. It seems unlikely that it will be obtained by an
elimination rule, in part because ‘L & D’ does not occur as a component
of any accessible sentence. An introduction rule seems more promising,
and since the main connective of our goal sentence is ‘&’ it is Conjunction
Introduction that seems most promising. We have noted this by writing ‘&I’
in the justifi cation column for our goal sentence, and we have indicated with
two underscores that two line numbers will need to be supplied later. If we
are to use Conjunction Introduction we will need to have the two conjuncts
‘L’ and ‘D’ available on accessible earlier lines. So we now add two subgoals
to our derivation structure:

ber38413_ch05_146-225.indd Page 183 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 183 12/4/12 2:49 PM F-400F-400

184 SENTENTIAL LOGIC: DERIVATIONS

 Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

G L

G D
G L & D —, — &I

If we can obtain both ‘L’ and ‘D’ we can use Conjunction Introduction to
obtain ‘L & D’. Our new goal sentences, ‘L’ and ‘D’ are both atomic sentences,
so neither will come by an introduction rule. We note that ‘L’ occurs as the
consequent of a conditional embedded in our second primary assumption. If
we could get that conditional, ‘~ N ⊃ L’, out of line 2 we could obtain ‘L’ by
Conditional Elimination, as we do have the antecedent of that conditional ‘~ N’
at line 1. Conjunction Elimination does allow us to extract ‘~ N ⊃ L’ from line 2:

 Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

3 ~ N ⊃ L 2 &E
4 L 1, 3 ⊃E

G D
G L & D 4, — &I

The remaining task, then, is to obtain ‘D’. We note that this sentence occurs in
the biconditional embedded in line 2. Since the main connective of the sentence
on line 2 is ‘&’, we can obtain the biconditional by Conjunction Elimination. To
get ‘D’ from that biconditional we can use Biconditional Elimination, if we have
‘~ N ∨ A’. This reasoning allows us to add the following steps to our derivation:

 Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

3 ~ N ⊃ L 2 &E
4 L 1, 3 ⊃E
5 D �(~ N ∨ A) 2 &E
G ~ N ∨ A
G D 5, — �E
G L & D 4, — &I

ber38413_ch05_146-225.indd Page 184 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 184 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 185

Note that we have added ‘~ N ∨ A’ as a new goal sentence. The main con-
nective of this sentence is ‘∨’, so if we had either ‘~ N’ or ‘A’ we could obtain
our current goal by Disjunction Introduction. As it happens, we do have
‘~ N’—it occurs as a primary assumption on line 1. So we can now complete
our derivation.

 Derive: L & D

1 ~ N Assumption
2 (~ N ⊃ L) & [D � (~ N ∨ A)] Assumption

3 ~ N ⊃ L 2 &E
4 L 1, 3 ⊃E
5 D � (~ N ∨ A) 2 &E
6 ~ N ∨ A 1 ∨I
7 D 5, 6 �E
8 L & D 4, 7 &I

We will next show that the following argument is valid in SD by deriv-
ing its conclusion from the set consisting of its premises.

~ A ∨ B

~ A ⊃ B

B � C

C

We begin as always, by taking the premises as primary assumptions and making
the conclusion our primary goal.

 Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

G C

After some refl ection, two strategies suggest themselves: using Negation Elimi-
nation to obtain ‘C’ and using Disjunction Elimination to obtain ‘C’. Both will,
in the end, work. We choose to use Disjunction Elimination.

ber38413_ch05_146-225.indd Page 185 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 185 12/4/12 2:49 PM F-400F-400

186 SENTENTIAL LOGIC: DERIVATIONS

 Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

4 ~ A A / ∨E

G C

 B A / ∨E

G C
G C 1, 4–—, —–— ∨E

Our strategy, as the above schema indicates, is to show that the conclusion of
the argument, ‘C’, can be derived from each disjunct of ‘~ A ∨ B’, and hence
that ‘C’ itself can be obtained by Disjunction Elimination. Completing the sec-
ond subderivation is trivial, for ‘C’ can be obtained from line 3 and our second
auxiliary assumption by Biconditional Elimination.

 Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

4 ~ A A / ∨E

G C

 B A / ∨E

G C 3, — �E
G C 1, 4–—, —–— ∨E

Completing the fi rst subderivation is only slightly more challenging. From lines
4 and 2 we can obtain ‘B’ by Conditional Elimination. And we can then use
Biconditional Elimination to obtain ‘C’.

ber38413_ch05_146-225.indd Page 186 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 186 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 187

 Derive: C

1 ~ A ∨ B Assumption
2 ~ A ⊃ B Assumption
3 B � C Assumption

4 ~ A A / ∨E

5 B 2, 4 ⊃E
6 C 3, 5 �E
7 B A / ∨E

8 C 3, 7 �E
9 C 1, 4–6, 7–8 ∨E

THEOREMS

Next we will construct proofs of several theorems. We start with a very obvi-
ous theorem, ‘A ∨ ~ A’, whose proof is not obvious. Our task is to derive this
sentence using no primary assumptions.

 Derive: A ∨ ~ A

1

G A ∨ ~ A

Our goal is ‘A ∨ ~ A’ and here it should be obvious that though this sentence
is a disjunction we will not be able to obtain it by Disjunction Introduction.
Neither ‘A’ nor ‘~ A’ is a theorem, and neither can be derived given no pri-
mary assumptions. So the only sensible strategy is to use Negation Elimination.

 Derive: A ∨ ~ A

1 ~ (A ∨ ~ A) A / ~ E

G A ∨ ~ A 1–— ~ E

ber38413_ch05_146-225.indd Page 187 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 187 12/4/12 2:49 PM F-400F-400

188 SENTENTIAL LOGIC: DERIVATIONS

Note that the only accessible sentence, the sentence on line 1, is a negation.
There is no rule of SD that allows us to ‘take apart’ a negation. In the present
context, we can use Reiteration on line 1, but there is little else we can do
with it. Fortunately, this will be useful. Our current strategy is to use Nega-
tion Elimination and to do so we need to derive a sentence and its negation.
So we will use the assumption on line 1 as the negation and make ‘A ∨ ~ A’
our new goal.

 Derive: A ∨ ~ A

1 ~ (A ∨ ~ A) A / ~ E

G A ∨ ~ A
 ~ (A ∨ ~ A) 1 R
G A ∨ ~ A 1–— ~ E

We noted above that obtaining the last line of our derivation by Disjunc-
tion Introduction will not work because neither ‘A’ nor ‘~ A’ is a theorem.
But our current goal, which is the same sentence as that occurring on the
last line of the derivation, is to be obtained with the help of the auxiliary
assumption ‘~ (A ∨ ~ A)’, and here it is reasonable to hope to use Disjunc-
tion Introduction. We will make ‘A’ our new goal and try to derive it by
Negation Elimination.

 Derive: A ∨ ~ A

1 ~ (A ∨ ~ A) A / ~ E

2 ~A A / ~ E

G A 2–— ~E
G A ∨ ~ A — ∨I
G ~ (A ∨ ~ A) 1 R
G A ∨ ~ A 1–— ~ E

One of the points we have emphasized is that when using a Negation Elimi-
nation subderivation it is wise to use as the ~ Q a negation that is readily
available. In the present instance two negations are readily available, ‘~ A’
and ‘~ (A ∨ ~ A)’. There may be a temptation to select ‘~ A’ as ~ Q. But
this would be a mistake, for doing so would require that Q be ‘A’ and that
sentence is not readily derived from the available assumptions. (We should
take a hint from the fact that the point of our current subderivation is to
obtain ‘A’. If there were an easy way to obtain it we would not be involved

ber38413_ch05_146-225.indd Page 188 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 188 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 189

in the current Negation Elimination subderivation.) But if we take ~ Q to be
‘~ (A ∨ ~ A)’ then our new goal becomes ‘A ∨ ~ A’ and this sentence is read-
ily derived—by applying Disjunction Introduction to line 2. We are now able
to complete the derivation.

 Derive: A ∨ ~ A

1 ~ (A ∨ ~ A) A / ~ E

2 ~ A A / ~ E

3 A ∨ ~ A 2 ∨I
4 ~ (A ∨ ~ A) 1 R
5 A 2–4 ~ E
6 A ∨ ~ A 5 ∨I
7 ~ (A ∨ ~ A) 1 R
8 A ∨ ~ A 1–7 ~ E

Next we will prove the theorem ‘~ (A ∨ B) � (~ A & ~ B)’. This theo-
rem is a biconditional, so it is plausible the last line will come from Bicondi-
tional Introduction, and that rule requires two subderivations, one in which we
derive ‘~ A & ~ B’ from {~ (A ∨ B)} and the other in which we derive ‘~ (A ∨
B)’ from {~ A & ~ B} .

 Derive: ~ (A ∨ B) � (~ A & ~ B)

1 ~ (A ∨ B) A / �I

G ~ A & ~ B

 ~ A & ~ B A / �I

G ~ (A ∨ B)
G ~(A ∨ B) � (~ A & ~ B) 1–—, —–— �I

We now have two goals, ‘~ A & ~ B’ in the fi rst subderivation and ‘~ (A ∨ B)’
in the second subderivation. We will work on the upper subderivation fi rst.
Since our goal is a conjunction, we will take as new subgoals the two conjuncts
of that conjunction, ‘~ A’ and ‘~ B’, and attempt to derive each by Negation
Introduction.

ber38413_ch05_146-225.indd Page 189 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 189 12/4/12 2:49 PM F-400F-400

190 SENTENTIAL LOGIC: DERIVATIONS

 Derive: ~ (A ∨ B) � (~ A & ~ B)

1 ~ (A ∨ B) A / �I

2 A A / ~ I

3 A ∨ B 2 ∨I
4 ~ (A ∨ B) 1 R
5 ~ A 2–4 ~ I
6 B A / ~ I

7 A ∨ B 6 ∨I
8 ~ (A ∨ B) 1 R
9 ~ B 6–8 ~ I

10 ~ A & ~ B 5, 9 &I
11 ~ A & ~ B A / �I

G ~ (A ∨ B)
G ~ (A ∨ B) � (~ A & ~ B) 1–10, 11–— �I

Note that within the fi rst of our two main subderivations we twice use Nega-
tion Introduction, and in each case use ‘A ∨ B’ and ‘~ (A ∨ B)’ as Q
and ~ Q.

Completing our second main subderivation requires deriving ‘~ (A ∨ B)’,
and this invites a Negation Introduction subderivation, giving us a new assump-
tion, ‘A ∨ B’, which in turn invites a Disjunction Elimination strategy:

11 ~ A & ~ B A / �I

12 A ∨ B A / ~ I

13 A A / ∨E

 B

G ~ (A ∨ B) 12–— ~ I
G ~ (A ∨ B) � (~ A & ~ B) 1–10, 11–— �I

ber38413_ch05_146-225.indd Page 190 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 190 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 191

The question now is what sentence we want to play the role of ‘R’ in our Disjunc-
tion Elimination subderivation. We need a sentence and its negation to make
our Negation Introduction subderivation, begun at line 12, work. Two negations
are readily available, ‘~ A’ and ‘~ B’. So we will arbitrarily select one of these, say
‘~ B’, and then make ‘B’ the sentence we try to obtain by Disjunction Elimination:

11 ~ A & ~ B A / �I

12 A ∨ B A / ~ I

13 A A / ∨E

G B

 B A / ∨E

G B — R
G B 12, 13–—, —–— ∨E
G ~ B 11 &E
G ~ (A ∨ B) 12–— ~ I
G ~ (A ∨ B) � (~ A & ~ B) 1–10, 11–— �I

We now have two subderivations to complete. The second is, in fact, already
complete, for it involves deriving ‘B’ from an auxiliary assumption of ‘B’, so Reit-
eration will accomplish the task. The fi rst involves deriving ‘B’ from the assump-
tions on lines 11 through 13. Fortunately a sentence, ‘A’, and its negation, ‘~ A’
are both readily available. So Negation Elimination will yield the desired result:

11 ~ A & ~ B A / �I

12 A ∨ B A / ~ I

13 A A / ∨E

14 ~ B A / ~ E

15 ~ A 11 &E
16 A 13 R
17 B 14–16 ~ E

18 B A / ∨E

19 B 18 R
20 B 12, 13–17, 18–19 ∨E
21 ~ B 11 &E
22 ~ (A ∨ B) 12–21 ~ I
23 ~ (A ∨ B) � (~ A & ~ B) 1–10, 11–22 �I

This completes our proof of the theorem ‘~ (A ∨ B) � (~ A & ~ B)’.

ber38413_ch05_146-225.indd Page 191 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 191 12/4/12 2:49 PM F-400F-400

192 SENTENTIAL LOGIC: DERIVATIONS

We will conclude our discussion of theorems by constructing a proof
of what has become known as Peirce’s Law.3

[(A ⊃ B) ⊃ A] ⊃ A

Since the theorem is a conditional it is plausible that we will be using Condi-
tional Introduction as our primary strategy.

 Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

G A
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

But how we should proceed next may not be obvious. We could derive our cur-
rent goal, ‘A’, from line 1 by Conditional Elimination if we also had ‘A ⊃ B’, but
we do not. So perhaps we should take the sentence ‘A ⊃ B’ as our new goal, and
try to obtain it by Conditional Introduction.

 Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 A A / ⊃I

G B
G A ⊃ B 2–— ⊃I
G A 1, — ⊃E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

So far, one might think, so good. But how are we to obtain ‘B’ from the sentences
on lines 1 and 2? We could assume ‘~ B’ and hope to use Negation Elimination.

 Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 A A / ⊃I

3 ~ B A / ~ E

G B
G A ⊃ B 2–— ⊃I
G A 1, — ⊃E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

3The fi rst proof of this theorem was given by Charles Peirce, a nineteenth-century American philosopher.

ber38413_ch05_146-225.indd Page 192 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 192 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 193

Unfortunately, the only negation now available is ‘~ B’, so it appears that to
make Negation Elimination work we will have to derive ‘~ B’ (by Reiteration)
and ‘B’. But how do we derive ‘B’? We seem to be back where we were before
we assumed ‘~ B’. That is, ‘B’ is again our goal sentence.

We appear to be on the wrong track. Suppose that when we had ‘A’
as our goal, instead of planning on deriving ‘A’ by Conditional Elimination we
try to derive it by Negation Elimination.

 Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ~A A / ~ E

G A 2–— ~ E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

Since we have a negation available, ‘~ A’, perhaps we should take ‘A’ and ‘~ A’
as the sentences Q and ~ Q we need to use Negation Elimination and accord-
ingly make ‘A’ our new goal. This may seem no more promising than was the
line of reasoning recently abandoned, since deriving ‘A’ was our goal before
assuming ‘~ A’. But we are, in fact, making progress.

 Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ~ A A / ~ E

G A
 ~ A 2 R
G A 2–— ~ E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

We can obtain ‘A’ from line 1 by Conditional Elimination if we can fi rst obtain
‘A ⊃ B’. This is, of course, the position we were in at the start of our work. But
now we have an additional assumption available to us, namely ‘~ A’.

ber38413_ch05_146-225.indd Page 193 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 193 12/4/12 2:49 PM F-400F-400

194 SENTENTIAL LOGIC: DERIVATIONS

 Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ~ A A / ~ E

3 A A / ⊃I

G B
G A ⊃ B 3–— ⊃I
G A 1–— ⊃E
 ~ A 2 R
G A 2–— ~ E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

And now we can see our way to the end. We need ‘B’ and we have a sentence
and its negation readily available (‘A’ and ‘~ A’), so we can assume ‘~ B’ and
use Negation Elimination. Here is the completed derivation.

 Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ~ A A / ~ E

3 A A / ⊃I

4 ~ B A / ~ E

5 A 3 R
6 ~A 2 R
7 B 4–6 ~ E
8 A ⊃ B 3–7 ⊃I
9 A 1, 8 ⊃E

10 ~A 2 R
11 A 2–10 ~ E
12 [(A ⊃ B) ⊃ A] ⊃ A 1–11 ⊃I

It is worth noting that in this example, as is frequently the case, a strategy
that at fi rst seems obvious (using Conditional Elimination to obtain ‘A’ as the
penultimate line of the derivation) but proves problematic can successfully
be used as a secondary strategy inside an alternative strategy (here Negation
Elimination).

EQUIVALENCE

Suppose we want to establish that ‘A � ~ B’ and ‘~ A � B’ are equivalent
in SD (they are). Two derivations are required, one deriving ‘~ A � B’ from

ber38413_ch05_146-225.indd Page 194 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 194 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 195

{A � ~ B} and one deriving ‘A � ~ B’ from {~ A � B}. Here is a start for
the fi rst of these:

 Derive: ~ A � B

1 A � ~ B Assumption

G ~ A � B

It should be apparent that our goal, ‘~ A � B’, is not going to be obtained by
an elimination rule. We have too little to work with by way of primary assump-
tions for that to be a viable strategy. Since the main connective of our goal
sentence is ‘�’, Biconditional Introduction may be a viable strategy. So we
continue our derivation thus:

 Derive: ~ A � B

1 A � ~ B Assumption

2 ~ A A / �I

G B

 B A / �I

G ~ A
G ~ A � B 2–—, —–— �I

ber38413_ch05_146-225.indd Page 195 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 195 12/4/12 2:49 PM F-400F-400

196 SENTENTIAL LOGIC: DERIVATIONS

We now have two subderivations to complete. The goal of the fi rst is ‘B’, and
it can be obtained by Negation Elimination. The goal of the second, ‘~ A’, can
be obtained by Negation Introduction:

 Derive: ~ A � B

1 A � ~ B Assumption

2 ~ A A / �I

3 ~ B A / ~ E

4 A 1, 3 �E
5 ~ A 2 R
6 B 3–5 ~ E

7 B A / �I

8 A A / ~ I

9 ~ B 1, 8 �E
10 B 7 R
11 ~ A 8–10 ~ I
12 ~ A � B 2–6, 7–11 �I

The second half of our current task is to derive ‘A � ~ B’ from {~A � B}.

 Derive: A � ~ B

1 ~ A � B Assumption

G A � ~ B

Biconditional Introduction is also a good strategy in this case.

 Derive: A � ~ B

1 ~ A � B Assumption

2 A A / �I

G ~ B A / �I

 ~ B

G A
G A � ~ B 2–—, —–— �I

ber38413_ch05_146-225.indd Page 196 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 196 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 197

Here, too, negation strategies will yield the desired results:

 Derive: A � ~ B

1 ~ A � B Assumption

2 A A / �I

3 B A / ~ I

4 ~ A 1, 3 �E
5 A 2 R
6 ~ B 3–5 ~ I

7 ~ B A / �I

8 ~ A A / ~ E

9 B 1, 8 �E
10 ~ B 7 R
11 A 8–10 ~ E
12 A � ~ B 2–6, 7–11 �I

We next show that ‘A ⊃ B’ and ‘~ A ∨ B’ are equivalent in SD. To do so
will require deriving each sentence from the unit set of the other. So we will be
doing two derivations. Both of these derivations are rather diffi cult but also highly
instructive as they will allow us to illustrate strategies associated with a number
of introduction and elimination rules. We set up our fi rst derivation as follows:

 Derive: ~ A ∨ B

1 A ⊃ B Assumption

G ~ A ∨ B

Our goal sentence is ‘~ A ∨ B’, a disjunction. So we might be tempted to try
to obtain our goal by Disjunction Introduction. While this strategy will not
work, we will explore it anyway to illustrate how one can fall into unproductive
strategies. If we are to use Disjunction Introduction we will need to fi rst obtain
either ‘~ A’ or ‘B’. We will take ‘B’ as our new goal. (In fact, neither ‘B’ nor
‘~ A’ is obtainable given just ‘A ⊃ B’.)

 Derive: ~ A ∨ B

1 A ⊃ B Assumption

G B
G ~ A ∨ B — ∨I

ber38413_ch05_146-225.indd Page 197 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 197 12/4/12 2:49 PM F-400F-400

198 SENTENTIAL LOGIC: DERIVATIONS

Since our goal is now ‘B’, and we have ‘A ⊃ B’ at line 1, it might seem
like a good idea to assume ‘A’ and then use Conditional Elimination to
obtain ‘B’.

 Derive: ~ A ∨ B

1 A ⊃ B Assumption

2 A A

3 B 1, 2 ⊃E
4 B 3 R MISTAKE!
5 ~ A ∨ B 4 ∨ I

Line 4 is a mistake because it appeals to a sentence, ‘B’, on line 3 that is not
accessible at line 4. There is a scope line to the left of ‘B’ at line 3 that does
not continue through line 4. We had two chances to avoid going down this
path to a mistake. First, thinking we could get ‘~ A ∨ B’ by fi rst deriving ‘B’
from the assumption on line 1 was a bad idea. That assumption is ‘A ⊃ B’. We
are trying to show that ‘A ⊃ B’ and ‘~ A ∨ B’ are equivalent in SD, as indeed
they are. Although we are here concerned with syntactic properties of sentences
and sets of sentences, it is well to remember that for any set � of sentences of
SL and any sentence P of SL,

� | P in SD if and only if � |= P.

Our ill-advised strategy involved trying to show that

{A ⊃ B} | B

where in fact ‘B’ is not derivable from {A ⊃ B}. For if this derivability claim did
hold then it would also have to be the case that

{A ⊃ B} |= B

and this claim is false. There are truth-value assignments on which ‘A ⊃ B’ is
true and ‘B’ false, namely every truth-value assignment on which ‘A’ and ‘B’
are both assigned F.

We had a second chance to avoid going down an unpromising road
when we assumed ‘A’ at line 2. Note that there is nothing in the justifi cation
column for line 2 indicating why we are making this assumption. Had we been
paying attention at that time we would have realized that we have no good
reason for assuming ‘A’. There is no subderivation strategy that will allow us to
assume ‘A’, derive some sentence or sentences, and then end the subderivation
and enter ‘B’ as the next line.

A more promising strategy for completing our fi rst derivation, though
one that does not initially come to mind when one is fi rst learning to do deri-
vations, is to use Negation Elimination to obtain ‘~ A ∨ B’.

ber38413_ch05_146-225.indd Page 198 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 198 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 199

 Derive: ~ A ∨ B

1 A ⊃ B A / �I

2 ~ (~ A ∨ B) A / ~ E

G ~ A ∨ B 2–— ~ E

This strategy will seem unpromising if one thinks either that the Q and ~ Q
that need to be derived to use a negation rule must be an atomic sentence and
its negation, or that a negation must be among or easily obtained from the
sentences that are accessible before one makes the auxiliary assumption that
begins a negation subderivation. Neither is the case. The Q and ~ Q that both
negation rules require deriving can be a compound sentence and its negation
as well as an atomic sentence and its negation. And the ~ Q that is derived
can occur as the auxiliary assumption that initiates the negation subderivation.
Keeping this in mind we proceed as follows:

 Derive: ~ A ∨ B

1 A ⊃ B Assumption

2 ~ (~ A ∨ B) A / ~ E

G ~ A ∨ B
 ~ (~ A ∨ B) 2 R
G ~ A ∨ B 2–— ~ E

It certainly might appear that we are making no progress. The goal of
this derivation is ‘~ A ∨ B’. And this same sentence is now our goal within
the subderivation begun at line 2. But in fact we are making progress. We
noted earlier that we cannot derive ‘~ A ∨ B’ by Disjunction Introduction
when the only accessible sentence is ‘A ⊃ B’. But we now have two acces-
sible sentences to appeal to, those at lines 1 and 2. If we can use these two
assumptions to derive ‘~ A’, we can obtain our current goal, ‘~ A ∨ B’ by
Disjunction Introduction. This suggests we try to obtain ‘~ A’ by Negation
Introduction.

ber38413_ch05_146-225.indd Page 199 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 199 12/4/12 2:49 PM F-400F-400

200 SENTENTIAL LOGIC: DERIVATIONS

 Derive: ~ A ∨ B

1 A ⊃ B Assumption

2 ~ (~ A ∨ B) A / ~ E

3 A A / ~ I

G ~ A 3–— ~ I
G ~ A ∨ B
 ~ (~ A ∨ B) 2 R
G ~ A ∨ B 2–— ~ E

We are again at the point where it is essential to be able to ‘see’ what
we can obtain from the sentences that are accessible at the point where we are
working (inside the subderivation that we began at line 3). The accessible sen-
tences are those on lines 1–3. At line 3 we have ‘A’. At line 1 we have ‘A ⊃ B’.
From these two sentences we can obtain ‘B’ by Conditional Elimination. From
‘B’ we can obtain ‘~ A ∨ B’ by Disjunction Introduction, and we can derive the
negation of this sentence, ‘~ (~ A ∨ B)’ by Reiteration on line 2. These steps
will complete the fi rst half of our current task, that of showing that ‘A ⊃ B’
and ‘~ A ∨ B’ are equivalent in SD.

 Derive: ~ A ∨ B

1 A ⊃ B Assumption

2 ~ (~ A ∨ B) A / ~ E

3 A A / ~ I

4 B 1, 3 ⊃E
5 ~ A ∨ B 4 ∨I
6 ~ (~ A ∨ B) 2 R
7 ~ A 3–6 ~ I
8 ~ A ∨ B 7 ∨I
9 ~ (~ A ∨ B) 2 R

10 ~ A ∨ B 2–9 ~ E

This derivation of ‘~ A ∨ B’ from ‘A ⊃ B’ is instructive in several ways. First, given
that a disjunction is derivable, it does not follow that the last step in that deriva-
tion is Disjunction Introduction. Second, in picking a goal sentence it is wise
to consider whether it is plausible that the selected sentence is derivable from
the currently accessible sentences. Third, when using a negation rule the Q and
~ Q to be derived within the scope of the assumption called for by the rule may
well both be compound sentences. Fourth, it does sometimes happen that one
sentence is a goal in multiple parts of a derivation. Fifth, in using a negation

ber38413_ch05_146-225.indd Page 200 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 200 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 201

rule it is advisable to use as ~ Q a sentence that is readily available, and it may
be available as the assumption of the very subderivation in which we are working.
Finally, there is nothing wrong with using two or more instances of negation rules
within which the same sentences (on different lines) play the roles of Q and ~ Q.

The second part of our proof that ‘A ⊃ B’ and ‘~ A ∨ B’ are equivalent
in SD, a derivation of ‘A ⊃ B’ from {~ A ∨ B}, is also instructive.

 Derive: A ⊃ B

1 ~ A ∨ B Assumption

G A ⊃ B

We now need a strategy for getting from ‘~ A ∨ B’ to ‘A ⊃ B’. A little refl ec-
tion suggests two alternative strategies. Since the goal sentence is a material
conditional, we could use Conditional Introduction, and accordingly assume
‘A’ at line 2 for the purpose of using Conditional Introduction. Alternatively,
since the only accessible sentence, the one at line 1, is a disjunction, we could
plan to work to the conditional we want by using Disjunction Elimination. That
is, in this case we can either let our goal sentence drive our strategy, working
from the bottom up, or we can let our one accessible sentence drive our strat-
egy, working from the top down. Here, as is often the case, both strategies will
work. Moreover, whichever strategy we pick as our primary strategy we will end
up using the other strategy within the fi rst strategy. This is also often the case.
Picking Disjunction Elimination as our primary strategy yields the following:

 Derive: A ⊃ B

1 ~ A ∨ B Assumption

2 ~ A A / ∨E

G A ⊃ B

 B A / ∨E

G A ⊃ B
G A ⊃ B 1, 2–—, —–— ∨E

Lines 1 and 2, by themselves, don’t suggest a strategy for deriving
‘A ⊃ B’. But ‘A ⊃ B’ is a material conditional and this suggests we use Condi-
tional Introduction to obtain it.

ber38413_ch05_146-225.indd Page 201 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 201 12/4/12 2:49 PM F-400F-400

202 SENTENTIAL LOGIC: DERIVATIONS

 Derive: A ⊃ B

1 ~ A ∨ B Assumption

2 ~ A A / ∨E

3 A A / ⊃I

G B
G A ⊃ B 3–— ⊃I

 B A / ∨E

G A ⊃ B
G A ⊃ B 1, 2–—, —–— ∨E

Our goal within the subderivation beginning on line 3 is ‘B’. We now note
that the three accessible sentences include both ‘A’ and ‘~ A’. Their availability
invites a negation strategy. To obtain ‘B’ we thus assume ‘~ B’ and derive ‘A’
and ‘~ A’, both by Reiteration.

 Derive: A ⊃ B

1 ~ A ∨ B Assumption

2 ~ A A / ∨E

3 A A / ⊃I

4 ~ B A / ~ E

5 A 3 R
6 ~ A 2 R
7 B 4–6 ~ E
8 A ⊃ B 3–7 ⊃I

9 B A / ∨E

G A ⊃ B
G A ⊃ B l, 2–8, 9–— ∨E

What remains is to derive ‘A ⊃ B’ from ‘B’. This is actually quite easy. We can use
Conditional Introduction, assuming ‘A’ and deriving ‘B’ by Reiteration on line 9.

ber38413_ch05_146-225.indd Page 202 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 202 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 203

 Derive: A ⊃ B

1 ~ A ∨ B Assumption

2 ~ A A / ∨E

3 A A / ⊃I

4 ~B A / ~ E

5 A 3 R
6 ~ A 2 R
7 B 4–6 ~ E
8 A ⊃ B 3–7 ⊃I
9 B A / ∨E

10 A A / ⊃I

11 B 9 R
12 A ⊃ B 10–11 ⊃I
13 A ⊃ B 1, 2–8, 9–12 ∨E

We have derived ‘~ A ∨ B’ from {A ⊃ B} and ‘A ⊃ B’ from {~ A ∨ B},
thus demonstrating that these sentences are equivalent in SD. Two important
lessons about material conditionals are illustrated in our last derivation. The
fi rst is that a conditional can be derived from the negation of its antecedent,
as we did in lines 2 through 8 above. The second is that a material conditional
can be derived from its consequent as we did in lines 9–12 above.

In our last derivation we used Disjunction Elimination as our primary
strategy. Using Conditional Introduction as the primary strategy works just as well:

 Derive: A ⊃ B

1 ~ A ∨ B Assumption

2 A A / ⊃I

3 ~ A A / ∨E

4 ~ B A / ~ E

5 A 2 R
6 ~ A 3 R
7 B 4–6 ~ E
8 B A / ∨E

9 B 8 R
10 B 1, 3–7, 8–9 ∨E
11 A ⊃ B 2–10 ⊃I

INCONSISTENCY

We will conclude our illustration of strategies for constructing derivations in
SD by doing several derivations that demonstrate the inconsistency of given

ber38413_ch05_146-225.indd Page 203 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 203 12/4/12 2:49 PM F-400F-400

204 SENTENTIAL LOGIC: DERIVATIONS

sets. Consider fi rst the set {~ (A ⊃ B), B}. To show this set is inconsistent in SD
we need to derive from it some sentence Q and its negation ~ Q. In planning
a strategy it helps to remember that Q need not be an atomic sentence, and
that it is often useful to use as ~ Q a sentence that is readily available. In the
present case the only readily available negation is ‘~ (A ⊃ B)’. This suggests
the following strategy:

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption

2 B Assumption

G A ⊃ B
G ~ (A ⊃ B) 1 R

Our goal is now to derive ‘A ⊃ B’ from our two assumptions. Since this goal
sentence is a conditional, we will plan on using Conditional Introduction:

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 B Assumption

3 A A / ⊃I

G B
G A ⊃ B 3–— ⊃I
G ~ (A ⊃ B) 1 R

It is now apparent that our derivation is effectively done. Our only remaining
goal, ‘B’, can be obtained by Reiteration on line 2:

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 B Assumption

3 A A / ⊃I

4 B 2 R
5 A ⊃ B 3–4 ⊃I
6 ~ (A ⊃ B) 1 R

Establishing that the following set is inconsistent in SD is only modestly
more challenging:

{A � ~ B, B � C, A � C}

ber38413_ch05_146-225.indd Page 204 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 204 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 205

In this example the only negation that occurs as a component of any of the
members of the set is ‘~ B’. So perhaps our goal should be to derive both ‘B’
and ‘~ B’, even though neither can be derived by Reiteration or by any other
rule in a single step.

 Derive: B, ~ B

1 A � ~ B Assumption
2 B � C Assumption
3 A � C Assumption

G B

G ~ B

To obtain our fi rst goal, ‘B’, we might try using Negation Elimination:

 Derive: B, ~ B

1 A � ~ B Assumption
2 B � C Assumption
3 A � C Assumption

4 ~ B A / ~ E

G B 4–— ~ E

G ~ B 4–— ~ I

ber38413_ch05_146-225.indd Page 205 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 205 12/4/12 2:49 PM F-400F-400

206 SENTENTIAL LOGIC: DERIVATIONS

A cursory inspection of the sentences on lines 1–4 reveals that we can obtain
‘~ B’ by Reiteration and ‘B’ by repeated uses of Biconditional Elimination:

 Derive: B, ~ B

1 A � ~ B Assumption
2 B � C Assumption
3 A � C Assumption

4 ~ B A / ~ E

5 A 1, 4 �E
6 C 3, 5 �E
7 B 2, 6 �E
8 ~ B 4 R
9 B 4–8 ~ E

G ~ B

The remaining task is to derive ‘~ B’, and this too can be accomplished by
repeated applications of Biconditional Elimination:

 Derive: B, ~ B

1 A � ~ B Assumption
2 B � C Assumption
3 A � C Assumption

4 ~ B A / ~ I

5 A 1, 4 �E
6 C 3, 5 �E
7 B 2, 6 �E
8 ~ B 4 R
9 B 4–8 ~ I

10 C 2, 9 �E
11 A 3, 10 �E
12 ~ B 1, 11 �E

Finally, we will show that the set {~ (A ⊃ B), ~ (B ⊃ C)} is inconsistent
in SD. This is a challenging exercise. We do have two negations immediately
available, so we will probably use one of them as ~ Q; which one makes no
difference. So we set up our derivation this way:

ber38413_ch05_146-225.indd Page 206 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 206 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 207

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 ~ (B ⊃ C) Assumption

G A ⊃ B
 ~ (A ⊃ B) 1 R

We cannot apply any elimination rule to either assumption since they are both
negations. So we proceed by asking how our current goal, ‘A ⊃ B’, could be
obtained by an introduction rule, and the answer is of course by Conditional
Introduction:

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 ~ (B ⊃ C) Assumption

3 A A / ⊃I

G B
G A ⊃ B 3–— ⊃I
 ~ (A ⊃ B) 1 R

Our new goal is ‘B’. The only strategy for obtaining ‘B’ that seems remotely
promising is that of Negation Elimination:

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 ~ (B ⊃ C) Assumption

3 A A / ⊃I

4 ~ B A / ~ E

G B 4–— ~ E
G A ⊃ B 3–— ⊃I
 ~ (A ⊃ B) 1 R

ber38413_ch05_146-225.indd Page 207 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 207 12/4/12 2:49 PM F-400F-400

208 SENTENTIAL LOGIC: DERIVATIONS

We need to derive, within the subderivation beginning on line 4, a sentence
Q and its negation ~ Q. Three negations, ‘~ (A ⊃ B)’, ‘~ (B ⊃ C)’, and ‘~B’
are readily available. Since the presumed inconsistency of the set we are test-
ing fairly clearly derives from the interplay of those two assumptions—that is,
neither assumption by itself is problematic—we will eventually have to appeal
to both assumptions. And we are already using ‘~ (A ⊃ B)’ (as the last line of
our derivation), so perhaps it is time to fi nd a role for ‘~ (B ⊃ C)’. Accordingly
we will try to obtain ‘B ⊃ C’ and ‘~ (B ⊃ C)’.

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 ~ (B ⊃ C) Assumption

3 A A / ⊃I

4 ~ B A / ~ E

 B ⊃ C
 ~ (B ⊃ C) 2 R
 B 4–— ~ E
 A ⊃ B 3–— ⊃I
 ~ (A ⊃ B) 1 R

Our new goal, ‘B ⊃ C’, is a conditional, so Conditional Introduction seems
appropriate:

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 ~ (B ⊃ C) Assumption

3 A A / ⊃I

4 ~B A / ~ E

5 B A / ⊃I

 C
 B ⊃ C 5–— ⊃I
 ~ (B ⊃ C) 2 R
 B 4–— ~ E
 A ⊃ B 3–— ⊃I
 ~ (A ⊃ B) 1 R

At this point, as is often the case, the ‘trick’ is to be aware of what sentences
are available to us—in this case the sentences on lines 1–5—and what we can
do with those sentences. Note that we have both ‘B’ (at line 5) and ‘~ B’ (at

ber38413_ch05_146-225.indd Page 208 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 208 12/4/12 2:49 PM F-400F-400

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 209

line 4), and we know that whenever we can obtain a sentence and its negation
we can obtain any sentence whatsoever by the appropriate negation strategy.
We want ‘C’, so we will obtain it by Negation Elimination.

 Derive: A ⊃ B, ~ (A ⊃ B)

1 ~ (A ⊃ B) Assumption
2 ~ (B ⊃ C) Assumption

3 A A / ⊃I

4 ~ B A / ~ E

5 B A / ⊃I

6 ~ C A / ~ E

7 B 5 R
8 ~ B 4 R
9 C 6–8 ~ E

10 B ⊃ C 5–9 ⊃I
11 ~ (B ⊃ C) 2 R
12 B 4–11 ~ E
13 A ⊃ B 3–12 ⊃I
14 ~ (A ⊃ B) 1 R

 5.3E EXERCISES

 1. Construct derivations that establish the following derivability claims. In each
case start by setting up the main structure of the derivation—with the primary
assumption or assumptions at the top and the sentence to be derived at the
bottom, and then identify the initial subgoal or goals. Complete the derivation,
remembering to consider both the form of the current goal sentence and the
content of the accessible sentences in selecting appropriate subgoals.

 a. {A ⊃ B} | A ⊃ (A & B)
 *b. {~ B � A} | A ⊃ ~ B
 c. {(K ⊃ L) & (L ⊃ K)} | L � K
 *d. {M � T, ~ T} | ~ M
 e. {B & ~ B} | C
 *f. {D} | A ⊃ (B ⊃ D)
 g. {A ⊃ C, (~ A ∨ C) ⊃ (D ⊃ B)} | D ⊃ B
 *h. {~ A ⊃ ~ B, A ⊃ C, B ∨ D, D ⊃ E} | E ∨ C
 i. {A ⊃ B, ~ (B & ~ C) ⊃ A} | B
 *j. {~ A ⊃ B, C ⊃ ~ B, ~ (~ C & ~ A)} | A
 k. {A ∨ (B & C), C ⊃ ~ A} | B ∨ ~ C
 *l. {(A ⊃ B) ⊃ ~ B} | ~ B
 m. {(A ∨ B) ⊃ C, (D ∨ E) ⊃ [(F ∨ G) ⊃ A]} | D ⊃ (F ⊃ C)
 *n. {(F ∨ G) ⊃ (H & I)} | ~ F ∨ H
 o. {A ⊃ ~ (B ∨ C), (C ∨ D) ⊃ A, ~ F ⊃ (D & ~ E)} | B ⊃ F
 *p. {(A & B) � (A ∨ B), C & (C � ~ ~ A)} | B
 q. {F ⊃ (G ∨ H), ~ (~ F ∨ H), ~ G} | H
 *r. {~ (A ⊃ B) & (C & ~ D), (B ∨ ~ A) ∨ [(C & E) ⊃ D]} | ~ E

ber38413_ch05_146-225.indd Page 209 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 209 12/4/12 2:49 PM F-400F-400

210 SENTENTIAL LOGIC: DERIVATIONS

 2. Show that each of the following arguments is valid in SD.

 a. A ⊃ ~ B

 ~ B ⊃ C

 A ⊃ C

 *b. B ⊃ (A & ~ B)

 ~ B

 c. A � B

 ~ A

 ~ B

 *d. A ⊃ (B & C)

 ~ C

 ~ A

 e. D

 A ⊃ [B ⊃ (C ⊃ D)]

 *f. A � B

 B � C

 A � C

 g. A ⊃ (B ⊃ C)

 D ⊃ B

 A ⊃ (D ⊃ C)

 *h. ~ B ⊃ A

 C ∨ ~ B

 ~ C

 A

 i. ~ A ∨ B

 B ⊃ C

 A ⊃ C

 *j. (E ⊃ T) & (T ⊃ O)

 O ⊃ E

 (E � O) & (O � E)

 k. A ⊃ (C ⊃ B)

 ~ C ⊃ ~ A

 A

 B

 *l. ~ F

 ~ G

 ~ (F ∨ G)

 m. F � G

 F ∨ G

 F & G

 3. Prove that each of the following is a theorem in SD.
 a. A ⊃ (A ∨ B)
 *b. A ⊃ (B ⊃ A)
 c. A ⊃ [B ⊃ (A & B)]
 *d. (A & B) ⊃ [(A ∨ C) & (B ∨ C)]
 e. (A � B) ⊃ (A ⊃ B)
 *f. (A & ~ A) ⊃ (B & ~ B)
 g. (A ⊃ B) ⊃ [(C ⊃ A) ⊃ (C ⊃ B)]
 *h. (A & B) ∨ (~ A ∨ ~ B)
 i. [(A ⊃ B) & ~ B] ⊃ ~ A
 *j. (A & A) � A
 k. A ⊃ [B ⊃ (A ⊃ B)]
 *l. ~ A ⊃ [(B & A) ⊃ C]
 m. (A ⊃ B) ⊃ [~B ⊃ ~ (A & D)]
 *n. [~ A ⊃ ~(A ⊃ B)] ⊃ A

ber38413_ch05_146-225.indd Page 210 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 210 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 211

 4. Show that the members of each of the following pairs of sentences are equiva-
lent in SD.

 a. A & ~ A B & ~ B
 *b. A & A A ∨ A
 c. (A ∨ B) ⊃ A B ⊃ A
 *d. ~ (A ⊃ B) A & ~ B
 e. ~ (A � B) (A & ~ B) ∨ (B & ~ A)
 *f. A � ~ B ~ (A � B)

 5. Show that each of the following sets of sentences is inconsistent in SD.
 a. {~ (A ⊃ A)}
 *b. {A ⊃ (B & ~ B), A}
 c. {A � B, B ⊃ ~ A, A}
 *d. {A � ~ (A � A), A}
 e. {A ⊃ ~ A, ~ A ⊃ A}
 *f. {A ⊃ (C ⊃ B), ~ C ⊃ B, A & ~ B}
 g. {~ (A ∨ B), C ⊃ A, ~ C ⊃ B}
 *h. {~ (B � A), ~ B, ~ A}
 i. {~ (F ∨ G) � (A ⊃ A), H ⊃ F, ~ H ⊃ F}

 6. Show that the following derivability claims hold in SD.
 a. {A ⊃ B, ~ A ⊃ ~ B} | A � B
 *b. {F � ~ (G � ~ H), ~ (F ∨ G)} | H
 c. {A � (~B ∨ C), B ⊃ C} | A
 *d. {G ∨ ~ H, ~ G ∨ ~ H} | ~ H
 e. {B ∨ (C ∨ D), C ⊃ A, A ⊃ ~ C} | B ∨ D
 *f. {(A ⊃ B) ⊃ C, (A ⊃ B) ∨ ~ C | ~ C � ~ (A ⊃ B)
 g. {A ⊃ (D & B), (~ D � B) & (C ⊃ A)} | (A ∨ B) ⊃ ~ C
 *h. {~ (A � B)} | (A & ~ B) ∨ (B & ~ A)

 7. Show that each of the following
arguments is valid in SD.

 a. ~ (C ∨ A)

 ~ (C � ~ A)

 *b. C ∨ ~ D

 C ⊃ E

 D

 E

 c. ~ A & ~ B

 A � B

 *d. ~ (F ∨ ~ G) � ~ (H ∨ I)

 F ∨ I

 H ∨ I

 e. H � ~ (I & ~ J)

 ~ I � ~ H

 J ⊃ ~ I

 ~ H

 *f. ~ (F ⊃ G)

 ~ (G ⊃ H)

 I

 g. (F ∨ G) ∨ (H ∨ ~ I)

 F ⊃ H

 I ⊃ ~ G

 H ∨ ~ I

 *h. ~ D

ber38413_ch05_146-225.indd Page 211 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 211 12/4/12 2:49 PM F-400F-400

212 SENTENTIAL LOGIC: DERIVATIONS

 C ⊃ (A � B)

 (D ∨ B) ⊃ ~ A

 (A � B) ⊃ (D & E)

 ~ B ⊃ D

 C ⊃ (~ A & B)

 i. ~ (F ∨ ~ G) � ~ (H ∨ I)

 F ∨ I

 F ∨ (I & ~ G)

 *j. (A ∨ ~ B) ⊃ (C & D)

 A � ~ D

 ~ B � ~ C

 ~ (A ∨ ~ B)

 k. (~ A � ~ C) � (B � ~ D)

 ~ A ⊃ ~ B

 C ⊃ ~ D

 (~ A � ~ C) ⊃ (~ A � D)

 *l. F ⊃ (G ∨ H)

 ~ (~ F ∨ H)

 ~ G

 H

 m. ~ (A ⊃ B) & (C & ~ D)

 (B ∨ ~ A) ∨ [(C & E) ⊃ D]

 ~ E

 8. Prove that each of the following is a theorem in SD.
 a. ~ (A ⊃ B) ⊃ ~ (A � B)
 *b. ~ (A � B) ⊃ ~ (A & B)
 c. (A ⊃ B) ∨ (B ⊃ A)
 *d. [A ⊃ (B ⊃ C)] � [(A ⊃ B) ⊃ (A ⊃ C)]
 e. [(A ∨ B) ⊃ C] � [(A ⊃ C) & (B ⊃ C)]
 *f. [A ∨ (B ∨ C)] ⊃ [(D ⊃ A) ∨ ((D ⊃ B) ∨ (D ⊃ C))]
 g. ~ (A � B) � (A � ~ B)

 9. Show that the members of each of the following pairs of sentences are equiva-
lent in SD.

 a. A ~ ~ A Double Negation
 *b. A A & A Idempotence
 c. A A ∨ A Idempotence
 *d. A & B B & A Commutation
 e. A ∨ B B ∨ A Commutation
 *f. A & (B & C) (A & B) & C Association
 g. A ∨ (B ∨ C) (A ∨ B) ∨ C Association
 *h. A ⊃ (B ⊃ C) (A & B) ⊃ C Exportation
 i. A ⊃ B ~ B ⊃ ~ A Transposition
 *j. A � B (A ⊃ B) & (B ⊃ A) Equivalence
 k. A � B (A & B) ∨ (~ A & ~ B) Equivalence
 *l. A & (B ∨ C) (A & B) ∨ (A & C) Distribution
 m. A ∨ (B & C) (A ∨ B) & (A ∨ C) Distribution
 *n. ~ (A & B) ~ A ∨ ~ B De Morgan

 10. Show that each of the following sets of sentences of SL is inconsistent in SD.
 a. {(A ⊃ B) & (A ⊃ ~ B), (C ⊃ A) & (~ C ⊃ A)}
 *b. {B � (A & ~ A), ~ B ⊃ (A & ~ A)}

ber38413_ch05_146-225.indd Page 212 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 212 12/4/12 2:49 PM F-400F-400

5.1 THE DERIVATION SYSTEM SD 213

 c. {C � ~ A, C � A}
 *d. {~ (F ∨ G) � (~ F ⊃ ~ F), ~ G ⊃ F}
 e. {~ [A ∨ (B ∨ C)], A � ~ C}
 *f. {F ∨ (G ⊃ H), ~ H & ~ (F ∨ ~ G)}
 g. {A & (B ∨ C), (~ C ∨ H) & (H ⊃ ~ H), ~ B}
 *h. {[(A � B) � (D & ~ D)] � B, A}

 11. Symbolize the following arguments in SL. Then show that the symbolized argu-
ments are valid in SD.

 a. Spring has sprung, and the fl owers are blooming. If the fl owers are blooming,
the bees are happy. If the bees are happy but aren’t making honey, then spring
hasn’t sprung. So the bees are making honey.

 *b. If Luscious Food Industries goes out of business, then food processing won’t
be improved. And if they go out of business, canned beans will be available
if and only if Brockport Company stays in business. But Brockport Company
is going out of business, and canned beans will be available. Hence Luscious
Food Industries is staying in business unless food processing is improved.

 c. If civil disobedience is moral, then not all resistance to the law is morally pro-
hibited, although our legal code is correct if all resistance to the law is morally
prohibited. But civil disobedience is moral if and only if either civil disobedi-
ence is moral or our legal code is correct. Our judges have acted well only if
all resistance to the law is morally prohibited. So our judges haven’t acted well.

 *d. If oranges contain citric acid so do lemons, or if lemons don’t contain citric
acid neither do grapefruit. Thus, if oranges and grapefruit contain citric acid,
so do lemons.

 e. Neither rubber nor wood is a good conductor of electricity. But either rubber
is a good conductor if and only if metal is, or if metal or glass is a good con-
ductor then wood is a good conductor if and only if metal is. So metal isn’t a
good conductor of electricity.

 *f. If the trains stop running then airline prices will increase, and buses will reduce
their fares provided that trains don’t stop running. If airline prices increase,
then buses won’t lose their customers. Hence buses will lose their customers
only if they reduce their fares.

 g. If the house is built and taxes increase, Jones will go bankrupt. If Smith becomes
mayor, then the tax director will quit; and Smith will become mayor unless the
tax director quits. But taxes won’t increase if but only if the tax director doesn’t
quit and Smith becomes mayor. So if the house is built, Jones will go bankrupt.

 *h. Jim is a Democrat only if Howard or Rhoda is. If Howard is a Democrat, so
are Barbara and Allen. If Barbara is a Democrat, then Allen is a Democrat
only if Freda is. But not both Freda and Jim are Democrats. Therefore Jim is
a Democrat only if Rhoda is too.

 i. If life is a carnival, then I’m a clown or a trapeze artist. But either life isn’t a
carnival or there are balloons, and either there aren’t any balloons or I’m not
a clown. So, if life is a carnival, then I’m a trapeze artist.

 12. Symbolize the following passages in SL and show that the resulting sets of
sentences are inconsistent in SD.

 a. If motorcycling is dangerous sailboating is also dangerous, and if sailboating is
dangerous parachuting is dangerous. Motorcycling is dangerous but parachut-
ing is not.

ber38413_ch05_146-225.indd Page 213 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 213 12/4/12 2:49 PM F-400F-400

214 SENTENTIAL LOGIC: DERIVATIONS

 *b. If the recipe doesn’t call for fl avoring or it doesn’t call for eggs, it’s not a
recipe for tapioca. If the recipe calls for eggs, then it’s a tapioca recipe and it
doesn’t call for fl avoring. But this recipe calls for eggs.

 c. Bach is popular only if Beethoven is ignored. If Bach is unpopular and
Beethoven isn’t ignored, then current musical tastes are hopeless. Current
musical tastes aren’t hopeless, and Beethoven isn’t ignored.

 *d. Historians are right just in case theologians are mistaken, if and only if Darwin’s
theory is correct. And if historians or philosophers are right, then Darwinian theory
is correct and theologians are mistaken. Historians are right if and only if philoso-
phers are wrong. But if Darwinian theory is correct, then historians are mistaken.

 e. Either Martha was commissioned to write the ballet or, if the fund-raising sale
was a failure, Tony was commissioned. Nancy will dance if and only if Tony
wasn’t commissioned. But the fund-raiser was a failure, Nancy will dance, and
Martha wasn’t commissioned.

 13. Explain:
 a. Why we would not want to include the following derivation rule in SD.

 P ∨ Q

 P

 *b. Why Negation Introduction is a dispensable rule in SD. We take a rule to be
dispensable in SD if and only if the last line of every derivation that makes use
of the rule in question can also be derived from the given assumptions without
using that rule.

 c. Why Reiteration is a dispensable rule in SD.
 *d. Why deriving a sentence and its negation within the scope of an auxilliary

assumption does not show that the primary assumptions constitute an inconsist-
ent set but does show that the set that consists of the primary assumptions and
the assumptions of all open subderivations is inconsistent.

 e. Why an argument of SL that has as one of its premises the negation of a theo-
rem is valid in SD.

 14. In Chapter 6 (see Sections 6.3 and 6.4) we prove that, for any sentence P and
set � of sentences of SL,

� | P in SD if and only if � |= P.

 Show that a-c below follow from this result.
 a. An argument of SL is valid in SD if and only if the argument is truth-functionally

valid.
 *b. A sentence P of SL is a theorem in SD if and only if P is truth-functionally true.
 c. Sentences P and Q of SL are equivalent in SD if and only if P and Q are truth-

functionally equivalent.

 5.4 THE DERIVATION SYSTEM SD�

In this section we introduce a new natural deduction system, SD�, which con-
tains all the derivation rules of SD plus some additional rules. However, SD� is
not a stronger system than SD in the sense that more arguments of SL can be

ber38413_ch05_146-225.indd Page 214 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 214 12/4/12 2:49 PM F-400F-400

5.4 THE DERIVATION SYSTEM SD� 215

shown to be valid or that more sentences of SL are theorems in SD than are
in SD�. That is

� | P in SD

if and only if

� | P in SD�

However, historically a larger set of rules, such as those constituting SD�, have
been used in many derivation systems. This larger set contains some rules
absent from SD that do correspond to reasoning patterns commonly used in
ordinary discourse, and often derivations in SD� are shorter than correspond-
ing derivations in SD.

RULES OF INFERENCE

Suppose that prior to line n of a derivation two accessible lines, i and j, contain
P ⊃ Q and ~ Q, respectively. In SD we can derive ~ P as follows:

 i P ⊃ Q

 j ~ Q

 n P A / ~ I

 n � 1 Q i, n ⊃E
 n � 2 ~ Q j R
 n � 3 ~ P n � (n � 2) ~ I

To avoid going through this routine every time such a situation arises, we
introduce the rule Modus Tollens:

Modus Tollens (MT)

 P ⊃ Q

 ∼ P

� ∼ P

Now suppose that prior to line n of a derivation two accessible lines, i and j, contain
P ⊃ Q and Q ⊃ R. A routine to derive P ⊃ R in SD beginning at line i is as follows:

 i P ⊃ Q

 j Q ⊃ R

 n P A / ∼ Ι

 n � 1 Q i, n ⊃E
 n � 2 R j, n � 1 ⊃E
 n � 3 P ⊃ R n � (n � 2) ⊃I

ber38413_ch05_146-225.indd Page 215 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 215 12/4/12 2:49 PM F-400F-400

216 SENTENTIAL LOGIC: DERIVATIONS

To avoid this routine, we introduce the rule Hypothetical Syllogism:

Hypothetical Syllogism (HS)

 P ⊃ Q

 Q ⊃ R

� P ⊃ R

Finally suppose that prior to the line n of a derivation two accessible lines,
i and j, contain P ∨ Q and ~ P and that we wish to derive Q. A routine for
accomplishing this in SD is as follows:

 i P ∨ Q

 j ∼ P

 n P A / ∨E

 n � 1 ∼ Q A / ∼ E

 n � 2 P n R
 n � 3 ∼ P j R
 n � 4 Q n � 1 � n � 3 ∼ E

 n � 5 Q A / ∨E

 n � 6 Q n � 5 R
 n � 7 Q i, n � n � 4, n � 5 � n � 6 ∨E

The rule of Disjunctive Syllogism allows us to avoid going through this routine
for this and similar cases.

Disjunctive Syllogism (DS)

 P ∨ Q P ∨ Q

 ~ P or ~ Q

 Q P

The three rules of inference just introduced can be thought of as
derived rules. They are added for convenience only; whatever we can derive
with them, we can derive without them, using only the rules of SD.

RULES OF REPLACEMENT

In addition to rules of inference, there are also derivation rules known as rules
of replacement. Rules of replacement, as their name suggests, allow us to derive

ber38413_ch05_146-225.indd Page 216 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 216 12/4/12 2:49 PM F-400F-400

5.4 THE DERIVATION SYSTEM SD� 217

some sentences from other sentences by replacing sentential components. For
example, from the sentence

G ∨ (H & K)

we can certainly infer

G ∨ (~ ~ H & K)

In this instance the sentential component ‘H’ has been replaced with ‘~ ~ H’.
Similarly from

G ∨ (~ ~ H & K)

we can certainly infer

G ∨ (H & K)

Double Negation is the rule of replacement that licenses such moves within a
derivation.

Double Negation (DN)

P � � ~ ~ P

That is, by using Double Negation, we can derive from a sentence Q that
contains P as a sentential component another sentence that is like Q, except
that one occurrence of the sentential component P has been replaced with
~ ~ P. And, by using Double Negation, we can derive from a sentence Q
that contains ~ ~ P as a sentential component another sentence that is like
Q, except that one occurrence of the sentential component ~ ~ P has been
replaced with P.

Double Negation can be applied to any of the sentential components
of a sentence. For instance, from

G ∨ (H & K)

Double Negation permits us to derive

G ∨ ~ ~ (H & K)

And from

G ∨ ~ ~ (H & K)

ber38413_ch05_146-225.indd Page 217 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 217 12/4/12 2:49 PM F-400F-400

218 SENTENTIAL LOGIC: DERIVATIONS

Double Negation allows us to derive

G ∨ (H & K)

Since every sentence is a sentential component of itself, Double Negation
applies to the entire sentence as well. In a derivation Double Negation per-
mits us to go from

G ∨ (H & K)

to

~ ~ [G ∨ (H & K)]

and from

~ ~ [G ∨ (H & K)]

to

G ∨ (H & K)

Here are the rules of replacement for SD�:

Commutation (Com)

P & Q � � Q & P
P ∨ Q � � Q ∨ P

Implication (Impl)

P ⊃ Q � � ~ P ∨ Q

De Morgan (DeM)

~ (P & Q) � � ~ P ∨ ~ Q
~ (P ∨ Q) � � ~ P & ~ Q

Transposition (Trans)

P ⊃ Q � � ~ Q ⊃ ~ P

Association (Assoc)

P & (Q & R) � � (P & Q) & R
P ∨ (Q ∨ R) � � (P ∨ Q) ∨ R

Double Negation (DN)

P � � ~ ~ P

Idempotence (Idem)

P � � P & P
P � � P ∨ P

Exportation (Exp)

P ⊃ (Q ⊃ R) � � (P & Q) ⊃ R

Distribution (Dist)

P & (Q ∨ R) � � (P & Q) ∨ (P & R)
P ∨ (Q & R) � � (P ∨ Q) & (P ∨ R)

Equivalence (Equiv)

P � Q � � (P ⊃ Q) & (Q ⊃ P)
P � Q � � (P & Q) ∨ (~ P & ~ Q)

ber38413_ch05_146-225.indd Page 218 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 218 12/4/12 2:49 PM F-400F-400

5.4 THE DERIVATION SYSTEM SD� 219

Rules of replacement always allow the replacement of sentential components.
In addition, all these rules of replacement are two-way rules; that is, a senten-
tial component that has the form of the sentence on the left of ‘� �’ can be
replaced with a sentential component that has the form of the sentence on the
right of ‘� �’, and vice versa.

Consider the following derivation:

 Derive: J ⊃ [M ∨ (G ∨ I)]

1 J ⊃ [K ∨ (L ∨ H)] Assumption
2 [(K ∨ L) ∨ H] ⊃ [(M ∨ G) ∨ I] Assumption

3 J ⊃ [(K ∨ L) ∨ H] 1 Assoc
4 J ⊃ [(M ∨ G) ∨ I] 2, 3 HS
5 J ⊃ [M ∨ (G ∨ I)] 4 Assoc

Here the replacement rule Association has been used twice—fi rst to replace a
sentential component of the form P ∨ (Q ∨ R) with a sentential component of
the form (P ∨ Q) ∨ R and then to replace a sentential component of the form
(P ∨ Q) ∨ R with a sentential component of the form P ∨ (Q ∨ R).

Since all the derivation rules of SD are derivation rules of SD�, the
procedures for properly applying the rules of SD apply to SD� as well. The rules
of inference of SD�, including Modus Tollens, Hypothetical Syllogism, and
Disjunctive Syllogism, must be applied to entire sentences on a line. Rules of
replacement, on the other hand, can be applied to all sentential components.
The following derivation illustrates the proper use of several of the rules of
replacement:

 Derive: ~ C � E

1 (D ∨ B) ∨ (E ⊃ ~ C) Assumption
2 ~ B & [~ D & (~ E ⊃ C)] Assumption

3 (~ B & ~ D) & (~ E ⊃ C) 2 Assoc
4 ~ (B ∨ D) & (~ E ⊃ C) 3 DeM
5 ~ (B ∨ D) 4 &E
6 ~ (D ∨ B) 5 Com
7 E ⊃ ~ C 1, 6 DS
8 ~ E ⊃ C 3 &E
9 ~ C ⊃ ~ ~ E 8 Trans
10 ~ C ⊃ E 9 DN
11 (~ C ⊃ E) & (E ⊃ ~ C) 7, 10 &I
12 ~ C � E 11 Equiv

Notice that each application of a derivation rule requires a separate line. More-
over, care must be taken to apply each derivation rule only to sentences that
have the proper form (or, in the case of rules of replacement, sentences that
have components that have the proper form).

ber38413_ch05_146-225.indd Page 219 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 219 12/4/12 2:49 PM F-400F-400

220 SENTENTIAL LOGIC: DERIVATIONS

Here is an example in which these points are ignored:

 Derive: ~ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ~ B) ∨ ~ C Assumption
2 (D ∨ G) ∨ C Assumption

3 ~ (~ A & B) ∨ ~ C 1 DeM MISTAKE!
4 (~ A & B) ⊃ ~ C 3 Impl
5 C ∨ (G ∨ D) 2 Com MISTAKE!
6 ~ C ⊃ (G ∨ D) 5 Impl MISTAKE!
7 (~ A & B) ⊃ (G ∨ D) 4, 6 HS
8 ~ A ⊃ [B ⊃ (G ∨ D)] 7 Exp

De Morgan does not license entering the sentence on line 3. What
De Morgan does allow is the replacement of a sentential component of the
form ~ P ∨ ~ Q with a sentential component of the form ~ (P & Q), but the
sentential component ‘A ∨ ~ B’ does not have the form ~ P ∨ ~ Q. However,
by applying Double Negation to the fi rst assumption, we can obtain ‘(~ ~ A ∨
~ B) ∨ ~ C’. And this latter sentence does have a sentential component of the
form ~ P ∨ ~ Q, namely, ‘~ ~ A ∨ ~ B’. Here P is ‘~ A’, and Q is ‘B’. Hence
the derivation should begin this way:

 Derive: ~ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ~ B) ∨ ~ C Assumption
2 (D ∨ G) ∨ C Assumption

3 (~ ~ A ∨ ~ B) ∨ ~ C 1 DN
4 ~ (~ A & B) ∨ ~ C 3 DeM

The second mistake in our example, in line 5, is that Commutation
is applied twice within the same line. Each application of a rule, even if
it is the same rule, requires a separate line. Correctly done, the derivation
proceeds:

5 (~ A & B) ⊃ ~ C 4 Impl
6 C ∨ (D ∨ G) 2 Com
7 C ∨ (G ∨ D) 6 Com

The third mistake, in line 6 of the example, also stems from our
trying to apply a rule of replacement to a sentential component that does
not have the form required by the rule. Implication permits the replacement
of a sentential component of the form ~ P ∨ Q with a sentential compo-
nent of the form P ⊃ Q, but ‘C ∨ (G ∨ D)’ does not have the form ~ P ∨
Q. However, applying Double Negation to ‘C’, a sentential component of
‘C ∨ (G ∨ D)’, generates ‘~ ~ C ∨ (G ∨ D)’. This latter sentence does have
the form ~ P ∨ Q, where P is ‘~ C’ and Q is ‘G ∨ D’. Here is the entire
derivation done correctly:

ber38413_ch05_146-225.indd Page 220 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 220 12/4/12 2:49 PM F-400F-400

5.4 THE DERIVATION SYSTEM SD� 221

 Derive: ~ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ~ B) ∨ ~ C Assumption
2 (D ∨ G) ∨ C Assumption

3 (~ ~ A ∨ ~ B) ∨ ~ C 1 DN
4 ~ (~ A & B) ∨ ~ C 3 DeM
5 (~ A & B) ⊃ ~ C 4 Impl
6 C ∨ (D ∨ G) 2 Com
7 C ∨ (G ∨ D) 6 Com
8 ~ ~ C ∨ (G ∨ D) 7 DN
9 ~ C ⊃ (G ∨ D) 8 Impl

10 (~ A & B) ⊃ (G ∨ D) 5, 9 HS
11 ~ A ⊃ [B ⊃ (G ∨ D)] 10 Exp

The defi nitions of the basic concepts of SD� parallel the defi nitions for
the basic concepts of SD, except that ‘SD’ is replaced with ‘SD�’. For example,
the concept of derivability is defi ned as follows:

A sentence P of SL is derivable in SD� from a set � of sentence of SL if and
only if there is a derivation in SD� in which all the primary assumptions
are members of � and P occurs within the scope of only those assumptions.

Consequently tests for the various syntactic properties in SD� are analo-
gous to those of SD. To show that an argument is valid in SD�, we construct a
derivation in SD� showing that the conclusion of the argument is derivable in
SD� from the set all of whose members are premises of the argument. To show
that a sentence P of SL is a theorem in SD�, we show that P is derivable in SD�
from the empty set. And so on. Remember that, although SD and SD� are differ-
ent syntactic systems, whatever can be derived in one can be derived in the other.

The Derivation Rules of SD�

All the Derivation Rules of SD and Rules of Inference

Modus Tollens (MT)

 P ⊃ Q

 ~ Q

� ~ P

Hypothetical Syllogism (HS)

 P ⊃ Q

 Q ⊃ R

� P ⊃ R

Disjunctive Syllogism (DS)

 P ∨ Q P ∨ Q

 ~ P or ~ Q

� Q � P

ber38413_ch05_146-225.indd Page 221 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 221 12/4/12 2:49 PM F-400F-400

222 SENTENTIAL LOGIC: DERIVATIONS

 5.4E EXERCISES

 1. Show that the following derivability claims hold in SD�.
 a. {D ⊃ E, E ⊃ (Z & W), ~ Z ∨ ~ W} | ~ D
 *b. {(H & G) ⊃ (L ∨ K), G & H} | K ∨ L
 c. {(W ⊃ S) & ~ M, (~ W ⊃ H) ∨ M, (~ S ⊃ H) ⊃ K} | K
 *d. {[(K & J) ∨ I] ∨ ~ Y, Y & [(I ∨ K) ⊃ F]} | F ∨ N
 e. {(M ∨ B) ∨ (C ∨ G), ~ B & (~ G & ~ M)} | C
 *f. {~ L ∨ (~ Z ∨ ~ U), (U & G) ∨ H, Z} | L ⊃ H

 2. Show that each of the following is valid in SD�.

Rules of Replacement

Commutation (Com)

P & Q � � Q & P
P ∨ Q � � Q ∨ P

Implication (Impl)

P ⊃ Q � � ~ P ∨ Q

De Morgan (DeM)

~ (P & Q) � � ~ P ∨ ~ Q
~ (P ∨ Q) � � ~ P & ~ Q

Transposition (Trans)

P ⊃ Q � � ~ Q ⊃ ~ P

Association (Assoc)

P & (Q & R) � � (P & Q) & R
P ∨ (Q ∨ R) � � (P ∨ Q) ∨ R

Double Negation (DN)

P � � ~ ~ P

Idempotence (Idem)

P � � P & P
P � � P ∨ P

Exportation (Exp)

P ⊃ (Q ⊃ R) � � (P & Q) ⊃ R

Distribution (Dist)

P & (Q ∨ R) � � (P & Q) ∨ (P & R)
P ∨ (Q & R) � � (P ∨ Q) & (P ∨ R)

Equivalence (Equiv)

P � Q � � (P ⊃ Q) & (Q ⊃ P)
P � Q � � (P & Q) ∨ (~ P & ~ Q)

 a. ~ Y ⊃ ~ Z

 ~ Z ⊃ ~ X

 ~ X ⊃ ~ Y

 Y � Z

 *b. (~ A & ~ B) ∨ (~ A & ~ C)

 (E & D) ⊃ A

 ~ E ∨ ~ D

 c. (F & G) ∨ (H & ~ I)

 I ⊃ ~ (F & D)

 I ⊃ ~ D

 *d. F ⊃ (~ G ∨ H)

 F ⊃ G

 ~ (H ∨ I)

 F ⊃ J

ber38413_ch05_146-225.indd Page 222 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 222 12/4/12 2:49 PM F-400F-400

5.4 THE DERIVATION SYSTEM SD� 223

 e. F ⊃ (G ⊃ H)

 ~ I ⊃ (F ∨ H)

 F ⊃ G

 I ∨ H

 *f. G ⊃ (H & ~ K)

 H � (L & I)

 ~ I ∨ K

 ~ G

 g. [(X & Z) & Y] ∨ (~ X ⊃ ~ Y)

 X ⊃ Z

 Z ⊃ Y

 X � Y

 3. Show that each of the following is a theorem in SD�.
 a. A ∨ ~ A
 *b. ~ ~ ~ ~ ~ (A & ~ A)
 c. A ∨ [(~ A ∨ B) & (~ A ∨ C)]
 *d. [(A & B) ⊃ (B & A)] & [~ (A & B) ⊃ ~ (B & A)]
 e. [A ⊃ (B & C)] � [(~ B ∨ ~ C) ⊃ ~ A]
 *f. [A ∨ (B ∨ C)] � [C ∨ (B ∨ A)]
 g. [A ⊃ (B � C)] � (A ⊃ [(~ B ∨ C) & (~ C ∨ B)])
 *h. (A ∨ [B ⊃ (A ⊃ B)]) � (A ∨ [(~ A ∨ ~ B) ∨ B])
 i. [~ A ⊃ (~ B ⊃ C)] ⊃ [(A ∨ B) ∨ (~ ~ B ∨ C)]
 *j. (~ A � ~ A) � [~ (~ A ⊃ A) � (A ⊃ ~ A)]

 4. Show that the members of each of the following pairs of sentences are equiva-
lent in SD�.

 a. A ∨ B
 ~ (~ A & ~ B)
 *b. A & (B ∨ C)
 (B & A) ∨ (C & A)
 c. (A & B) ⊃ C
 ~ (A ⊃ C) ⊃ ~ B
 *d. (A ∨ B) ∨ C
 ~ A ⊃ (~ B ⊃ C)
 e. A ∨ (B � C)
 A ∨ (~ B � ~ C)
 *f. (A & B) ∨ [(C & D) ∨ A]
 ([(C ∨ A) & (C ∨ B)] & [(D ∨ A) & (D ∨ B)]) ∨ A

 5. Show that the following sets of sentences are inconsistent in SD�.
 a. {[(E & F) ∨ ~ ~ G] ⊃ M, ~ [[(G ∨ E) & (F ∨ G)] ⊃ (M & M)]}
 *b. {~ [(~ C ∨ ~ ~ C) ∨ ~ ~ C]}
 c. {M & L, [L & (M & ~ S)] ⊃ K, ~ K ∨ ~ S, ~ (K � ~ S)}
 *d. {B & (H ∨ Z), ~ Z ⊃ K, (B � Z) ⊃ ~ Z, ~ K}
 e. {~ [W & (Z ∨ Y)], (Z ⊃ Y) ⊃ Z, (Y ⊃ Z) ⊃ W}
 *f. {[(F ⊃ G) ∨ (~ F ⊃ G)] ⊃ H, (A & H) ⊃ ~ A, A ∨ ~ H}

 6. Symbolize the following arguments in SL, and show that they are valid in SD�.
 a. If the phone rings Ed is calling, or if the beeper beeps Ed is calling. If not both

Ed and Agnes are at home today, then it’s not the case that if the phone rings,
Ed is calling. Ed isn’t home today, and he isn’t calling. So the beeper won’t beep.

ber38413_ch05_146-225.indd Page 223 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 223 12/4/12 2:49 PM F-400F-400

224 SENTENTIAL LOGIC: DERIVATIONS

 *b. If Monday is a bad day, then I’ll lose my job provided the boss doesn’t call in
sick. The boss won’t call in sick. So I’ll lose my job—since either Monday will
be a bad day, or the boss won’t call in sick only if I lose my job.

 c. Army coats are warm only if they’re either made of wool or not made of cotton
or rayon. If army coats are not made of rayon, then they’re made of cotton.
Hence, if they’re not made of wool, army coats aren’t warm.

 *d. If either the greenhouse is dry or the greenhouse is sunny if and only if it’s not
raining, the violets will wither. But if the violets wither the greenhouse is sunny,
or if the violets wither the greenhouse isn’t dry. It’s raining, and the greenhouse
isn’t sunny. So the greenhouse is dry only if the violets won’t wither.

 e. It’s not the case that John is rich and Hugo isn’t. In fact, Hugo isn’t rich, unless
Moe is. And if Moe just emptied his bank account, then he isn’t rich. Thus, if
John is rich, then it’s not the case that either Moe emptied his bank account
or Moe isn’t rich,

 *f. Neither aspirin nor gin will ease my headache, unless it’s psychosomatic. If it’s
psychosomatic and I’m really not ill, then I’ll go out to a party and drink some
martinis. So, if I’m not ill and don’t drink any martinis, then aspirin won’t ease
my headache.

 g. If I stay on this highway and don’t slow down, I’ll arrive in Montreal by 5:00. If
I don’t put my foot on the brake, I won’t slow down. Either I won’t slow down
or I’ll stop for a cup of coffee at the next exit. I’ll stop for a cup of coffee at the
next exit only if I’m falling asleep. So, if I don’t arrive in Montreal by 5:00, then
I’ll stay on this highway only if I’m falling asleep and I put my foot on the brake.

 *h. The weather is fi ne if and only if it’s not snowing, and it’s not snowing if and
only if the sky is clear. So, either the weather is fi ne, the sky is clear, and it’s
not snowing; or it’s snowing, the sky isn’t clear, and the weather is lousy.

 7. Symbolize the following passages in SL, and show that the resulting sets of
sentences of SL are inconsistent in SD�.

 a. Unless Stowe believes that all liberals are atheists, his claims about current poli-
tics are unintelligible. But if liberals are atheists only if they’re not churchgoers,
then Stowe’s claims about current politics are nevertheless intelligible. Liberals
are, in fact, churchgoers if and only if Stowe doesn’t believe that they’re all
atheists, and if liberals aren’t atheists, then Stowe doesn’t believe that they are
atheists. Liberals aren’t atheists.

 *b. Either Congress won’t cut taxes or the elderly and the poor will riot, if but only
if big business prospers. If the elderly don’t riot, then Congress won’t cut taxes.
It won’t happen that both the poor will riot and big business will prosper, and
it won’t happen that the poor don’t riot and big business doesn’t prosper. But
if big business prospers, then Congress will cut taxes.

 8. Answer the following.
 a. Suppose we can derive Q from P by using only the rules of replacement. Why

can we be sure that we can derive P from Q?
 *b. Why must all arguments that are valid in SD be valid in SD� as well?
 c. Suppose we develop a new natural deduction system SD*. Let SD* contain all

the derivation rules of SD and in addition the derivation rule Absorption.

 Absorption

 P ⊃ Q
� P ⊃ (P & Q)

ber38413_ch05_146-225.indd Page 224 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 224 12/4/12 2:49 PM F-400F-400

5.4 THE DERIVATION SYSTEM SD� 225

Using only the derivation rules of SD, develop a routine showing that any
sentence derived by using Absorption could be derived in SD without using it.

GLOSSARY4

DERIVABILITY IN SD: A sentence P of SL is derivable in SD from a set � of sentences
of SL if and only if there is a derivation in SD in which all the primary assump-
tions are members of � and P occurs in the scope of only those assumptions.

VALIDITY IN SD: An argument of SL is valid in SD if and only if the conclusion of
the argument is derivable in SD from the set consisting of the premises. An argu-
ment of SL is invalid in SD if and only if it is not valid in SD.

THEOREM IN SD: A sentence P of SL is a theorem in SD if and only if P is derivable
in SD from the empty set.

EQUIVALENCE IN SD: Sentences P and Q of SL are equivalent in SD if and only if Q
is derivable in SD from {P} and P is derivable in SD from {Q} .

INCONSISTENCY IN SD: A set � of sentences of SL is inconsistent in SD if and only if
both a sentence P of SL and its negation ~ P are derivable in SD from �. A set �
of sentences of SL is consistent in SD if and only if it is not inconsistent in SD.

4Similar defi nitions hold for the derivation system SD�.

ber38413_ch05_146-225.indd Page 225 12/4/12 2:49 PM ber38413_ch05_146-225.indd Page 225 12/4/12 2:49 PM F-400F-400

226 SENTENTIAL LOGIC: METATHEORY

Chapter 6

Section 6.1 introduces mathematical induction, a technique that we will use to
establish important results about the syntax and semantics of sentential logic.
Section 6.2 establishes that the fi ve connectives of SL are truth-functionally com-
plete, that is, they can be used to express any truth-function. Section 6.3 estab-
lishes that SD and SD� are sound systems for sentential logic, that is, derivability
in these systems establishes truth-functional entailment. Section 6.4 establishes
that SD and SD� are complete for sentential logic, that is, given any truth-
functional entailment, there is a corresponding derivation in these systems.

SENTENTIAL LOGIC:
METATHEORY

 6.1 MATHEMATICAL INDUCTION

In the three previous chapters we concentrated on developing and using tech-
niques of sentential logic, both semantic and syntactic. In this chapter we step
back to prove some claims about the semantics and syntax of sentential logic.
Such results constitute the metatheory of sentential logic. Throughout this chap-
ter, unless otherwise noted, when we speak of sets we are speaking of sets of
sentences of SL, and when we speak of sentences we are speaking of sentences
of SL. We also adopt the convention of numbering our metatheoretic results to
refl ect the section in which they occur.

For the language SL, the semantic accounts of such logical properties
of sentences and sets of sentences of SL as validity, consistency, and equivalence

ber38413_ch06_226-261.indd Page 226 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 226 12/3/12 11:44 AM F-400F-400

6.1 MATHEMATICAL INDUCTION 227

given in Chapter 3 are fundamental in the sense that they are the standards by
which other accounts of these properties are judged. For instance, although the
techniques of Chapter 5 are purely syntactical—all the derivation rules appeal
to the structures or forms of sentences, not to their truth-conditions—those
techniques are intended to yield results paralleling the results yielded by the
semantic techniques of Chapter 3. One of the important metatheoretic results
that we shall prove in this chapter is that this parallel does hold. We shall prove
this by proving that the natural deduction system SD allows us to construct all
and only the derivations we want to be able to construct, given the semantics
of Chapter 3. Specifi cally we shall prove that, given any set � of sentences
of SL and any sentence P of SL, P is derivable from � in SD if and only if P
is truth--functionally entailed by �. It follows from this that all and only the
truth-functionally valid arguments of SL are valid in SD, all and only the truth-
functionally true sentences of SL are theorems in SD, and so on.

We shall use a very powerful method of proof known as mathematical
induction to establish the foregoing results. We introduce mathematical induc-
tion with a simple example. We will use it to prove what appears to be an obvious
result: that in every sentence of SL the number of left parentheses equals the
number of right parentheses. Because there are an infi nite number of sentences
of SL, we cannot establish this result by looking at each sentence and counting
the number of left and right parentheses that it contains. Mathematical induc-
tion allows us to establish that a claim holds for an infi nite number of cases
without going through them one at a time. Recall the recursive defi nition of
‘sentence of SL’ given in Chapter 2:

1. Every sentence letter of SL is a sentence of SL.
2. If P is a sentence of SL, then ~ P is a sentence of SL.

3. If P and Q are sentences of SL, then (P & Q) is a sentence of SL.
4. If P and Q are sentences of SL, then (P ∨ Q) is a sentence of SL.
5. If P and Q are sentences of SL, then (P ⊃ Q) is a sentence of SL.
6. If P and Q are sentences of SL, then (P � Q) is a sentence of SL.
7. Nothing is a sentence of SL unless it can be formed by repeated appli-

cation of clauses 1–6.

It is trivial to show that every atomic sentence of SL—that is, every
sentence formed in accordance with clause 1—has an equal number of left and
right parentheses (namely, zero), because atomic sentences contain no paren-
theses. All other sentences of SL are formed in accordance with clauses 2–6. We
note that in each of these cases an equal number of outermost left and right
parentheses are added to those already occurring in the sentence’s immediate
components to form the new sentence (zero of each in clause 2, one of each
in clauses 3–6). Therefore, if we can be sure that the immediate components P
and Q of sentences formed in accordance with clauses 2–6 themselves contain
an equal number of left and right parentheses, then we may conclude that the

ber38413_ch06_226-261.indd Page 227 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 227 12/3/12 11:44 AM F-400F-400

228 SENTENTIAL LOGIC: METATHEORY

sentences produced by these clauses will also contain an equal number of left
and right parentheses.

How can we be sure, though, that each of the immediate components of
a compound sentence does contain an equal number of left and right parenthe-
ses? We can start with compound sentences with one occurrence of a connective
such as ‘~ A’, ‘(A ⊃ B)’, and ‘(A & B)’. Every sentence that contains one occur-
rence of a connective has one of the forms ~ P, (P & Q), (P ∨ Q), (P ⊃ Q), or
(P � Q). Moreover, in each case the immediate component or components are
atomic. We have already noted that every atomic sentence has an equal number
of left and right parentheses (namely, zero), and so, because clauses 2–6 each
add an equal number of left and right parentheses to those already occurring
in its immediate components, every compound sentence with one occurrence
of a connective must also have an equal number of left and right parentheses.

Now consider truth-functionally compound sentences that contain two
occurrences of connectives—sentences like ‘~ ~ A’, ‘~ (A ∨ B)’, ‘(A ∨ ~ B)’,
‘((A � B) ⊃ C)’, and ‘(A ∨ (B & C))’. We may reason as we did in the previous
paragraph. That is, every sentence that contains two occurrences of connectives
has one of the forms ~ P, (P & Q), (P ∨ Q), (P ⊃ Q), or (P � Q). And in each
case the immediate component or components each have fewer than two occur-
rences of connectives. We have already found that, every sentence that contains
fewer than two occurrences of connectives (atomic sentences and sentences con-
taining one occurrence of a connective) has an equal number of left and right
parentheses. Therefore, because clauses 2–6 each add an equal number of left
and right parentheses to those already occurring in its immediate components,
we may conclude that every compound sentence with two occurrences of con-
nectives also has an equal number of left and right parentheses.

The same pattern of reasoning can be used for sentences with three
occurrences of connectives, such as ‘~ ~ ~ A’, ‘~ (~ A ∨ B)’, ‘((A ⊃ B) & (A ∨
C))’, and ‘(~ (A � B) � C)’. In every sentence that has three occurrences of
connectives, the immediate components each contain fewer than three occur-
rences of connectives. We have already shown that every sentence of SL that
contains fewer than three occurrences of connectives has an equal number of
left and right parentheses. Therefore, because clauses 2–6 each add an equal
number of left and right parentheses, we may conclude that every sentence that
contains three occurrences of connectives has an equal number of left and right
parentheses. The same reasoning can now be used to show that the claim holds
for every sentence with four occurrences of connectives, then for every sentence
with fi ve occurrences of connectives, and so on. But of course we cannot con-
sider each case individually—that is, each number of occurrences of connectives
a sentence of SL might have, because there are an infi nite number of such cases.
But because there is a commonality of reasoning that can be used for each case
we can use mathematical induction to generalize, reasoning as follows:

Every sentence of SL with zero occurrences of connectives—
that is, every atomic sentence of SL—has an equal number of
left and right parentheses.

ber38413_ch06_226-261.indd Page 228 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 228 12/3/12 11:44 AM F-400F-400

6.1 MATHEMATICAL INDUCTION 229

If every sentence of SL with k or fewer occurrences of connectives
has an equal number of left and right parentheses, then every sen-
tence of SL with k � 1 occurrences of connectives also has an equal
number of left and right parentheses.

Therefore every sentence of SL has an equal number of left and
right parentheses.

(Here we use ‘k’ as a variable ranging over the nonnegative integers, that is,
the positive integers plus zero.) This argument is logically valid—if the premises
are true, then the conclusion is true as well. The fi rst premise is our claim
about sentences with no connectives, and the second premise therefore says
that it follows that the claim also holds for sentences containing one occur-
rence of a connective. If the claim holds for all sentences containing zero or
one occurrences of connectives, the second premise also assures us that the
claim must also hold for sentences containing two occurrences of connectives.
If the claim holds for all sentences containing zero, one, or two occurrences
of connectives, the second premise also assures us that the claim also holds
for sentences containing three occurrences of connectives, and so on for sen-
tences with any number of occurrences of connectives. Because the argument
is logically valid, we can establish that its conclusion is true by showing that
both premises are true.

We have already shown that the fi rst premise is true. Sentences that
contain zero occurrences of connectives are atomic sentences, and atomic sen-
tences are simply sentence letters. The fi rst premise is called the ‘basis clause’
of the argument.

The second premise of the argument is called the ‘inductive step’,
and its antecedent is called the ‘inductive hypothesis’. We shall prove that
the inductive step is true by generalizing on the reasoning that we have
already used. We shall assume that the inductive hypothesis is true—that is,
that every sentence of SL containing k or fewer occurrences of connectives
has an equal number of left and right parentheses—and we will show that
it follows that every sentence P with k � 1 occurrences of connectives also
has an equal number of left and right parentheses. Since k is nonnegative,
k � 1 is positive, and hence such a sentence P contains at least one occur-
rence of a connective. So P will be a compound sentence that has one of the
forms ~ Q, (Q & R), (Q ∨ R), (Q ⊃ R), or (Q � R). We divide these forms
into two cases.

Case 1: P has the form ~ Q. If ~ Q contains k � 1 occurrences
of connectives, then Q contains k occurrences of connectives. By the
inductive hypothesis (that every sentence containing k or fewer con-
nectives has an equal number of left and right parentheses), Q has an
equal number of left and right parentheses. But ~ Q contains all the
parentheses occurring in Q and no others. So ~ Q contains an equal
number of left and right parentheses as well.

ber38413_ch06_226-261.indd Page 229 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 229 12/3/12 11:44 AM F-400F-400

230 SENTENTIAL LOGIC: METATHEORY

Case 2: P has one of the forms (Q & R), (Q ∨ R), (Q ⊃ R), or
(Q � R). In each instance, if P contains k � 1 occurrences of connec-
tives, then its immediate components, Q and R, must each contain k or
fewer occurrences of connectives. By the inductive hypothesis, then:

a. Q has an equal number of left and right parentheses. Call this
number m.

b. R has an equal number of left and right parentheses. Call this
number n.

The number of left parentheses in P is therefore m � n � 1 (the 1 is for the
outer-left parentheses that is added when P is formed from Q and R), and
similarly, the number of right parentheses in P is m � n � 1. Therefore, the
number of left parentheses in P equals the number of right parentheses in P.

This completes our proof that the second premise, the inductive step,
is true. Having established that both premises are true, we may conclude that
the conclusion is true as well. Every sentence of SL has an equal number of
left and right parentheses.

We may now generally characterize arguments by mathematical induc-
tion. First, we group the items about which we wish to prove some claim into a
series of cases, each associated with a nonnegative integer k. In our example, we
arranged the sentences of SL into the series: sentences with zero occurrences
of connectives, sentences with one occurrence of a connective, sentences with
two occurrences of connectives, and so on. Every sentence of SL falls into one
of these cases. The argument by mathematical induction then takes the fol-
lowing form:1

The claim holds for every member of the fi rst group in the series.
If the claim holds for every member of every group associated with
an integer less than k, then the claim holds for every member of the
group associated with the integer k.

The thesis holds for every member of every group in the series.

All arguments of this form are valid. Of course, only those with true premises
are sound. So to establish that the claim holds for every member of every group,
we must show that the claim does hold for every member of the fi rst group
and that, no matter what subsequent group in the series we may choose, the
claim holds for every member of that group if it holds for every member of
every prior group. Again, the fi rst premise of an argument by mathematical

1Strictly speaking, this is the form of arguments by strong mathematical induction. There is another type of math-
ematical induction, known as weak induction. We shall use only the strong variety of mathematical induction in
this text. There is no loss here, for every claim that can be proven by weak mathematical induction can also be
proven by strong mathematical induction.

ber38413_ch06_226-261.indd Page 230 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 230 12/3/12 11:44 AM F-400F-400

6.1 MATHEMATICAL INDUCTION 231

induction is the basis clause, the second premise is the inductive step, and the
antecedent of the second premise is the inductive hypothesis.

We’ll illustrate mathematical induction with another example. Let P
be a sentence of SL that contains only ‘~’, ‘∨’, and ‘&’ as connectives, and let
P� be the sentence that results from:

a. Replacing each occurrence of ‘∨’ in P with ‘&’
b. Replacing each occurrence of ‘&’ in P with ‘∨’
c. Adding a ‘~’ in front of each atomic component of P.

We shall call a sentence that contains only ‘~’, ‘∨’, and ‘&’ as connectives a
TWA sentence (short for ‘tilde, wedge, and ampersand’), and we shall call the
sentence P� that results from P by (a), (b), and (c) the dual of P. Here are
some examples of duals for TWA sentences:

 P Dual of P
A ~ A
((A ∨ F) & G) ((~ A & ~ F) ∨ ~ G)
(((B & C) & C) ∨ D) (((~ B ∨ ~ C) ∨ ~ C) & ~ D)
~ ((A ∨ ~ B) ∨ (~ A & ~ B)) ~ ((~ A & ~ ~ B) & (~ ~ A ∨ ~ ~ B))

We shall use mathematical induction to establish the following thesis:

Every TWA sentence P is such that P and its dual P� have opposite
truth-values on each truth-value assignment (that is, if P is true then
P� is false, and if P is false then P� is true).

As in the previous example, our series will classify sentences by the number of
occurrences of connectives that they contain:

Basis clause: Every TWA sentence P with zero occurrences of connec-
tives is such that P and its dual P� have opposite truth-values on each
truth-value assignment.

Inductive step: If every TWA sentence P with k or fewer occurrences of
connectives is such that P and its dual P� have opposite truth-values on
each truth-value assignment, then every TWA sentence P with k � 1
occurrences of connectives is such that P and its dual P� have opposite
truth-values on each truth-value assignment.

Conclusion: Every TWA sentence P of SL is such that P and its dual P�
have opposite truth-values on each truth-value assignment.

To show that the conclusion of this argument is true, we must show that the fi rst
premise, the basis clause, is true and also that the second premise, the inductive
step, is true.

ber38413_ch06_226-261.indd Page 231 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 231 12/3/12 11:44 AM F-400F-400

232 SENTENTIAL LOGIC: METATHEORY

Proof of basis clause: A TWA sentence P that contains zero occur-
rences of connectives must be an atomic sentence, and its dual is simply
~ P. If P is true on a truth-value assignment, then according to the
characteristic truth-table for the tilde, ~ P must be false. And if P is
false on a truth-value assignment, then ~ P is true. We conclude that P
and its dual have opposite truth-values on each truth-value assignment.
Proof of inductive step: We assume that the inductive hypothesis is true
for all sentences with fewer than k � 1 occurrences of connectives—
that is, that every TWA sentence P with fewer than k � 1 occurrences
of connectives is such that P and its dual P� have opposite truth-values
on each truth-value assignment. We must show that it follows from
this assumption that the claim is also true of all TWA sentences P with
k � 1 occurrences of connectives. A TWA sentence P that contains k
� 1 occurrences of connectives must be compound, and because it is
a TWA sentence, it must have one of the three forms ~ Q, (Q ∨ R),
or (Q & R). We will consider each form.

Case 1: P has the form ~ Q. If ~ Q contains k � 1 occurrences
of connectives, then Q contains k occurrences of connectives, and Q is
a TWA sentence (if it were not—if it contained a horseshoe or triple
bar—then ~ Q would not be a TWA sentence either). Let Q� be the
dual of Q. Then the dual of ~ Q is ~ Q�, the sentence that results
from ~ Q by changing Q in accordance with (a), (b), and (c) of our
defi nition of dual sentences and leaving the initial tilde of ~ Q intact.

Because Q is a TWA sentence with fewer than k � 1 occur-
rences of connectives, it follows from the inductive hypothesis that Q
and its dual Q� have opposite truth-values on each truth-value assign-
ment. Therefore, by the characteristic truth-table for negation, ~ Q and
~ Q� will also have opposite truth-values on each truth-value assignment.

Case 2: P has the form (Q ∨ R). If (Q ∨ R) contains k � 1
occurrences of connectives, then Q and R each contain k or fewer
occurrences of connectives. Q and R must also be TWA sentences.
(Again, if either of them were not, then P would not be a TWA sen-
tence.) Let Q� be the dual of Q and R� be the dual of R. Then the
dual of P is (Q� & R�)—the result of making the changes specifi ed by
(a), (b), and (c) within Q and within R and replacing the main con-
nective ‘∨’ of (Q ∨ R) with ‘&’.

If (Q ∨ R) is true on a truth-value assignment, then by the
characteristic truth-table for the wedge, either Q is true or R is true.
Because Q and R each contain k or fewer occurrences of connectives,
it follows from the inductive hypothesis that either Q� is false or R� is
false. Either way, (Q� & R�), the dual of (Q ∨ R), must be false as well.
On the other hand, if (Q ∨ R) is false on a truth-value assignment, then
both Q and R must be false on that assignment. It follows from the
inductive hypothesis that both Q� and R� are true on that assignment,

ber38413_ch06_226-261.indd Page 232 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 232 12/3/12 11:44 AM F-400F-400

6.1 MATHEMATICAL INDUCTION 233

so (Q� & R�) is true as well. We conclude that (Q ∨ R) and its dual
have opposite truth-values on each truth-value assignment.

Case 3: P has the form (Q & R). If P contains k � 1 occur-
rences of connectives, then Q and R each contain k or fewer occur-
rences of connectives. And they must also be TWA sentences. Let Q� be
the dual of Q and R� the dual of R. Then the dual of P is (Q� ∨ R�)—the
result of making the changes specifi ed by (a), (b), and (c) within Q
and within R and replacing the main connective of (Q & R) with ‘∨’.

If (Q & R) is true on a truth-value assignment, then, by the
characteristic truth-table for the ampersand, both Q and R are true on
that truth-value assignment. Because Q and R each contain k or fewer
occurrences of connectives, it follows from the inductive hypothesis
that Q� and R� are both false on that assignment, and therefore that
the dual of (Q & R), (Q� ∨ R�), is also false on that assignment. If
(Q & R) is false on a truth-value assignment, then either Q is false
or R is false on that assignment. If Q is false, then it follows by the
inductive hypothesis that Q� is true. If R is false on that assignment,
then it follows by the inductive hypothesis that R� is true. So at least
one of Q� and R� is true on the assignment in question, and (Q� ∨
R�), the dual of (Q & R), must also be true on that assignment. We
conclude that (Q & R) and its dual have opposite truth-values on each
truth-value assignment.

These three cases establish the inductive step of the mathematical
induction, and we may now conclude that its conclusion is true as well. Our
argument shows that the thesis about duals is true of every TWA sentence of SL.

 6.1E EXERCISES

 1. Prove the following theses by mathematical induction.
 a. No sentence of SL that contains only binary connectives, if any, is truth--

functionally false (that is, every truth-functionally false sentence of SL contains
at least one ‘~’).

 b. Every sentence of SL that contains no binary connectives is truth-functionally
indeterminate.

 c. If two truth-value assignments A� and A� assign the same truth-values to the
atomic components of a sentence P, then P has the same truth-value on A�
and A�.

 d. An iterated conjunction (. . . (P1 & P2) & . . . & Pn) of sentences of SL is true
on a truth-value assignment if and only if P1, P2 . . . , Pn are all true on that
assignment.

 e. Where P is a sentence of SL and Q is a sentential component of P, let [P]
(Q1//Q) be a sentence that is the result of replacing at least one occurrence
of Q in P with the sentence Q1. If Q and Q1 are truth-functionally equivalent,
then P and [P] (Q1//Q) are truth-functionally equivalent.

ber38413_ch06_226-261.indd Page 233 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 233 12/3/12 11:44 AM F-400F-400

234 SENTENTIAL LOGIC: METATHEORY

 2. Consider this claim:

 No sentence of SL that contains only binary connectives is truth-functionally
true.

 Show that this claim is false by producing a sentence that contains only binary
connectives and that is truth-functionally true. Explain where an attempt to
prove the claim by mathematical induction (in the manner of the answer to
Exercise 1.a) would fail.

 6.2 TRUTH-FUNCTIONAL COMPLETENESS

In Chapter 2 we defi ned the truth-functional use of sentential connectives as
follows:

A sentential connective, of a formal or a natural language, is used truth-
functionally if and only if it is used to generate a compound sentence
from one or more sentences in such a way that the truth-value of the
generated compound is wholly determined by the truth-values of those
one or more sentences from which the compound is generated, no mat-
ter what those truth-values may be.

The connectives of SL have only truth-functional uses since their intended
interpretations are given wholly by their characteristic truth-tables. Although
SL contains only fi ve sentential connectives, we found in Chapter 2 that a great
variety of English compounds can nevertheless be adequately symbolized using
various combinations of these connectives. For instance, an English sentence
of the form

Neither p nor q

can be appropriately symbolized either by a sentence of the form

~ (P ∨ Q)

or by a sentence of the form

~ P & ~ Q

An interesting question now arises: Is SL capable of representing all
possible truth-functionally compound sentences? We want the answer to this
question to be ‘yes’, because we want SL to be an adequate vehicle for all of
truth-functional logic. If there is some way of truth-functionally compounding
sentences that cannot be represented in SL, then there may be some truth-
functionally valid arguments, for example, that do not have valid symbolizations
in SL simply because they cannot be adequately symbolized in SL.

ber38413_ch06_226-261.indd Page 234 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 234 12/3/12 11:44 AM F-400F-400

6.2 TRUTH-FUNCTIONAL COMPLETENESS 235

To settle this question, we might try to produce complicated examples
of truth-functionally compound sentences of English and then show that each
can be adequately symbolized in SL. But obviously we cannot prove in this way
that every truth-functionally compound sentence can be adequately symbolized
in SL, for there are infi nitely many possibilities. Rather, we shall use mathemati-
cal induction to show that all possible truth-functionally compound sentences
can be adequately symbolized in SL.

First, though, we must formulate our question somewhat more precisely:
Can every truth-function be expressed by a sentence of SL? A truth-function is
an n-place function (where n is a positive integer) that maps each combina-
tion of n truth-values to a single truth-value. The truth-values that are mapped
are the arguments of the truth-function, and the truth-value to which each
combination of truth-values is mapped is the value of the truth-function for
those arguments. For example, the characteristic truth-table for ‘⊃’ defi nes
the material conditional truth-function:

P Q P ⊃ Q

T T T
T F F
F T T
F F T

This truth-function is a truth-function of two arguments. Each distinct combina-
tion of arguments for the function is listed to the left of the vertical line, and
the truth-value to which that combination of arguments is mapped is listed to
the right of the vertical line.

A truth-function is said to be expressed in SL by any sentence whose
truth-table contains (in the column under its main connective) exactly the
column of Ts and Fs that occurs on the right-hand side of the characteristic
truth-table for the truth-function in question. For example, each sentence
of the form P ⊃ Q, where P and Q are atomic sentences of SL, expresses
the material conditional truth-function—for every such sentence has a four-
row truth-table in which the column under the main connective contains
a T in the fi rst, third, and fourth rows and an F in the second row. This
truth-function is also expressed by other sentences of SL—for example, by
all sentences of the form ~ P ∨ Q, where P and Q are atomic sentences.
Every such sentence has a four-row truth-table in which the column under
the main connective is

T

F

T

T

ber38413_ch06_226-261.indd Page 235 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 235 12/3/12 11:44 AM F-400F-400

236 SENTENTIAL LOGIC: METATHEORY

The important question for us is not how many sentences of SL express
the same truth-function but rather whether there is at least one sentence of SL that
expresses each truth-function. There are an infi nite number of truth-functions.
This is most easily seen by considering that for every positive integer n there are
truth-functions of n arguments (truth-functions that map each combination of
truth-values that n sentences of SL may have to a truth-value), and there are infi -
nitely many positive integers. In Chapter 2 we defi ned one truth-function of one
argument and four truth-functions of two arguments via the fi ve characteristic
truth-tables for the connectives of SL. There are three additional truth-functions
of one argument that are distinct from the negation truth-function:

P P P

T T T T T F
F F F T F F

And there are twelve other truth-functions of two arguments (because there are
sixteen different ways of arranging Ts and Fs in a column of a four-row truth-
table). Generally, where n is any positive integer, there are 2(2n) truth-functions
of n arguments. So there are 256 truth-functions of three arguments, 65,536
truth-functions of four arguments, and so on. What we want to show is that,
given any truth-function of any fi nite number of arguments, there is at least
one sentence of SL that expresses that truth-function. In fact, we shall prove
something even stronger:

Metatheorem 6.2.1: Every truth-function can be expressed by a sentence of
SL that contains no sentential connectives other than ‘~’, ‘∨’, and ‘&’.

The connectives of a language in which every truth-function can be expressed
form a truth-functionally complete set of connectives. Metatheorem 6.2.1 says
that the set of connectives {‘~’, ‘∨’, ‘&’}, defi ned as they are defi ned in SL, is
truth-functionally complete.

Characteristic truth-tables defi ne truth-functions by exhaustively listing
the combinations of arguments that each truth-function takes and displaying
the value to which each such combination is mapped. We will specify truth-
functions in the same tabular form. Thus,

T T F
T F F
F T F
F F T

specifi es a truth-function of two arguments. Since every truth-function maps
only a fi nite number of combinations of arguments, every truth-function can
be specifi ed in such a table. We call this table a truth-function schema.

ber38413_ch06_226-261.indd Page 236 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 236 12/3/12 11:44 AM F-400F-400

6.2 TRUTH-FUNCTIONAL COMPLETENESS 237

We shall now show that the set of connectives {‘~’, ‘&’, ‘∨’} is truth-
functionally complete by producing an algorithm for constructing, given any
truth-function schema, a sentence of SL that contains no connectives other
than ‘~’, ‘&’, and ‘∨’ that expresses the truth-function specifi ed by the schema.
An algorithm is an effective procedure for producing a desired result—that
is, a mechanical procedure that, when correctly followed, yields the desired
result in a fi nite number of steps. Given a truth-function schema, our algorithm
will produce a sentence whose truth-table contains, under its main connective,
exactly the same column of Ts and Fs as occurs to the right of the vertical line
in the truth-function schema. Once we produce the algorithm, Metatheorem
6.2.1 will be proven; the construction of such an algorithm will show that every
truth-function can be expressed by a sentence of SL containing no connectives
other than ‘~’, ‘&’, and ‘∨’.

To begin, we need a stock of atomic sentences. If the truth-function is
a function of n arguments, we use the alphabetically fi rst n atomic sentences
of SL.2 So for the truth-function schema

T T F
T F F
F T F
F F T

we use the letters ‘A’ and ‘B’:

A B

T T F
T F F
F T F
F F T

Next for each row of the truth-table schema, we form a sentence that is
true if and only if its atomic components have the truth-values indicated in that
row. This sentence is called the characteristic sentence for the row in question.
As an example, we display the characteristic sentences for the four rows of our
truth-function schema to the left of each row:

 A B

A & B T T F
A & ~ B T F F
~ A & B F T F
~ A & ~ B F F T

2We use an extended sense of alphabetical order in which all of the nonsubscripted sentence letters appear fi rst,
in the usual alphabetical order, then all of the letters (in the same order) subscripted with ‘1’, then all of the
letters subscripted with ‘2’, and so on.

ber38413_ch06_226-261.indd Page 237 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 237 12/3/12 11:44 AM F-400F-400

238 SENTENTIAL LOGIC: METATHEORY

Our construction of these sentences was guided by the combinations of truth-
values under ‘A’ and ‘B’: the conjunction includes the sentence letter itself
if the sentence letter has the truth-value T in that row, and the conjunction
includes the negation of the sentence letter if the sentence letter has the truth-
value F in that row. The conjunction that has been constructed for each row
has the truth-value T when ‘A’ and ‘ B’ have the truth-values indicated in that
row and has the truth-value F for every other combination of truth-values. In
general, the characteristic sentence for row i of a truth-function schema is the
iterated conjunction

(. . . (P1 & P2) & . . . & Pn)

in which Pj is the jth atomic sentence if the jth value in row i (to the left of
the vertical bar) is T, and Pj is the negation of the jth atomic sentence if the
jth value in row i is F. We leave it as an exercise to prove that the characteristic
sentence for each row of a truth-function schema is true if and only if its atomic
components, alphabetically ordered, have the truth-values presented in that row.

Finally we identify the rows in the truth-function schema that have a T to
the right of the vertical bar. If there is only one such row, then the characteristic
sentence for that row is a sentence that expresses the truth-function specifi ed in
the schema. In our example the fourth row is the only row that has a T to the
right of the vertical bar, and the characteristic sentence for that row is ‘~ A & ~
B’. This sentence is true if and only if both ‘A’ and ‘B’ are false, and therefore
this sentence expresses the truth-function specifi ed by the truth-function schema:

 T
A B ~ A & ~ B

T T F T F F T

T F F T F T F

F T T F F F T

F F T F T T F

If the truth-function schema has more than one T to the right of the
vertical bar, as does the following,

T T F
T F T
F T F
F F T

then we form an iterated disjunction of the characteristic sentences for the rows
that have a T to the right of the vertical bar. In the present case the disjunction
is ‘(A & ~ B) ∨ (~ A & ~ B)’—the disjunction of the characteristic sentences
for the second and fourth rows. This sentence is true if and only if either ‘A’

ber38413_ch06_226-261.indd Page 238 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 238 12/3/12 11:44 AM F-400F-400

6.2 TRUTH-FUNCTIONAL COMPLETENESS 239

is true and ‘B’ is false or both ‘A’ and ‘B’ are false, and it therefore expresses
the truth-function specifi ed in this schema:

 T
A B (A & ~ B) ∨ (~ A & ~ B)

T T T F F T F F T F F T
T F T T T F T F T F T F
F T F F F T F T F F F T
F F F F T F T T F T T F

And if the schema is

T T F
T F T
F T T
F F T

then the disjunction of the characteristic sentences for the last three rows,
‘((A & ~ B) ∨ (~ A & B)) ∨ (~ A & ~ B)’, expresses the truth-function in the
schema:

 T
A B ((A & ~ B) ∨ (~ A & B)) ∨ (~ A & ~ B)

T T T F F T F F T F T F F T F F T
T F T T T F T F T F F T F T F T F
F T F F F T T T F T T T T F F F T
F F F F T F F T F F F T T F T T F

In general, when more than one row has a T to the right of the vertical
bar, the iterated disjunction that we form from the characteristic sentences for
those rows will be true if and only if at least one of its disjuncts is true, and because
each disjunct is true only in the row for which it is a characteristic sentence, it fol-
lows that the iterated disjunction is true if and only if its atomic components have
the truth-values specifi ed by one of the rows that have a T to the right of the verti-
cal bar. Thus the disjunction expresses the truth-function specifi ed by that schema.

We must consider one fi nal case. There may be no Ts in the column
to the right of the vertical bar in a truth-function schema. In this case, we
will produce a truth-functionally false sentence by conjoining the characteris-
tic sentence for the fi rst row of the truth-function schema with its negation.
(Any other row’s characteristic sentence would have done as well.) Because this
sentence has the form P & ~ P, it expresses a truth-function that maps every
combination of n truth-values to F. For example, if our schema is

T T F
T F F
F T F
F F F

ber38413_ch06_226-261.indd Page 239 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 239 12/3/12 11:44 AM F-400F-400

240 SENTENTIAL LOGIC: METATHEORY

then the sentence ‘(A & B) & ~ (A & B)’ expresses the truth-function specifi ed
in the schema:

 T
A B ((A & B) & ~ (A & B))

T T T T T F F T T T
T F T F F F T T F F
F T F F T F T F F T
F F F F F F T F F F

In sum, there are three cases to consider:

1. The given truth-function schema contains exactly one row in which
there is a T to the right of the vertical line. In this case, the truth-
function is expressed by the characteristic sentence for that row.

2. The given truth-function schema contains more than one row in which
there is a T to the right of the vertical line. In this case, the truth-
function is expressed by the iterated disjunction of the characteristic
sentences for those rows.

3. The given truth-function schema has no Ts to the right of the vertical
line. In this case, the truth-function is expressed by the conjunction
of the characteristic sentence for the fi rst row of the truth-function
schema and the negation of that sentence.

As a fi nal example, we will use the algorithm we have developed to
construct a sentence of SL containing only the connectives ‘~’, ‘∨’, and ‘&’ that
expresses the truth-function specifi ed in the schema

T T T F
T T F F
T F T T
T F F T
F T T F
F T F F
F F T T
F F F F

This schema falls under our second case; there is more than one T to the right
of the vertical line. We shall use the fi rst three sentence letters of SL, because
the truth-function is a truth-function of three arguments. We form the char-
acteristic sentences for rows 3, 4, and 7 and then disjoin those characteristic
sentences to produce

((((A & ~ B) & C) ∨ ((A & ~ B) & ~ C)) ∨ ((~ A & ~ B) & C))

ber38413_ch06_226-261.indd Page 240 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 240 12/3/12 11:44 AM F-400F-400

6.2 TRUTH-FUNCTIONAL COMPLETENESS 241

This sentence is true if and only if ‘A’, ‘B’, and ‘C’ have one of the combi-
nations of truth-values represented in the third, fourth, and seventh rows of
the schema.

Our algorithm shows how to construct, for any truth-function, a sen-
tence of SL that expresses that truth-function. It therefore shows that for each
truth-function there is at least one sentence of SL that expresses that truth-
function. Moreover, because we have used only the three connectives ‘~’, ‘&’,
and ‘∨’, we have shown that the set of connectives {‘~’, ‘&’, ‘∨’} is truth--func-
tionally complete. This completes the proof of Metatheorem 6.2.1.

There is a consequence of the theorem that follows almost immedi-
ately: The smaller set {‘~’, ‘∨’} is also truth-functionally complete. Every con-
junction (P & Q) is truth-functionally equivalent to ~ (~ P ∨ ~ Q), and so we
may rewrite each sentence produced by the algorithm using only ‘~’ and ‘∨’.
For example, the sentence

(~ (~ A ∨ ~ ~ B) ∨ ~ (~ ~ A ∨ ~ ~ B))

expresses the same truth-function as

((A & ~ B) ∨ (~ A & ~ B))

Therefore, every truth-function can be expressed by a sentence that contains
only ‘~’ and ‘∨’ as connectives. It is also a consequence of Metatheorem 6.2.1
that the sets of connectives {‘~’, ‘&’} and {‘~’, ‘⊃’} are truth-functionally com-
plete; we leave the proofs as an exercise.

On the other hand, the set of connectives {‘∨’, ‘&’} is not truth-
functionally complete. To prove this, we must show that there is at least one
truth-function that cannot be expressed by any sentence that contains at most
the connectives ‘∨’ and ‘&’. We call such a sentence a W-A sentence (short for
‘wedge and ampersand’). A little refl ection suggests that, no matter how many
times we conjoin and disjoin, if we do not have the tilde available we can never
produce a false sentence from atomic components that are all true. That is,
every W-A sentence is true whenever its atomic components are all true. And if
this is the case, then there are many truth-functions that cannot be expressed
by any W-A sentence. Take the negation truth-function as an example. This
truth-function maps the argument T into the value F. If our refl ection is cor-
rect, there is no false W-A sentence with a single atomic component when that
atomic component is true.

We shall therefore show that the set of connectives {‘∨’, ‘&’} is not
truth-functionally complete by proving the following thesis:

Every W-A sentence has the truth-value T on every truth-value assign-
ment on which its atomic components all have the truth-value T.

ber38413_ch06_226-261.indd Page 241 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 241 12/3/12 11:44 AM F-400F-400

242 SENTENTIAL LOGIC: METATHEORY

Because this is a general claim about all W-A sentences, we shall prove
the thesis by mathematical induction.

The shortest W-A sentences—that is, those with zero occurrences of
connectives, are simply the atomic sentences of SL.

Basis clause: Every atomic sentence of SL has the truth-value T on every
truth-value assignment on which its atomic components all have the
truth-value T.
Proof of basis clause: The basis clause is obviously true, since an atomic
sentence is itself its only component.
Inductive step: If every W-A sentence of SL with k or fewer occurrences
of connectives has the truth-value T on every truth-value assignment
on which its atomic components all have the truth-value T, then every
W-A sentence with k � 1 occurrences of connectives has the truth-value
T on every truth-value assignment on which its atomic components all
have the truth-value T.
Proof of inductive step: We assume that the inductive hypothesis is true
for an arbitrary nonnegative integer k; that is, we assume that every W-A
sentence with k or fewer occurrences of connectives is true whenever
all its atomic components are true. We must show that it follows that
the thesis also holds for any W-A sentence P with k � 1 occurrences
of connectives. Since these sentences contain only ‘∨’ and ‘&’ as con-
nectives, there are two cases to consider.

Case 1: P has the form Q ∨ R. Q and R each contain fewer
than k � 1 occurrences of connectives, and they are also W-A sen-
tences. So, by the inductive hypothesis, each disjunct is true on every
truth-value assignment on which each of its atomic components is true.
So, if all the atomic components of Q ∨ R are true, then both Q and
R are true, and hence Q ∨ R is itself true.

Case 2: P has the form Q & R. Then each of Q and R is a
W-A sentence with k or fewer occurrences of connectives. Hence the
inductive hypothesis holds for both Q and R. Each conjunct is true on
every truth-value assignment on which all its atomic components are
true. So, if all the atomic components of Q & R are true, then both Q
and R are true, and hence Q & R itself is true.
This proves the inductive step, and we can conclude that the thesis
holds for every W-A sentence:
Conclusion: Every W-A sentence has the truth-value T on every truth-value
assignment on which its atomic components all have the truth-value T.

It follows that no W-A sentence can express the negation truth-function as
defi ned in the characteristic truth-table for the tilde, since no W-A sentence
can express a truth-function that maps the truth-value T to the truth- value F.

ber38413_ch06_226-261.indd Page 242 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 242 12/3/12 11:44 AM F-400F-400

6.2 TRUTH-FUNCTIONAL COMPLETENESS 243

 6.2E EXERCISES

 1. Show that a sentence constructed in accordance with our characteristic sen-
tence algorithm is indeed a characteristic sentence for the row of the truth-
function schema in question.

 2. Using the algorithm in the proof of Metatheorem 6.2.1, construct a sentence
containing at most ‘~’, ‘&’, and ‘∨’ that expresses the truth-function defi ned
in each of the following truth-function schemata.

 a. T T F
 T F T
 F T F
 F F T
 b. T F
 F F
 *c. T T F
 T F T
 F T T
 F F F
 d. T T T T
 T T F T
 T F T F
 T F F F
 F T T F
 F T F F
 F F T T
 F F F F

 3. Present an algorithm analogous to that in Metatheorem 6.2.1 for constructing
a characteristic sentence containing only ‘~’ and ‘∨’ for each row of a truth-
function schema.

 4. Using Metatheorem 6.2.1, prove that the sets {‘~’, ‘&’} and {‘~’, ‘⊃’} are truth-
functionally complete.

 5. Prove that the set consisting of the dagger ‘T’ is truth-functionally complete, where
the dagger has the following characteristic truth-table:

P Q P T Q

T T F
T F F
F T F
F F T

 *6. Prove that the set consisting of the stroke ‘⏐’ is truth-functionally complete,
where the stroke has the following characteristic truth-table:

P Q P ⏐ Q

T T F
T F T
F T T
F F T

ber38413_ch06_226-261.indd Page 243 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 243 12/3/12 11:44 AM F-400F-400

244 SENTENTIAL LOGIC: METATHEORY

 7. Using the results of Exercises 1.a and 1.b in Section 6.1E, prove that the following
sets of connectives are not truth-functionally complete: {‘~’}, {‘&’, ‘∨’, ‘⊃’, ‘�’}.

 8. Prove that the set {‘~’, ‘�’} is not truth-functionally complete. Hint: Show that
the truth-table for any sentence P that contains only these two connectives
and just two atomic components will have an even number of Ts and an even
number of Fs in the column under the main connective.

 9. Prove that if a truth-functionally complete set of connectives consists of exactly one
binary connective, then that connective has either the characteristic truth-table for
‘T’ or the characteristic truth-table for ‘⏐’. (That is, show that the connective must
be either ‘T’ or ‘⏐’, though possibly under a different name.) (Hint: In the proofs
for Exercises 7 and 8 above, it became apparent that characteristic truth-tables for
truth-functionally complete sets of connectives must have certain properties. Show
that only two characteristic truth-tables with just four rows have these properties.)

 6.3 THE SOUNDNESS OF SD AND SD�

We now turn to the results announced at the beginning of this chapter. In
this section we shall prove that, if a sentence P of SL is derivable in SD from a
set � of sentences of SL, then � truth-functionally entails P. A natural deduc-
tion system for which this result holds is said to be sound for sentential logic.
In the next section we shall prove the converse—that if a set � of sentences
of SL truth-functionally entails a sentence P of SL, then P is derivable in SD
from �. A natural deduction system for which this second result holds is said
to be complete for sentential logic. Soundness and completeness are impor-
tant properties for natural deduction systems. A natural deduction system that
is not sound will sometimes lead us from true sentences to false ones, and a
natural deduction system that is not complete will not allow us to construct all
the derivations that we want to construct. In either case the natural deduction
system would not be adequate for the purposes of sentential logic.

Metatheorem 6.3.1 is the Soundness Metatheorem for SD.

Metatheorem 6.3.1: For any set � of sentences of SL and any sentence P of
SL, if � | P in SD then � |= P3.

Recall that � |= P if and only if there is no truth-value assignment on which
all the members of � are true and P is false. Metatheorem 6.3.1 therefore says
that the derivation rules of SD are truth-preserving.

Our proof will use mathematical induction to establish that each sen-
tence in a derivation is true if all the open assumptions in whose scope the
sentence lies are true. The basis clause will show that this claim is true of the

3In what follows we shall abbreviate ‘� � P in SD’ as ‘� � P’.

ber38413_ch06_226-261.indd Page 244 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 244 12/3/12 11:44 AM F-400F-400

6.3 THE SOUNDNESS OF SD AND SD� 245

fi rst sentence in a derivation. The inductive step will show that, if the claim is
true for the fi rst k sentences in a derivation, then the claim is also true for the
(k � 1)th sentence—that is, each application of another derivation rule in the
derivation is truth-preserving. We will then be able to conclude that the last
sentence in any derivation, no matter how long the derivation is, is true if all
the open assumptions in whose scope the sentence lies are true, which is what
Metatheorem 6.3.1 says.

In the course of the proof, we shall use some set-theoretic terminology
that we will explain here: Let � and �� be sets. If every member of � is also
a member of ��, then � is said to be a subset of ��. Note that every set is a
subset of itself, and the empty set is trivially a subset of every set (because the
empty set has no members, it has no members that are not members of every
set). As an example, the set of sentences

{A, B, C}

has eight subsets: {A, B, C}, {A, B}, {B, C}, {A, C}, {A}, {B}, {C}, and ∅. If a set �
is a subset of a set ��, then �� is said to be a superset of �. Thus {A, B, C} is a
superset of each of its eight subsets.

We will also make use of several semantic results that we prove here.
First, if P is truth-functionally entailed by a set of sentences �, then P is truth-
functionally entailed by every superset of �:

6.3.2: If � |= P, then for every superset �� of �, �� |= P.

Proof: Assume that � |= P and let �� be any superset of �. If every mem-
ber of �� is true on some truth-value assignment, then every member
of its subset � is true on that assignment, and so, because � |= P, P is
also true on the assignment. Therefore �� |= P.

Second, we have two results that were proved in the exercises for Chapter 3:

6.3.3: If � ∪ {Q} |= R, then � |= Q ⊃ R (see Exercise 2.b in Section 3.6E).

6.3.4: If � |= Q and � |= ~ Q for some sentence Q, then � is truth-
functionally inconsistent (see Exercise 3.b in Section 3.6E).

Finally, if a set of sentences is truth-functionally inconsistent, then every sen-
tence Q in the set is such that the set consisting of all the other sentences in
the set truth-functionally entails ~ Q:

6.3.5: If � ∪ {Q} is truth-functionally inconsistent, then � |= ~ Q.

Proof: Assume that � ∪ {Q} is truth-functionally inconsistent. Then
there is no truth-value assignment on which every member of � ∪ {Q}
is true. Therefore, if every member of � is true on some truth-value
assignment, Q must be false on that assignment, and so ~ Q will be
true. So � |= ~ Q.

ber38413_ch06_226-261.indd Page 245 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 245 12/3/12 11:44 AM F-400F-400

246 SENTENTIAL LOGIC: METATHEORY

In our proof that each sentence in a derivation is truth-
functionally entailed by the set of the open assumptions in whose scope
the sentence lies, we use the following notation: For any derivation, let Pk
be the kth sentence in the derivation, and let �k be the set of open assump-
tions in whose scope Pk lies. Here is our argument by mathematical induc-
tion on the position k in a derivation:

Basis clause: �1 |= P1.
Inductive step: If �i |= Pi for every positive integer i � k, then
�k�1 |= Pk�1.

Conclusion: For every positive integer k, �k |= Pk.

Proof of basis clause: P1 is the fi rst sentence in a derivation. Moreover,
because every derivation in SD begins with one or more assumptions,
P1 is an open assumption that lies in its own scope. (We remind the
reader that, by defi nition, every assumption of a derivation lies within
its own scope.) Therefore, the set �1 of open assumptions in whose
scope P1 lies is {P1}. Because {P1} |= P1, we conclude that the basis clause
is true.
Proof of inductive step: Let k be an arbitrary positive integer and assume
the inductive hypothesis: for every positive integer i � k, �i |= Pi. We must
show that it follows that �k�1 |= Pk�1. We shall consider each way in which
Pk�1 might be justifi ed and show that our thesis holds no matter what
justifi cation is used. We now turn to cases.

Case 1: Pk�1 is an Assumption. Then Pk�1 is a member of
�k�1, the set of open assumptions in whose scope Pk�1 lies. Therefore,
if every member of �k�1 is true, Pk�1, being a member of the set, is
true as well. So �k�1 |= Pk�1.

Case 2: Pk�1 is justifi ed by Reiteration. Then Pk�1 occurs ear-
lier in the derivation as sentence Pi at some position i. Moreover every
assumption that is open at position i must remain open at position k
� 1—for if even one assumption in whose scope Pi lies were closed
before position k � 1, Pi would not be accessible at position k � 1.
Therefore, �i is a subset of �k�1. By our inductive hypothesis, �i |= Pi.
Because �i is a subset of �k�1, it follows, by 6.3.2, that �k�1 |= Pi. Pk�1
is the same sentence as Pi, so �k�1 |= Pk�1.

Case 3: Pk�1 is justifi ed by Conjunction Introduction. The con-
juncts of Pk�1 occur earlier in the derivation, say at positions h and j,
both of which are accessible from position k � 1:

 h Q
 j R

k � 1 Q & R (� Pk�1) h, j &I

ber38413_ch06_226-261.indd Page 246 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 246 12/3/12 11:44 AM F-400F-400

6.3 THE SOUNDNESS OF SD AND SD� 247

(There may be open assumptions between positions h and j and
between positions j and k � 1. Moreover it may be that R occurs
earlier in the derivation than Q does—the order is immaterial.) By
the inductive hypothesis, �h |= Q and �j |= R. Moreover, because
both Q and R are accessible at position k � 1, �h and �j are both
subsets of �k�1 and so, by 6.3.2, �k�1 |= Q and �k�1 |= R. But when-
ever both Q and R are true, Pk�1, which is Q & R, is also true. So
�k�1 |= Pk�1 as well.

Case 4: Pk�1 is justifi ed by Conjunction Elimination:

 h Q & Pk�1 h Pk�1 & Q

 or

 k � 1 Pk�1 h &E k � 1 Pk�1 h &E

By the inductive hypothesis, �h truth-functionally entails the con-
junction at position h. And whenever the conjunction is true, both
conjuncts must be true. So �h |= Pk�1. Moreover, �h is a subset of
�k�1, because the conjunction at position h is accessible at position
k � 1. It follows, by 6.3.2, that �k�1 |= Pk�1.

Case 5: Pk�1 is justifi ed by Disjunction Introduction:

 h Q h R

 or

 k � 1 Q ∨ R 3(� Pk�1) h ∨I k � 1 Q ∨ R (� Pk�1) h ∨I

By the inductive hypothesis, �h truth-functionally entails the sentence
at position h. That sentence is one of the disjuncts of Q ∨ R, so whenever
it is true, so is Q ∨ R. Thus �h |= Pk�1. �h must be a subset of �k�1 if
the sentence at position h is accessible at position k � 1, and so, by
6.3.2, �k�1 |= Pk�1.

Case 6: Pk�1 is justifi ed by Conditional Elimination:

 h Q

 j Q ⊃ Pk�1

 k � 1 Pk�1 h, j ⊃E

By the inductive hypothesis, �h |= Q and �j |= Q ⊃ Pk�1. Both �h and
�j must be subsets of �k�1 because the sentences at positions h and j
are accessible at position k � 1. By 6.3.2, then, �k�1 |= Q and �k�1 |=
Q ⊃ Pk�1. Because Pk�1 must be true whenever both Q and Q ⊃ Pk�1
are true, �k�1 |= Pk�1 as well.

ber38413_ch06_226-261.indd Page 247 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 247 12/3/12 11:44 AM F-400F-400

248 SENTENTIAL LOGIC: METATHEORY

Case 7: Pk�1 is justifi ed by Biconditional Elimination:

 h Q h Q

 j Q � Pk�1 or j Pk�1 � Q

 k � 1 Pk�1 h, j �E k � 1 Pk�1 h, j �E

By the inductive hypothesis, �h |= Q and �j truth-functionally entails
the biconditional at position j. �h and �j must be subsets of �k�1
because the sentences at positions h and j are accessible at position
k � 1. By 6.3.2, then, �k�1 truth-functionally entails both Q and the
biconditional at position j. Because the sentence Pk�1 must be true
whenever both Q and the biconditional at position j are true, �k�1
|= Pk�1 as well.

Case 8: Pk�1 is justifi ed by Conditional Introduction:

 h Q

 j R

 k � 1 Q ⊃ R (� Pk�1) h–j ⊃I

By the inductive hypothesis, �j |= R. Because the subderivation in which
R is derived from Q is accessible at position k � 1, every assump-
tion that is open at position j is open at position k � 1, except for
the assumption Q that begins the subderivation. So the set of open
assumptions �j is a subset of �k�1 ∪ {Q}. Because �j |= R, it follows,
by 6.3.2, that �k�1 ∪ {Q} |= R. And from this it follows, by 6.3.3, that
�k�1 |= Q ⊃ R.

Case 9: Pk�1 is justifi ed by Negation Introduction:

 h Q

 j R
 m ~ R

 k � 1 ~ Q (� Pk�1) h–m ~ I

By the inductive hypothesis, �j |= R and �m |= ~ R. Because the
subderivation that derives R from Q is accessible at position k � 1,
every assumption that is open at position j is open at position k � 1
except for the assumption Q that begins the subderivation. That is,
the set of open assumptions �j is a subset of �k�1 ∪ {Q}. By similar
reasoning �m must be a subset of �k�1 ∪ {Q}. Therefore, by 6.3.2,

ber38413_ch06_226-261.indd Page 248 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 248 12/3/12 11:44 AM F-400F-400

6.3 THE SOUNDNESS OF SD AND SD� 249

�k�1 ∪ {Q} |= R and �k�1 ∪ {Q} |= ~ R. From this it follows, by 6.3.4,
that �k�1 ∪ {Q} is truth-functionally inconsistent and then, by 6.3.5,
that �k�1 |= ~ Q.

Case 10: Pk�1 is justifi ed by Negation Elimination. See Exercise 3.
Case 11: Pk�1 is justifi ed by Disjunction Elimination:

 h Q ∨ R
 j Q

 m Pk�1
 n R

 p Pk�1

 k � 1 Pk�1 h, j–m, n–p ∨E

By the inductive hypothesis, �h |= Q ∨ R, �m |= Pk�1, and �p |= Pk�1.
Because the two subderivations are accessible at position k � 1, the
open assumptions �m form a subset of �k�1 ∪ {Q} and the open
assumptions �p form a subset of �k�1 ∪ {R}. By 6.3.2, then, �k�1 ∪
{Q} |= Pk�1 and �k�1 ∪ {R} |= Pk�1. Moreover, because Q ∨ R at posi-
tion h is accessible at position k � 1, �h is a subset of �k�1. So, because
�h |= Q ∨ R, it follows, by 6.3.2, that �k�1 |= Q ∨ R. Now consider any
truth-value assignment on which every member of �k�1 is true. Because
�k�1 |= Q ∨ R, Q ∨ R is also true on this assignment. So either Q or
R is true. If Q is true, then every member of �k�1 ∪ {Q} is true and
hence Pk�1 is true as well because �k�1 ∪ {Q} |= Pk�1. Similarly, if R is
true, then every member of �k�1 ∪ {R} is true, and hence Pk�1 is true
as well because �k�1 ∪ {R} |= Pk�1. Either way, it follows that Pk�1 must
be true on any truth-value assignment on which every member of �k�1
is true. So �k�1 |= Pk�1.

Case 12: Pk�1 is justifi ed by Biconditional Introduction:

 h Q

 j R
 m R

 n Q

 k � 1 Q � R (� Pk�1) h–j, m–n �I

By the inductive hypothesis, �j |= R and �n |= Q. Because the two subderi-
vations are accessible at position k � 1, �j is a subset of �k�1 ∪ {Q} and �n
is a subset of �k�1 ∪ {R}. By 6.3.2, then, �k�1 ∪ {Q} |= R and �k�1 ∪ {R} |=
Q. Now consider any truth-value assignment on which every member of

ber38413_ch06_226-261.indd Page 249 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 249 12/3/12 11:44 AM F-400F-400

250 SENTENTIAL LOGIC: METATHEORY

�k�1 is true. If R is also true on that assignment, then so is Q because �k�1
∪ {R} |= Q. If R is false on that assignment, then Q must also be false be-
cause if Q were true, R would have to be true as well since �k�1 ∪ {Q} |=
R. Either way, Q and R have the same truth-value, and so Q � R is true on
every truth-value assignment on which every member of �k�1 is true. So
�k�1 |= Pk�1.

This completes the proof of the inductive step; we have considered
every way in which the sentence at position k � 1 of a derivation might be
justifi ed and have shown that in each case �k�1 |= Pk�1 if the same is true
of all earlier positions in the derivation. We have therefore established the
conclusion of the mathematical induction. The sentence at any position in
a derivation is truth-functionally entailed by the set of open assumptions in
whose scope it lies. And this establishes the soundness metatheorem for SD: If
� | P in SD, then � |= P. It follows from Metatheorem 6.3.1 that every argu-
ment of SL that is valid in SD is truth-functionally valid, every sentence of SL
that is a theorem in SD is truth-functionally true, every pair of sentences of
SL that are equivalent in SD are truth-functionally equivalent, and every set
of sentences of SL that is inconsistent in SD is truth-functionally inconsistent.
(see Exercise 14 in Exercise set 5.3E).

 6.3E EXERCISES

 1. List all the subsets of each of the following sets:
 a. {A ⊃ B, C ⊃ D}
 b. {C ∨ ~ D, ~ D ∨ C, C ∨ C}
 c. {(B & A) � K}
 d. ∅

 2. Of which of the following sets is {A ⊃ B, C & D, D ⊃ A} a superset?
 a. {A ⊃ B}
 b. {D ⊃ A, A ⊃ B}
 c. {A ⊃ D, C & D}
 d. ∅
 e. {C & D, D ⊃ A, A ⊃ B}

 *3. Prove Case 10 of the inductive step in the proof of Metatheorem 6.3.1.

 4.
 a. Suppose that system SD* is just like SD except that it also contains a new rule

of inference:

 Negated Biconditional Introduction (~�I)
 P

 ~ Q

 ~ (P � Q)

ber38413_ch06_226-261.indd Page 250 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 250 12/3/12 11:44 AM F-400F-400

6.3 THE SOUNDNESS OF SD AND SD� 251

 Prove that system SD* is a sound system for sentential logic; that is, prove that
if � | P in SD* then � |= P. (You may use Metatheorem 6.3.1.)

 b. Suppose that system SD is just like SD except that it also contains a new rule
of inference:

 Backward Conditional Introduction (B⊃I)
 ~ Q

 ~ P
 P ⊃ Q

 Prove that system SD* is sound for sentential logic.
 c. Suppose that system SD* is just like SD except that it also contains a new rule

of inference:

 Crazy Disjunction Elimination (C∨E)
 P ∨ Q or P ∨ Q

 � P � Q

 Prove that SD* is not a sound system for sentential logic.
 d. Suppose that system SD is just like SD except that it also contains a new rule

of inference:

 Crazy Conditional Introduction (C⊃I)
 ~ P

 Q
 P ⊃ Q

 Prove that SD* is not a sound system for sentential logic.
 e. Suppose that the rules of a system SD* form a subset of the rules of SD. Is SD*

a sound system for sentential logic? Explain.

5. Suppose that we changed the characteristic truth-table for ‘&’ to

 P Q P & Q

 T T T
 T F T
 F T F
 F F F

 while the characteristic truth-tables for the other sentential connectives
remained the same. Would SD still be a sound system for sentential logic?
Explain.

6. Using Metatheorem 6.3.1 and Exercise 1.e in Section 6.1E, prove that
SD� is sound for sentential logic.

ber38413_ch06_226-261.indd Page 251 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 251 12/3/12 11:44 AM F-400F-400

252 SENTENTIAL LOGIC: METATHEORY

 6.4 THE COMPLETENESS OF SD AND SD�

We proved in the last section that SD is sound, and so every derivation in SD
is semantically acceptable. This fact alone does not establish that SD is an ade-
quate natural deduction system for sentential logic. To establish that SD is such
a system we must also show that if a set of sentences of SL truth-functionally
entails a sentence P of SL, then there is a derivation in SD of P from that set
of sentences. If there is even one case of truth-functional entailment for which
a derivation cannot be constructed in SD, then SD is not adequate to sentential
logic. Our fi nal metatheorem assures us that we can derive all that we want to
derive in SD; it is called the Completeness Metatheorem:

Metatheorem 6.4.1: For every sentence P of SL and every set � of sentences
of SL, if � |= P then � � P in SD.

That is, if a set � truth-functionally entails a sentence P, then P can be derived from
� in SD. It follows from this metatheorem that every argument of SL that is truth-
functionally valid is valid in SD, that every sentence of SL that is truth-functionally true
is a theorem in SD (see Exercise 20 in Section 5.4E), that every pair of sentences of
SL that are truth-functionally equivalent are equivalent in SD, and that every set of
sentences of SL that is truth-functionally inconsistent is inconsistent in SD. A system
for which Metatheorem 6.4.1 holds is said to be complete for sentential logic.

There are several well-known ways to prove completeness theorems. It
may seem that the obvious approach is to show, given that � |= P, how to construct
a derivation of P from �. There are such proofs and they are termed constructive
proofs precisely because they not only prove that there is a derivation of P from
� but also provide instructions for constructing such a derivation. We will pursue
a different course. The proof we will offer will establish that if � |= P then there
is a derivation of P from � but it will not show us how to construct that derivation.4

The bulk of the work in our proof of 6.4.1 will be in establishing what
may at fi rst seem to be an unrelated result:

6.4.2: For any set � of sentences of SL, if � is consistent in SD then � is
truth-functionally consistent.

We begin by proving that Metatheorem 6.4.1 does follow from 6.4.2. To do
this, we will use the following result:

6.4.3: If � |= P then � ∪ {~ P} is truth-functionally inconsistent.

Proof: Assume � |= P. Then there is no truth-value assignment on which
every member of � is true and P is false. Therefore, there is no truth-

4The proof we will present, while complex, is actually simpler than are constructive proofs. Moreover, our proof
of the completeness of SD will serve as a model for the completeness proof for PD in Chapter 11, for which a
constructive proof is not possible. The method that we use to prove completeness is due to Leon Henkin, “The
Completeness of the First-Order Functional Calculus,” Journal of Symbolic Logic, 14 (1949), pp. 159–166.

ber38413_ch06_226-261.indd Page 252 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 252 12/3/12 11:44 AM F-400F-400

6.4 THE COMPLETENESS OF SD AND SD� 253

value assignment on which every member of � is true and ~ P is also
true. So � ∪ {~ P} is truth-functionally inconsistent.

Here’s how metatheorem 6.4.1 follows from 6.4.2:

• Assume that � |= P.
• Then, by 6.4.3, if follows that � ∪ {~ P} is truth-functionally inconsistent.
• Since 6.4.2 (which we have not yet proven) tells us that a set of sen-

tences of SL that is consistent in SD is also truth-functionally consist-
ent, it follows that � ∪ {~ P} is not consistent in SD.

• And if � ∪ {~ P} is not consistent in SD, it follows from the following
result that � � P:

6.4.4: If � ∪ {~ P} is inconsistent in SD then � � P.

Proof: Assume that � ∪ {~ P} is inconsistent in SD. Then by defi nition,
there is a derivation D of some sentence Q and its negation ~ Q from
� ∪ {~ P}. But then we can show that there is also a derivation D� of P
from �.

• The primary assumptions of derivation D� are the same as the pri-
mary assumptions of derivation D, except that they do not include ~ P.

• Rather, ~ P is assumed as an auxiliary assumption in D� immediately
after the primary assumptions.

• Once we add this auxiliarly assumption, all of the primary assump-
tions in D are open and accessible assumptions in D�.

• Q and ~ Q are then derived in D� in the same way they were
derived in D.

• Then Negation Elimination is used to close the auxiliary assump-
tion ~ P and derive P.

• Since P falls only within the scope of the primary assumptions in D�,
which are the members of �, this establishes that � � P.

All that remains to be done to prove Metatheorem 6.4.1, then, is proving result
6.4.2.

As noted earlier, our proof of 6.4.2 is quite complex. We start by out-
lining the structure of that proof, proving the simpler parts of it as we go but
leaving proof of the more complex section until we have completed the outline.
In proving metatheorem 6.4.2 our overall strategy will be to show that if a set
� of sentences of SL is consistent in SD then we can construct a truth-value
assignment on which every member of � is true, thereby showing that � is truth-
functionally consistent.

We shall construct the truth-value assignment in two steps. First, we
shall form a superset of � (a set that includes all the members of � and possibly

ber38413_ch06_226-261.indd Page 253 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 253 12/3/12 11:44 AM F-400F-400

254 SENTENTIAL LOGIC: METATHEORY

other sentences) that is maximally consistent in SD. A maximally consistent set
is, intuitively, a consistent set that contains as many sentences as it can without
being inconsistent in SD:

A set � of sentences of SL is maximally consistent in SD if and only
if � is consistent in SD and, for every sentence P of SL that is not a
member of �, � ∪ {P} is inconsistent in SD.

If a set is maximally consistent in SD, then if we add to the set any sentence
that is not already a member, it will be possible to derive some sentence and
its negation from the augmented set.

Having constructed a maximally consistent superset of �, we then
construct a model for the maximally consistent superset, that is, a truth-value
assignment on which every member of the maximally consistent superset is
true. We construct the model for a superset of � that is maximally consistent
in SD, rather than simply for the original set �, because there is a straightfor-
ward way to construct models for maximally consistent sets. Of course, because
every member of � will be in the maximally consistent superset, it will follow
that every member of � is true on the model that we have constructed and
therefore that � is truth-functionally consistent.

We now need to fi ll in the details of our proof. We fi rst need to estab-
lish that if � is consistent in SD then it is a subset of a set � that is maximally
consistent in SD:

6.4.5 (The Maximal Consistency Lemma): If � is a set of sentences of
SL that is consistent in SD, then � is a subset of at least one set of
sentences that is maximally consistent in SD.

In proving the Maximal Consistency Lemma (6.4.5), we shall make
use of the fact that the sentences of SL can be enumerated, that is, placed in a
defi nite order in one-to-one correspondence with the positive integers so that
each sentence of SL is associated with exactly one positive integer. Here is
one method of enumerating the sentences of SL. First, we associate with each
symbol of SL the two-digit numeral occurring to its right:

Symbol Numeral Symbol Numeral

 ~ 10 A 30
 ∨ 11 B 31
 & 12 C 32
 ⊃ 13 D 33
 � 14 E 34
 (15 F 35
) 16 G 36
 0 20 H 37
 1 21 I 38
 o o o o
 9 29 Z 55

ber38413_ch06_226-261.indd Page 254 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 254 12/3/12 11:44 AM F-400F-400

6.4 THE COMPLETENESS OF SD AND SD� 255

(The ellipses mean that the next two-digit numeral is assigned to the next digit
or letter of the alphabet.) Next we associate with each sentence of SL, atomic or
compound, the integer designated by the numeral that consists of the numerals
associated with the symbols in the sentence, in the order in which those symbols
occur. For example, the integers associated with the sentences

(A ∨ C2) ~ ~ (A ⊃ (B & ~ C))

are, respectively,

153011322216 101015301315311210321616

It is obvious that each sentence of SL will thus have a distinct integer associ-
ated with it. Finally we enumerate all the sentences of SL in the order of their
associated integers: The fi rst sentence in the enumeration is the sentence with
the smallest associated integer, the second sentence is the one with the next
smallest associated integer, and so on. In effect, we have imposed an alphabeti-
cal order on the sentences of SL so that we may freely talk of the fi rst sentence
of SL (which turns out to be ‘A’—because only atomic sentences will have two-
digit associated numbers, and the number for ‘A’ is the smallest of these), the
second sentence of SL (which turns out to be ‘B’), and so on.

Starting with a set � of sentences that is consistent in SD (as provided
for in the antecedent of the Maximal Consistency Lemma), we use our enu-
meration to construct a superset of � that is maximally consistent in SD. The
construction considers in sequence each sentence in the enumeration we have
just described and adds the sentence to the set if and only if the resulting set is
consistent in SD. In the end the construction will have added as many sentences
as can be added to the original set without producing a set that is inconsistent
in SD. More formally, as the construction goes through the sentences of SL,
deciding whether to add each sentence, it produces an infi nite sequence �1,
�2, �3, . . . of sets of sentences of SL:

1. �1 is the original set �.
2. If Pi is the ith sentence in the enumeration, then �i�1 is �i ∪ {Pi} if

�i ∪ {Pi} is consistent in SD; otherwise �i�1 is �i.

As an example, if �i is {~ B, ~ C ∨ ~ B} and Pi is ‘A’, then �i ∪ {Pi}, which is
{~ B, ~ C ∨ ~ B, A}, is consistent in SD. In this case �i�1 will be the expanded set
�i ∪ {Pi}. If �i is {A, ~ B, ~ C ∨ ~ B} and Pi is ‘B’, then �i ∪ {Pi}, which is {A, ~ B,
~ C ∨ ~ B, B}, is inconsistent in SD (this is readily verifi ed). In this case Pi is not
added and the set �i�1 is defi ned to be �i , that is, the set {A, ~ B, ~ C ∨ ~ B}.

Because we have an infi nite sequence of sets, we cannot take the last
member of the series as the maximally consistent set desired—because there is
no last member! Instead, we form a set �* that is the union of all the sets in the
series: �* is defi ned to contain every sentence that is a member of at least one
set in the series and no other sentences. �* is a superset of � because it follows

ber38413_ch06_226-261.indd Page 255 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 255 12/3/12 11:44 AM F-400F-400

256 SENTENTIAL LOGIC: METATHEORY

from the defi nition of �* that every sentence in �1 (as well as �2, �3, . . .) is a
member of �*, and �1 is the original set �.

Having formed the set �*, it remains to be proved that �* is consistent
in SD and that it is maximally consistent in SD. To prove the fi rst claim, we fi rst
prove that every set in the sequence �1, �2, �3, . . . is consistent in SD. This is
easily established by mathematical induction:

Basis clause: The fi rst member of the sequence, �1, is consistent in SD.

Proof: �1 is defi ned to be the original set �, which is consistent in SD.

Inductive step: If every set in the sequence prior to �k�1 is consistent in
SD, then �k�1 is consistent in SD.

Proof: �k�1 was defi ned to be �k ∪ {Pk} if the latter set is consistent in
SD and to be �k otherwise. In the fi rst case �k�1 is obviously consistent
in SD. In the second case �k�1 is consistent because, by the inductive
hypothesis, �k is consistent in SD and �k�1 just is �k.

Conclusion: Every member of the series �1, �2, �3, . . . is consistent in SD.

We must next show that �* is also consistent in SD. We will do so by using the
following easily established result:

6.4.6: If a set � of sentences of SL is inconsistent in SD, then some fi nite
subset of � is also inconsistent in SD (see Exercise 6.4.2).

Assume that �* is inconsistent in SD. It then follows from 6.4.6 that there is a
fi nite subset of �*, call it ��, that is inconsistent in SD. �� must be nonempty,
for the empty set is consistent in SD (see Exercise 6.4.3). Moreover, because �� is
fi nite, there is a sentence in �� that comes after all the other members of �� in
our enumeration—call this sentence Pj. (That is, any other member of �� is Ph
for some h � j.) Then every member of �� is a member of �j�1, by the way we
constructed the series �1, �2, �3, (We have constructed the sets in such a way
that if a sentence that is the ith sentence in our enumeration is a member of any
set in the sequence—and hence of �*—it must be in the set �i�1 and every set
thereafter.) But if �� is inconsistent in SD, and every member of �� is a member
of �j�1, then �j�1 is inconsistent in SD as well, by 6.4.7:

6.4.7: If � is inconsistent in SD, then every superset of � is inconsistent
in SD.

Proof: Assume that � is inconsistent in SD. Then for some sentence P
there is a derivation of P in which all the primary assumptions are mem-
bers of �, and also a derivation of ~ P in which all the primary assump-
tions are members of �. The primary assumptions of both derivations
are members of every superset of �, so P and ~ P are both derivable from
every superset of �. Therefore every superset of � is inconsistent in SD.

But we have already proved by mathematical induction that every set in the
infi nite sequence is consistent in SD. So �j�1 cannot be inconsistent in SD, and

ber38413_ch06_226-261.indd Page 256 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 256 12/3/12 11:44 AM F-400F-400

6.4 THE COMPLETENESS OF SD AND SD� 257

our supposition that led to this conclusion is wrong—we may conclude that
�* is consistent in SD.

Having established that �* is consistent in SD, it remains to be shown
that it is maximally consistent in SD. Suppose that �* is not maximally consistent
in SD. Then there is at least one sentence Pk of SL that is not a member of �*
and is such that �* ∪ {Pk} is consistent in SD. We showed, in 6.4.7, that every
superset of a set that is inconsistent in SD is itself inconsistent, so every subset
of a set that is consistent in SD must itself be consistent in SD. In particular, the
subset �k ∪ {Pk} of �* ∪ {Pk} must be consistent in SD. But then, by step 2 of
the construction of the sequence of sets, �k�1 is defi ned to be �k ∪ {Pk}—Pk is
a member of �k�1. Pk is therefore a member of �*, contradicting our supposi-
tion that it is not a member of �*. Therefore �* must be maximally consistent
in SD—every sentence that can be consistently added to �* is already a mem-
ber of �*. This and the result of the previous paragraph establish the Maximal
Consistency Lemma (6.4.5); we have shown that, given any set of sentences that
is consistent in SD, we can construct a superset that is maximally consistent in SD.

Finally, we will show that we can construct a truth-value assignment for
every set that is maximally consistent in SD such that every member of that set
is true on that truth-value assignment. From this we will have the following:

6.4.8 (the Consistency Lemma): Every set of sentences of SL that is
maximally consistent in SD is truth-functionally consistent.

In establishing the Consistency Lemma, we shall appeal to the following impor-
tant facts about sets that are maximally consistent in SD:

6.4.9: If � � P and �* is a maximally consistent superset of �, then P is a
member of �*.

Proof: Assume that � � P and let �* be a maximally consistent superset
of �. By the defi nition of derivability in SD, �* � P as well. Now suppose,
contrary to what we wish to prove, that P is not a member of �*. Then,
by the defi nition of maximal consistency, �* ∪ {P} is inconsistent in SD.
Therefore by 6.4.4 (if � ∪ {P} is inconsistent in SD, then � � ~ P), it fol-
lows that �* � ~ P. But then, because both P and ~ P are derivable in SD
from �*, it follows that �* is inconsistent in SD. But this is impossible
if �* is maximally consistent in SD. We conclude that our supposition
about P, that it is not a member of �*, is wrong—that is, if �* � P, then
P is a member of �*.

In what follows, we will use the standard notation

P ∈ �

to mean

P is a member of �

and the standard notation

P ∉ �

ber38413_ch06_226-261.indd Page 257 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 257 12/3/12 11:44 AM F-400F-400

258 SENTENTIAL LOGIC: METATHEORY

to mean

P is not a member of �.

The next result concerns the composition of the membership of any set that
is maximally consistent in SD:

6.4.11: If �* is maximally consistent in SD and P and Q are sentences of
SL, then:

a. ~ P ∈ �* if and only if P ∉ �*.
b. P & Q ∈ �* if and only if both P ∈ �* and Q ∈ �*.
c. P ∨ Q ∈ �* if and only if either P ∈ �* or Q ∈ �*.
d. P ⊃ Q ∈ �* if and only if either P ∉ �* or Q ∈ �*.
e. P � Q ∈ �* if and only if either P ∈ �* and Q ∈ �*, or P ∉ �* and

Q ∉ �*.

Proof of (a): Assume that ~ P ∈ �*. Then P ∉ �* for, if it were a member,
then �* would have a fi nite subset that is inconsistent in SD, namely,
{P, ~ P}, and according to 6.4.7 this is impossible if �* is consistent in SD.
Now assume that P ∉ �*. Then, by the defi nition of maximal consist-
ency in SD, �* ∪ {P} is inconsistent in SD. So, by reasoning similar to that
used in proving 6.4.9, some fi nite subset �� of �* is such that �� ∪ {P} is
inconsistent in SD, and therefore such that �� ∪ {~ ~ P} is inconsistent in
SD. So �� � ~ P, by 6.4.4. It follows, by 6.4.9, that ~ P ∈ �*.
Proof of (b): Assume that P & Q ∈ �*. Then {P & Q} is a subset of �*.
Because {P & Q} � P and {P & Q} � Q (both by Conjunction Elimination),
it follows, by 6.4.9, that P ∈ �* and Q ∈ �*. Now suppose that P ∈ �* and
Q ∈ �*. Then {P, Q} is a subset of �* and, because {P, Q} � P & Q (by
Conjunction Introduction), it follows, by 6.4.9, that P & Q ∈ �*.
Proof of (c): See Exercise 6.4.5.
Proof of (d): Assume that P ⊃ Q ∈ �*. If P ∉ �*, then it follows trivially that
either P ∉ �* or Q ∈ �*. If P ∈ �*, then {P, P ⊃ Q} is a subset of �*. Because
{P, P ⊃ Q} � Q (by Conditional Elimination), it follows, by 6.4.9, that Q ∈
�*. So, if P ⊃ Q ∈ �*, then either P ∉ �* or Q ∈ �*. Now assume that either
P ∉ �* or Q ∈ �*. In the former case, by (a), ~ P ∈ �*. So either {~ P} is a
subset of �* or {Q} is a subset of �*. P ⊃ Q is derivable from both subsets:

1 ~ P Assumption

2 P A / ~ E

3 ~ Q A / ~ E

4 P 2 R
5 ~ P 1 R
6 Q 3–5 ~ E
7 P ⊃ Q 2–6 ⊃I

1 Q Assumption

2 P A / ⊃I

3 Q 1 R
4 P ⊃ Q 2–3 ⊃I

ber38413_ch06_226-261.indd Page 258 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 258 12/3/12 11:44 AM F-400F-400

6.4 THE COMPLETENESS OF SD AND SD� 259

Either way, there is a fi nite subset of �* from which P ⊃ Q is derivable;
so, by 6.4.9, it follows that P ⊃ Q ∈ �*.

Proof of (e): See Exercise 6.4.5.

Turning now to the Consistency Lemma (6.4.8), let � be a set of sen-
tences that is maximally consistent in SD. We said earlier that it is easy to
construct a truth-value assignment on which every member of a maximally
consistent set is true, and it is; we need only consider the atomic sentences in
the set. Let A* be the truth-value assignment that assigns the truth-value T to
every atomic sentence of SL that is a member of �* and assigns the truth-value
F to every other atomic sentence of SL. We shall prove by mathematical induc-
tion that each sentence of SL is true on the truth-value assignment A* if and
only if it is a member of �*—from which it follows that every member of �* is
true on A*, thus establishing truth-functional consistency. The induction will
be based on the number of occurrences of connectives in the sentences of SL:

Basis clause: Each atomic sentence of SL is true on A* if and only if it is a
member of �*.
Inductive step: If every sentence of SL with k or fewer occurrences of con-
nectives is such that it is true on A* if and only if it is a member of �*,
then every sentence of SL with k � 1 occurrences of connectives is such
that it is true on A* if and only if it is a member of �*.

Conclusion: Every sentence of SL is such that it is true on A* if and only
if it is a member of �*.

The basis clause is obviously true; we defi ned A* to be an assignment
that assigns T to all and only the atomic sentences of SL that are members
of �*. To prove the inductive step, we will assume that the inductive hypoth-
esis holds for an arbitrary integer k: that each sentence containing k or fewer
occurrences of connectives is true on A* if and only if it is a member of �*.
We must now show that the same holds true for every sentence P containing
k � 1 occurrences of connectives. We consider fi ve cases, refl ecting the fi ve
forms that a compound sentence of SL might have.

Case 1: P has the form ~ Q. If ~ Q is true on A*, then
Q is false on A*. Because Q contains fewer than k � 1 occur-
rences of connectives, it follows by the inductive hypothesis that
Q ∉ �*. Therefore, by 6.4.11(a), ~ Q ∈ �*. If ~ Q is false on A*, then
Q is true on A*. It follows by the inductive hypothesis that Q ∈ �*.
Therefore, by 6.4.11(a), ~ Q ∉ �*.

Case 2: P has the form Q & R. If Q & R is true on A*, then
both Q and R are true on A*. Because Q and R each contain fewer
than k � 1 occurrences of connectives, it follows by the inductive
hypothesis that Q ∈ �* and R ∈ �*. Therefore, by 6.4.11(b), Q & R
∈ �*. If Q & R is false on A*, then either Q is false on A* or R is false

ber38413_ch06_226-261.indd Page 259 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 259 12/3/12 11:44 AM F-400F-400

260 SENTENTIAL LOGIC: METATHEORY

on A*. Therefore, by the inductive hypothesis, either Q ∉ �* or R ∉
�* and so, by 6.4.11(b), Q & R ∉ �*.

Case 3: P has the form Q ∨ R. See Exercise 6.4.6.
Case 4: P has the form Q ⊃ R. If Q ⊃ R is true on A*, then

either Q is false on A* or R is true on A*. Because Q and R each
contain fewer than k � 1 occurrences of connectives, it follows from
the inductive hypothesis that either Q ∉ �* or R ∈ �*. By 6.4.11(d),
then, Q ⊃ R ∈ �*. If Q ⊃ R is false on A*, then Q is true on A* and
R is false on A*. By the inductive hypothesis, then, Q ∈ �* and R ∉
�*. And by 6.4.11(d), it follows that Q ⊃ R ∉ �*.

Case 5: See Exercise 6.4.6.

This completes the proof of the inductive step. Hence we may conclude
that each sentence of SL is a member of �* if and only if it is true on A*. So
every member of a set �* that is maximally consistent in SD is true on A*,
and the set �* is therefore truth-functionally consistent. This establishes the
Consistency Lemma (6.4.8).

We now know that result 6.4.2, which we repeat here, is true:

6.4.2: For any set � of sentences of SL, if � is consistent in SD then � is
truth-functionally consistent.

Because every set of sentences � that is consistent in SD is a subset of
a set of sentences that is maximally consistent in SD (the Maximal Consistency
Lemma (6.4.5)), and because every set of sentences that is maximally consist-
ent in SD is truth-functionally consistent (the Consistency Lemma (6.4.8)), it
follows that every set of sentences that is consistent in SD is a subset of a truth-
functionally consistent set and is therefore itself truth-functionally consistent.

And Metatheorem 6.4.1 follows from 6.4.2:

If � |= P, then � � P.

For if � |= P, then, by 6.4.3, � ∪ {~ P} is truth-functionally inconsist-
ent. Then, by result 6.4.2, � ∪ {~ P} is inconsistent in SD. And if � ∪ {~
P} is inconsistent in SD, then, by 6.4.4, � � P in SD. So SD is complete for
sentential logic—for every truth-functional entailment, at least one corre-
sponding derivation can be constructed in SD. This, together with the proof
of the Soundness Metatheorem in Section 6.3, shows that SD is an adequate
system for sentential logic.

We conclude by noting that another important result, the Compactness
Theorem for sentential logic, follows from Result 6.4.2 and Metatheorem 6.3.1:

Metatheorem 6.4.12: A set � of sentences of SL is truth-functionally consist-
ent if and only if every fi nite subset of � is truth-functionally consistent.

ber38413_ch06_226-261.indd Page 260 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 260 12/3/12 11:44 AM F-400F-400

6.4 THE COMPLETENESS OF SD AND SD� 261

And, as a consequence, a set of sentences of SL is truth-functionally inconsistent
if and only if at least one fi nite subset of � is inconsistent.

 6.4E EXERCISES

 1. Prove 6.4.4 and 6.4.10.

 2. Prove 6.4.6.

 *3. Prove that the empty set is consistent in SD.

 4. Using Metatheorem 6.4.1, prove that SD� is complete for sentential logic.

 *5. Prove that every set that is maximally consistent in SD has the following properties:
 a. P ∨ Q ∈ �* if and only if either P ∈ �* or Q ∈ �*.
 b. P � Q ∈ �* if and only if either P ∈ �* and Q ∈ �*, or P ∉ �* and Q ∉ �*.

(These are clauses c and e of 6.4.11.)

 *6. Establish Cases 3 and 5 of the inductive step in the proof of the Consistency
Lemma 6.4.8.

 7.a. Suppose that SD* is like SD except that it lacks Reiteration. Show that SD* is
complete for sentential logic.

 b. Suppose that SD is like SD except that it lacks Negation Introduction. Show
that SD* is complete for sentential logic.

 8. Suppose that SD* is like SD except that it lacks Conjunction Elimination. Show
where our completeness proof for SD will fail as a completeness proof for SD*.

 9. Using Result 6.4.2 and Metatheorem 6.3.1, prove Metatheorem 6.4.12.

ber38413_ch06_226-261.indd Page 261 12/3/12 11:44 AM ber38413_ch06_226-261.indd Page 261 12/3/12 11:44 AM F-400F-400

262 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Chapter 7

Section 7.1 discusses the aspects of English syntax that cannot be captured by
SL but are mirrored in PL. In Section 7.2 we present the formal syntax of PL.
In Section 7.3 we symbolize a wide range of English sentences in PL. In Sec-
tion 7.4 we explore a variety of issues bearing on how we symbolize sentences
in PL. In Section 7.5 we present PLE, an extension of PL that includes identity
and functors.

PREDICATE LOGIC:
SYNTAX AND SYMBOLIZATION

 7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS
OF ENGLISH

As we noted in Chapter 2, the syntax of English (and every natural language)
is much more complicated than is the syntax of SL. SL is a language for sen-
tential logic and uses sentence letters to symbolize whole sentences of English.
Consequently, subsentential components of English sentences have no coun-
terparts in SL. Among the subsentential components of English sentences are

ber38413_ch07_262-328.indd Page 262 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 262 12/4/12 1:19 PM F-400F-400

7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS OF ENGLISH 263

singular terms, predicates, and quantity expressions. Consider the following
fairly simple argument:

None of David’s friends supports Republicans. Sarah supports Breitlow
and Breitlow is a Republican. So Sarah is no friend of David’s.

This is a valid argument. Although we can symbolize this argument in SL
using the following symbolization key:

 N: None of David’s friends supports Republicans.
 S: Sarah supports Breitlow
 B: Breitlow is a Republican
 F: Sarah is a friend of David’s

the resulting argument is not valid in SL:

N
S & B
∼ F

The problem is that the atomic sentences of SL are logically independent of
each other—the truth-value of an atomic sentence on a truth-value assignment
has no bearing on the truth-value of other atomic sentences on that truth-value
assignment. But the English sentences we are symbolizing are not logically inde-
pendent of each other. If the sentences symbolized by ‘S’ and ‘B’ are true, then
it is also true that Sarah supports a Republican. And if that is so, and the fi rst
premise of our English argument is true, it follows that Sarah is not a friend
of David’s. That is, it is the interconnections between the predicates ‘supports
Republicans’, ‘supports Breitlow’, ‘is a Republican’, and ‘is a friend of David’s’,
the singular terms ‘Sarah’, ‘David’, and ‘Breitlow’, and the quantity expression
‘None’ that make the English language argument valid.

The sentence

Each citizen will vote or will not vote

provides another illustration of the limitations of SL. This sentence is not pre-
senting two alternatives, that every citizen votes or that no citizen votes. Rather
it is expressing the logical truth that the predicate ‘will vote or will not vote’ is
true of each citizen. This generalization about citizens applies to each citizen
individually, not to citizens as a collective group. For example, it applies to
Cynthia (presuming she is a citizen) and says of Cynthia that she will either
vote or not vote. This claim about Cynthia, or any other specifi ed citizen, can
readily be symbolized as a truth-functional truth of SL. Where ‘C’ abbreviates
‘Cynthia will vote’, ‘C ∨ ∼ C’ says of Cynthia what the general claim says of each
citizen. But there is, barring heroic measures, no symbolization of the general
claim in SL that is truth-functionally true.1

1Since there are presumably only fi nitely many citizens, we could construct a very long iterated conjunction with as
many conjuncts of the sort ‘C ∨ ∼ C’ as there are citizens. But even such heroic measures fail when the items about
which we wish to talk (for example, the positive integers) constitute an infi nite, and not just an exceedingly large, set.

ber38413_ch07_262-328.indd Page 263 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 263 12/4/12 1:19 PM F-400F-400

264 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

What we need is a symbolic language whose syntax does mirror the
use of singular terms, predicates, and quantity expressions in English. PL is
such a language. However, before introducing PL we will explore how singu-
lar terms, predicates, and quantity expressions function in English. A singular
term is any word or phrase that designates or purports to designate (or denote
or refer to) some one thing. Singular terms are of three sorts: proper names,
defi nite descriptions, and pronouns used in place of proper names or defi nite
descriptions, that is, pronouns that make pronominal cross-reference to proper
names or defi nite descriptions. Examples of proper names include ‘George
 Washington’, ‘Marie Curie’, ‘Sir Arthur Conon Doyle’, ‘Rhoda’, and ‘Henry’.
Generally speaking, proper names are attached to the things they name by
simple convention. On the other hand, defi nite descriptions—for example, ‘the
discoverer of radium’, ‘the person Henry is talking to’, ‘Mary’s best friend’, and
‘James’ only brother’—pick out or purport to pick out a thing by providing a
unique description of that thing.2 A defi nite description is a description that,
by its grammatical structure, describes or specifi es at most one thing. Thus
‘James’ only brother’ is a defi nite description whereas ‘James’ brother’ is not—
the latter could accurately apply to more than one person because James may
have many brothers, whereas the former can apply to at most one. Pronouns
that bear pronominal cross-reference to singular terms refer to the things those
singular terms designate.

The sentence ‘If Sue has read Darwin’s works, she’s no creationist’
contains three singular terms, the proper name ‘Sue’, the defi nite descrip-
tion ‘Darwin’s works’, and the pronoun ‘she’. Each of these singular terms
does refer to something. ‘Sue’ refers to Sue because, by convention, it is her
name. ‘Darwin’s works’ refers to the works of Darwin because it is a defi nite
description of those works. And the pronoun ‘she’ refers to Sue because in this
sentence ‘she’ is going proxy for ‘Sue’ (it bears pronominal cross-reference to
‘Sue’ and hence refers to the same entity as does ‘Sue’).

Predicates, such as ‘supports Republicans’, can be thought of as incom-
plete sentences that contain gaps or holes such that when those gaps are fi lled
with singular terms the result is a complete sentence. However, writing predi-
cates as we have just done does not visibly display the gap into which a singular
term can be placed, and it is not suitable for displaying predicates containing
more than one gap or hole. We could display predicates by indicating the gaps
with underscores, as in

___ supports Republicans
___ is located between ___ and ___

2As these examples illustrate, defi nite descriptions can themselves contain singular terms. But we are here con-
cerned only with singular terms that do not occur as constituents of other singular terms. For example, we here
take ‘The Roman general who defeated Pompey invaded both Gaul and Germany’ to contain just three singu-
lar terms: ‘The Roman general who defeated Pompey’, ‘Gaul’, and ‘Germany’. In Section 7.5 we shall introduce
techniques that allow us to recognize and symbolize singular terms that are themselves constituents of singular
terms—including ‘Pompey’ as it occurs in ‘The Roman general who defeated Pompey’.

ber38413_ch07_262-328.indd Page 264 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 264 12/4/12 1:19 PM F-400F-400

7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS OF ENGLISH 265

But for reasons that will emerge, it is useful to use the lowercase letters ‘w’,
‘x’, ‘y’, and ‘z’ (called ‘variables’ for reasons to be subsequently explained) to
mark the places in predicates where singular terms can be placed. Using this
convention we can specify the two predicates displayed above as ‘x supports
Republicans’ and ‘x is located between y and z’. A predicate with one gap is a
one-place predicate, a predicate containing two gaps is a two-place predicate,
and in general a predicate containing n gaps is an n-place predicate.

One way of generating a predicate is to start with a complete sentence
of English containing one or more singular terms and delete one or more of
those terms. And one way of generating a sentence from a predicate is to fi ll
all the holes that are marked by variables with singular terms.

Because the gaps in predicates that are marked by variables can be fi lled
with referring expressions—proper names, defi nite descriptions, and some uses of
pronouns—we will say that these gaps are ‘referential positions’ and that expres-
sions occurring in these positions, including variables, ‘occur in referential posi-
tion’. But not all expressions that occur in referential positions do refer. Consider

If you play with fi re you are likely to get burned.

In most contexts this sentence is used to comment about what is likely
to happen to one, anyone, who plays with fi re. Hence it would be a mistake to
ask whom ‘you’, in either occurrence in the sentence, refers to. The sentence is
a warning to all persons but does not refer to any particular person. Similarly,
though ‘Nobody’ is a pronoun and does occur in referential position in

Nobody knows where Tom is

it does not make reference to anyone. There is no one whose name is ‘nobody’,
nor does ‘nobody’ describe someone. We shall shortly discuss at length the
use of pronouns that occur in referential position but do not in fact refer to
anyone or anything.

It is not the case that all the singular terms of natural languages do
refer or denote some one thing. For example, the only singular term in

Sherlock Holmes was a great detective

does not refer to a nineteenth-century English detective named ‘Sherlock
 Holmes’ who lived at 221B Baker Street, because there was no such detective.
There are also defi nite descriptions that occur in referential positions but do not
refer. Two examples are ‘the present prime minister of the United States’ and
‘the largest prime number’. There is no prime minister of the United States and
there is no largest prime number. This is a matter of some importance because
by stipulation all of the individual constants of PL, the analogues of proper
names and defi nite descriptions of English, do refer. Various strategies have
been advanced for dealing with singular terms that do not refer, and we will
explore one of them later in this chapter. But for the present we stipulate that
all the singular terms we use in examples and exercises should be taken to refer.

ber38413_ch07_262-328.indd Page 265 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 265 12/4/12 1:19 PM F-400F-400

266 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Of course, what a singular term refers to is often context dependent.
In its most familiar use ‘George Washington’ refers to the fi rst president of the
United States. But the U.S. Navy has an aircraft carrier named after the fi rst
president and so there are contexts in which ‘George Washington’ refers to a
ship, not a man. Similarly, at a cocktail party where there is only one Henry,
‘the person Henry is talking to’ may refer to different persons at different times.
Hereafter, when we use a sentence of English as an example or in an exercise
set, we are assuming that sentence is being used in a context such that it is
clear who or what the singular terms in that sentence refer to. We also note that
when we are working with a group of sentences, the context that is assumed
must be the same for all the sentences in the group. That is, we assume that a
singular term that occurs several times in the piece of English discourse under
discussion designates the same thing in each of its occurrences.

Predicates may contain multiple singular terms; in generating a predi-
cate from a sentence containing multiple singular terms we may, but need not,
delete all the singular terms. For example, ‘New York City is north of Philadel-
phia’ contains two singular terms, ‘New York City’ and ‘Philadelphia’, and we can
obtain three distinct predicates by deleting one or both of these singular terms:

x is north of Philadelphia
New York City is north of x
x is north of y

As far as grammar is concerned, any singular term can be used to replace
a variable in a predicate. Hence among the sentences we can generate from
the two-place predicate ‘x is north of y’ and the singular terms ‘Minneapolis’,
‘Chicago’, and ‘3’ are

Minneapolis is north of Chicago.
Chicago is north of Minneapolis.
Chicago is north of Chicago.
Chicago is north of 3.

The semantics we will adopt will assign a truth-value to each of these sentences.3

Given a stock of predicates, singular terms, and the sentential connec-
tives ‘. . . and . . .’, ‘. . . or . . .’, ‘if . . . then . . .’, ‘. . . if and only if . . .’,
and ‘it is not the case that . . .’, we can generate a wide variety of sentences
of English. For example, from these sentential connectives, the singular terms
‘Henry’, ‘Sue’, ‘Rita’, and ‘Michael’, and the predicates

x is easygoing
x likes y
x is taller than y

3It may be suggested that the fourth sentence is neither true nor false, as it “makes no sense”. Numbers do not
have location, so 3 is not located anywhere. But the semantics we will provide in Chapter 8 does allow for such
sentences and counts them as false. Precisely because numbers do not have location it is false that any given
number is spatially related to anything.

ber38413_ch07_262-328.indd Page 266 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 266 12/4/12 1:19 PM F-400F-400

7.1 PREDICATES, SINGULAR TERMS, AND QUANTITY EXPRESSIONS OF ENGLISH 267

we can generate the following sentences

Michael is easygoing.
Sue is easygoing.
Michael is taller than Sue and Sue is taller than Henry.
Sue likes Henry and Michael likes Rita.
If Rita likes Henry, then Rita is taller than Henry.
Michael is easygoing if and only if it is not the case that Rita is easygoing.

If we allow the use of quantity expressions as well as singular terms to generate
sentences from predicates, that is expressions such as ‘everything’, ‘something’,
‘nothing’, ‘everyone’, someone’, and ‘no one’, we can also generate the follow-
ing sentences from these same predicates:

Everyone is easygoing.
No one is easygoing.
Someone is easygoing.
Michael likes everyone.
Someone likes Sue.
No one is taller than her- or himself.

Note that the quantity expressions we used to generate these sentences, ‘eve-
ryone’, ‘no one’, and ‘someone’, all occur in referential positions, in positions
where singular terms can occur. But these and other quantity expressions are
not singular terms. ‘No one’ obviously does not refer to anyone. And neither
does ‘someone’. Consider ‘Someone will win tonight’s lottery’. We can all agree
that this is true—there will be a winner. Suppose the winner turns out to be
Henry Jacobson. It is not the case that when we asserted, in the morning,
that someone would win the lottery we were referring to Henry Jacobson. All
‘Someone will win tonight’s lottery’ asserts is that there is a person, identity
presumably unknown, who will win tonight’s lottery.

Similarly, ‘Everyone’ in ‘Everyone is easygoing’ does not refer to the
totality of people or the set of all people, for it is individuals, not collections
or sets of individuals, that are claimed to be easygoing. Rather, the force of
‘Everyone is easygoing’ is just that ‘is easygoing’ can be truly predicated of each
and every individual.

 7.1 EXERCISES

 1. Identify the singular terms in the following sentences, and then specify all the
predicates that can be obtained from each sentence by deleting one or more
singular terms.

 a. The president is a Democrat.
 *b. The speaker of the house is a Republican
 c. Sarah attends Smith College.

ber38413_ch07_262-328.indd Page 267 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 267 12/4/12 1:19 PM F-400F-400

268 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 *d. Bob fl unked out of U Mass.
 e. Charles and Rita are siblings.
 *f. 2 is greater than 1 and less than 4.

 7.2 THE FORMAL SYNTAX OF PL

The language PL is far more powerful than the language SL because it includes
constituents whose functions largely mirror the functions of n-place predicates,
singular terms, and quantity terms (‘every’, ‘some’, ‘no’, . . .) in English.4 In
this section we present the formal syntax of PL, which is somewhat complicated
(though not as complicated as the syntax of English).

The vocabulary of PL consists of:

Sentence Letters: The capital Roman letters ‘A’
through ‘Z’, with or without positive-integer
subscripts

A, B, C, . . . , Z,
A1, B1, C1, . . . , Z1, . . .

Predicates: The capital Roman letters ‘A’
through ‘Z’, with or without positive-integer
subscripts, followed by one or more primes

A�, B�, C�, . . . , Z�,
A1�, B1�, C1�, . . . , Z1�, . . .

Individual terms:
 Individual constants: The lowercase Roman

letters ‘a’ through ‘v’, with or without
positive-integer subscripts

a, b, c, . . . , v,
a1, b1, c1, . . . , v1, . . .

 Individual variables: The lowercase Roman
 letters ‘w’ through ‘z’, with or without

positive-integer subscripts

w, x, y, z,
w1, x1, y1, z1, . . .

Truth-functional connectives: ∼, &, ∨, ⊃, ≡

Quantifi er symbols: ∀, ∃

Punctuation marks: ()

The sentence letters of PL are just the sentence letters of SL. This makes
every sentence of SL a sentence of PL. Offi cially, that a predicate of PL is an
n-place predicate is indicated by the presence of n primes. So ‘A�’ is a one-place
predicate and ‘B��’ is a two-place predicate of PL. But we also adopt the infor-
mal convention of allowing the omission of primes when the context makes
it clear whether the predicate in question is a 1-place, 2-place, 3-place, . . .
predicate, as when we write an n-place predicate with n distinct variables

4PL does not mirror all the subsentential relations present in English and other natural languages. Consequently,
there are, as one might expect, English language arguments that are deductively valid but whose symbolizations
in PL are not valid, English sentences that are logically true but whose symbolizations in PL do not refl ect this,
and so on. To deal with natural language discourse that cannot be adequately represented in PL, even more
powerful formal systems are available—for example, tense logic and modal logic. A discussion of these systems
is beyond the scope of this text.

ber38413_ch07_262-328.indd Page 268 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 268 12/4/12 1:19 PM F-400F-400

7.2 THE FORMAL SYNTAX OF PL 269

 following the predicate. So we will often write ‘Ax’ (or ‘Ay’ or ‘Az’ . . .) rather
than ‘A�’, ‘Bxy’ rather than ‘B��’, and so on.

An expression of PL is a sequence of not necessarily distinct elements
of the vocabulary of PL. All of the following are expressions of PL:

Lab
(∀∃xy
(∀w)(∃y)Fwy
((a ⊃ B)

In each case every character in the expression is an element of the vocabulary
of PL. But the following are not expressions of PL:

{AbcB
(A ⊃ π)
(∀x/W

Each of these expressions contains a character that is not part of the vocabulary
of PL. These are, respectively, ‘{’, ‘π’ (the Greek letter pi), and ‘/’.

In what follows we will use the boldface capital letters ‘P’, ‘Q’, ‘R’, and
‘S’ as metavariables ranging over expressions of PL. We will also use boldface
‘a’ as a metavariable ranging over individual constants of PL and boldface ‘x’
as a metavariable ranging over individual variables of PL.

Quantifi er of PL: An expression of PL of the form (∀x) or (∃x). An ex-
pression of the fi rst form is a universal quantifi er, and one of the second
form is an existential quantifi er.

We will say that a quantifi er contains a variable. Thus ‘(∀y)’ and ‘(∃y)’
both contain the variable ‘y’ (and are ‘y-quantifi ers’); ‘(∀z)’ and ‘(∃z)’ both
contain the variable ‘z’ (and are ‘z-quantifi ers’).

Atomic formulas of PL: Every expression of PL that is either a sentence
letter of PL or an n-place predicate of PL followed by n individual terms
of PL.

We are now able to recursively defi ne ‘formula of PL’:

1. Every atomic formula of PL is a formula of PL.
2. If P is a formula of PL, so is ∼ P.
3. If P and Q are formulas of PL, so are (P & Q), (P ∨ Q), (P ⊃ Q), and

(P ≡ Q).
4. If P is a formula of PL that contains at least one occurrence of x and

no x-quantifi er, then (∀x)P and (∃x)P are both formulas of PL.

ber38413_ch07_262-328.indd Page 269 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 269 12/4/12 1:19 PM F-400F-400

270 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

5. Nothing is a formula of PL unless it can be formed by repeated appli-
cations of clauses 1–4.

Lastly, we specify the logical operators of PL:

An expression of PL that is either a quantifi er or a truth-functional con-
nective is a logical operator of PL.

It will emerge that not every formula of PL is a sentence of PL. How-
ever, before we can specify which formulas of PL are sentences of PL we need
to defi ne the terms ‘subformula’ and ‘main logical operator’:

1. Every formula is a subformula of itself.
2. If P is an atomic formula of PL, then P contains no logical operator, and

hence no main logical operator, and P has no immediate subformula.
3. If P is a formula of PL of the form ∼ Q, then the tilde (‘∼’) that pre-

cedes Q is the main logical operator of P, and Q is the immediate
subformula of P.

4. If P is a formula of PL of the form (Q & R), (Q ∨ R), (Q ⊃ R), or (Q ≡ R),
then the binary connective between Q and R is the main logical operator
of P, and Q and R are the immediate subformulas of P.

5. If P is a formula of PL of the form (∀x)Q or of the form (∃x)Q, then
the quantifi er that occurs before Q is the main logical operator of P,
and Q is the immediate subformula of P.

The subformulas of a formula P of PL are

• P itself,
• The immediate subformulas of P,
• The subformulas of P’s immediate subformulas.

We can classify formulas of PL (and later sentences) by their main
logical operator. Atomic formulas have no main logical operator. Quantifi ed
formulas have a quantifi er as their main logical operator. Formulas whose main
logical operator is a sentential connective are truth-functional formulas. Below
we display several formulas and all of their subformulas. Remember that every
formula is a subformula of itself.

 Main Logical Formula
Formula Operator Type

1. Rabz None Atomic

2. ∼ (Rabz & Hxy) ∼ Truth-functional
 (Rabz & Hxy) & Truth-functional
 Rabz None Atomic
 Hxy None Atomic

ber38413_ch07_262-328.indd Page 270 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 270 12/4/12 1:19 PM F-400F-400

7.2 THE FORMAL SYNTAX OF PL 271

3. (Hab ≡ (∀z)(Fz ⊃ Gza)) ≡ Truth-functional
 Hab None Atomic
 (∀z)(Fz ⊃ Gza) (∀x) Quantifi ed
 (Fz ⊃ Gza) ⊃ Truth-functional
 Fz None Atomic
 Gza None Atomic

4. (∀y)(Hay ∨ (Fy ⊃ Gya)) (∀y) Quantifi ed
 (Hay ∨ (Fy ⊃ Gya)) ∨ Truth-functional
 Hay None Atomic
 (Fy ⊃ Gya) ⊃ Truth-functional
 Fy None Atomic
 Gya None Atomic

Quantifi ers interpret the variables that fall within their scope.

Scope of a quantifi er: The scope of a quantifi er in a formula P of PL is the quan-
tifi er itself and the subformula Q that immediately follows the quantifi er.

In other words, the scope of a quantifi er is all of the formula of which
the quantifi er is the main logical operator, including the quantifi er itself. Some
examples will be helpful here. In the formula ‘(∃y)(Fyz & Gzy)’ the subformula
that immediately follows the quantifi er ‘(∃y)’ is ‘(Fyz & Gzy)’ and accordingly the
scope of that quantifi er is all of ‘(∃y)(Fyz & Gzy)’, and all of the variables in that
formula, including the ‘y’ following ‘∃’, fall within the scope of that quantifi er. But
in the formula ‘Hx ⊃ (∀y)Fxy’ the formula immediately following the quantifi er
‘(∀y)’ is ‘Fxy’ and the scope of that quantifi er is therefore all of ‘(∀y)Fxy’. The
fi rst occurrence of ‘x’ (in ‘Hx’) does not fall within the scope of ‘(∀y)’. Similarly
in ‘(∃w)(Gwa ⊃ Fa) ≡ Hw’ the scope of ‘(∃w)’ does not include the whole formula,
for the formula that immediately follows that quantifi er is ‘Gwa ⊃ Fa’. Hence the
fi rst and second occurrences of ‘w’ in ‘((∃w)(Gwa ⊃ Fa) ≡ Hw)’ fall within the
scope of ‘(∃w)’ but the third, in ‘Hw’, does not.

The fi nal concepts we need to introduce before we defi ne ‘sentence
of PL’ are those of free and bound variables.

Bound variable: An occurrence of a variable x in a formula P of PL that is
within the scope of an x-quantifi er.
Free variable: An occurrence of a variable x in a formula P of PL that is
not bound.

At long last we are ready to formally introduce the notion of a sentence of PL:

Sentence of PL: A formula P of PL is a sentence of PL if and only if no
 occurrence of a variable in P is free.

The formula ‘(Hx ⊃ (∀y)Fxy)’ is not a sentence of PL because it con-
tains a free variable. In fact, both occurrences of ‘x’ in this formula are free.

ber38413_ch07_262-328.indd Page 271 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 271 12/4/12 1:19 PM F-400F-400

272 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

The fi rst occurrence of ‘x’ does not fall within the scope of any quantifi er and
is therefore free, and the second occurrence of ‘x’, while falling within the
scope of a quantifi er, does not fall within the scope of an x-quantifi er and is
therefore free. The formula ‘(∀z)Gz ⊃ ∼ Hz’ is not a sentence of PL because
the third occurrence of ‘z’ does not fall within the scope of a z-quantifi er. The
scope of ‘(∀z)’ is limited to the subformula of which it is the main logical
operator—that is, to ‘(∀z)Gz’.

Earlier we considered the following four formulas of PL:

Rabz
∼ (Rabz & Hxy)
(Hab ≡ (∀z)(Fz ⊃ Ga))
(∀y)(Hay ∨ (Fy ⊃ Gya))

The fi rst formula is not a sentence of PL because it contains ‘z’ as a
free variable. We can construct a sentence from this formula by prefacing it
with a z-quantifi er; both ‘(∃z)Rabz’ and ‘(∀z)Rabz’ are sentences of PL. The
second formula in our list is not a sentence of PL because ‘z’, ‘x’, and ‘y’
all occur free in that formula. This formula can be converted to a sentence
by prefacing it with three distinct quantifi ers, as in ‘(∃z)(∃x)(∃y) ∼ (Rabz &
Hxy)’. The third formula in our list is a sentence of PL. The only variable in
‘(Hab ≡ (∀z)(Fz ⊃ Ga))’ is ‘z’ and its two occurrences both fall within the
scope of the quantifi er ‘(∀z)’. The fourth formula is also a sentence of PL.
The formula of which ‘(∀y)’ is the main logical operator is the entire formula,
and hence all four occurrences of ‘y’ fall within the scope of that quantifi er.

There are formulas of PL that cannot be transformed into sentences of
PL by adding quantifi ers within whose scope the entire original formula falls.
Consider ‘(Fy ⊃ (∃y)Gy)’. The fi rst occurrence of ‘y’ in this formula is free
as it does not fall within the scope of any quantifi er. The result of attaching
a universal quantifi er to this entire formula is ‘(∀y)(Fy ⊃ (∃y)Gy)’. But this
expression is neither a formula nor a sentence of SL. The only way quantifi ers
become attached to formulas is in accordance with the fourth clause of the
recursive defi nition of ‘formula of PL’, which is

4. If P is a formula of PL that contains at least one occurrence of x and
no x-quantifi er, then (∀x)P and (∃x)P are both formulas of PL.

This clause does not allow attaching ‘(∀y)’ to ‘(Fy ⊃ (∃y)Gy)’ because the latter
already contains a y-quantifi er, ‘(∃y)’.

We have been omitting the primes that, by the formal requirements
of PL, are parts of the predicates of PL, and we will continue to do so. We
will also frequently omit the outermost parentheses of a formula of PL, as we
did with SL. In our usage outermost parentheses are a pair of left and right
parentheses that are added, as a pair, when a binary connective is inserted
between two formulas of PL.

ber38413_ch07_262-328.indd Page 272 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 272 12/4/12 1:19 PM F-400F-400

7.2 THE FORMAL SYNTAX OF PL 273

The omission of outermost parentheses should cause no confusion.
Note, however, that when outermost parentheses are customarily dropped, it is
not safe to assume that every sentence that begins with a quantifi er is a quanti-
fi ed sentence. Consider

(∀x)(Fx ⊃ Ga)

and

(∀x)Fx ⊃ Ga

Both begin with quantifi ers, but only the fi rst is a quantifi ed sentence. The
scope of the x-quantifi er in this sentence is the whole formula. The second
sentence is a truth-functional compound; the scope of the x-quantifi er is just
‘(∀x)Fx’. It turns out that these two sentences say very different things.

To make complicated formulas of PL easier to read, we also allow the
use of square brackets, ‘[’ and ‘]’, in place of the parentheses required by
clause 3 of the recursive defi nition of ‘formula of PL’. (But we will not allow
square brackets in place of parentheses in quantifi ers.) So, instead of

∼ (∀y)((∃z)Fzy ⊃ (∃x)Gxy)

we can write

∼(∀y)[(∃z)Fzy ⊃ (∃x)Gxy]

In later chapters we shall require one further syntactic concept, that of a
substitution instance of a quantifi ed sentence. We use the notation P(a/x) to
specify the formula of PL that is like P except that it contains the individual
constant a wherever P contains the individual variable x. Thus if P is

(Fza ∨ ∼ Gz)

then P(c/z) is

(Fca ∨ ∼ Gc)

Substitution instance of P: If P is a sentence of PL of the form (∀x)Q or
(∃x)Q, and a is an individual constant, then Q(a/x) is a substitution
 instance of P. The constant a is the instantiating constant.

For example, ‘Ga’, ‘Gb’, and ‘Gc’ are all substitution instances of
‘(∃z)Gz’. And ‘Fab’, ‘Fbb’, and ‘Fcb’ are all substitution instances of ‘(∀z)Fzb’.
‘Fab’ is the result of substituting ‘a’ for ‘z’ in ‘Fzb’, ‘Fbb’ is the result of substitut-
ing ‘b’ for ‘z’ in ‘Fzb’, and ‘Fcb’ is the result of substituting ‘c’ for ‘z’ in ‘Fzb’.
In forming a substitution instance of a quantifi ed sentence, we drop the initial

ber38413_ch07_262-328.indd Page 273 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 273 12/4/12 1:19 PM F-400F-400

274 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

quantifi er and replace all remaining occurrences of the now free variable with
some one constant. Thus ‘(∃y)Hay’ and ‘(∃y)Hgy’ are both substitution instances
of ‘(∀x)(∃y)Hxy’, but ‘Hab’ is not. (In forming substitution instances only the
initial quantifi er is dropped, and every occurrence of the variable that becomes
free when that quantifi er is dropped is replaced by the same constant.) All the
following are substitution instances of ‘(∃w)[Fw ⊃ (∀y)(∼ Dwy ≡ Ry)]’:

Fd ⊃ (∀y)(∼ Ddy ≡ Ry)
Fa ⊃ (∀y)(∼ Day ≡ Ry)
Fn ⊃ (∀y)(∼ Dny ≡ Ry)

but

Fd ⊃ (∀y)(∼ Dny ≡ Ry)

is not—for here we have used one constant to replace the fi rst occurrence of ‘w’
and a different constant to replace the second occurrence of ‘w’. Again, in gen-
erating substitution instances, each occurrence of the variable being replaced
must be replaced by the same individual constant.

Only quantifi ed sentences have substitution instances, and the substitu-
tion instances are formed by dropping the initial quantifi er. Thus ‘∼ Fa’ is not
a substitution instance of ‘∼ (∀x)Fx’. ‘∼ (∀x)Fx’ is a negation, not a quantifi ed
sentence, and hence has no substitution instances. ‘(∀x)Fxb’ is not a substitu-
tion instance of ‘(∀x)(∀y)Fxy’ because, while the latter is a quantifi ed sentence,
only the initial quantifi er can be dropped in forming substitution instances, and
here the initial quantifi er is ‘(∀x)’, not ‘(∀y)’.

 7.2E EXERCISES

 1. Determine, for each of the following, whether it is a formula of PL, and if it
is, whether it is a sentence of PL. If it is not a formula, explain why not. If it is
a formula but not a sentence, explain why it is not a sentence. Then, if it is a
formula of PL, list all of its components and identify the main logical operator,
if any, of each by circling it, and for each subformula indicate whether it is
an atomic, truth-functionally compound, or quantifi ed formula. We here allow
the deletion of outer parentheses and the use of square brackets in place of
parentheses around binary compounds.

For example, a correct answer for the expression ‘∼ (∃z)Fz & Hz’ would be
Formula but not a sentence. The ‘z’ in ‘Hz’ is free.

∼ (∃z)Fz & Hz Truth-functional
∼ (∃z)Fz Truth-functional
Hz Atomic
(∃z)Fz Quantifi ed
Fz Atomic

ber38413_ch07_262-328.indd Page 274 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 274 12/4/12 1:19 PM F-400F-400

7.2 THE FORMAL SYNTAX OF PL 275

 a. Ba & Hc
 *b. (∃x)(Fx & Gx)
 c. ∼ (∀y)Fya
 *d. Fz ⊃ (∀z)Fz
 e. (∃a)Ga
 *f. Hxx ≡ (∃w)Fw
 g. (∀x)(∀y) ∼ Hxy
 *h. (∃y) ∼ Hyy & Ga
 i. (∀y) ∼ Fy ≡ ∼ (∃w)Fw
 *j. (∀x)Faa
 k. (∃z)(Fz & ∼ Baz)
 *l. (∃x)[Fx & (∀x)(Fx ⊃ Gx)]
 m. (∃x)Fx ∨ ∼ (∃x)Fx
 *n. ∼ (∀x)(Gx ≡ Fx)
 o. (∃x)(∃y)Lxx
 *p. (∀x)[(∃y)Fyx ⊃ (∃y)Fxy]
 q. Fa ⊃ (∃x)Fx
 *r. Fa ≡ (∀x)Fa
 s. ∼ Fw ⊃ ∼ (∃w)Gww

 2. Indicate, for each of the following sentences of PL, whether it is an atomic
sentence, a truth-functionally compound sentence, or a quantifi ed sentence.
Circle the main logical operator, if any.

 a. (∀x) (Fx ⊃ Ga)
 *b. (∀x) ∼ (Fx ⊃ Ga)
 c. ∼ (∀x)(Fx ⊃ Ga)
 *d. (∃w)Raw ∨ (∃w)Rwa
 e. ∼ (∃x)Hx
 *f. Habc
 g. (∀x)(Fx ≡ (∃w)Gw)
 *h. (∀x)Fx ≡ (∃w)Gw
 i. (∃w)(Pw ⊃ (∀y)(Hy ≡ ∼ Kyw))
 *j. ∼ (∃w)(Jw ∨ Nw) ∨ (∃w)(Mw ∨ Lw)
 k. ∼ [(∃w)(Jw ∨ Nw) ∨ (∃w)(Mw ∨ Lw)]
 *l. Da
 m. (∀z)Gza ⊃ (∃z)Fz
 *n. ∼ (∃x)(Fx & ∼ Gxa)
 o. (∃z) ∼ Hza
 *p. (∀w)(∼ Hw ⊃ (∃y)Gwy)
 q. (∀x) ∼ Fx ≡ (∀z) ∼ Hza

 3. Give a substitution instance of each of the following sentences in which ‘a’ is
the instantiating term.

 a. (∀w)(Mww & Fw)
 *b. (∃y)(Mby ⊃ Mya)
 c. (∃z) ∼ (Cz ∼ Cz)
 *d. (∀x)[(Laa & Lab) ⊃ Lax]
 e. (∃z)[Fz & ∼ Gb) ⊃ (Bzb ∨ Bbz)]
 *f. (∃w)[Fw & (∀y)(Cyw ⊃ Cwa)]
 g. (∀y)[∼ (∃z)Nyz ≡ (∀w)(Mww & Nyw)]
 *h. (∀y)[(Fy & Hy) ⊃ [(∃z)(Fz & Gz) ⊃ Gy]]

ber38413_ch07_262-328.indd Page 275 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 275 12/4/12 1:19 PM F-400F-400

276 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 i. (∃x)(Fxb ≡ Gbx)
 *j. (∀x)(∀y)[(∃z)Hzx ⊃ (∃z)Hzy]
 k. (∀x) ∼ (∃y)(Hxy & Hyx)
 *l. (∀z)[Fz ⊃ (∃w)(∼ Fw & Gwaz)]
 m. (∀w)(∀y)[(Hwy & Hyw) ⊃ (∃z)Gzw]
 *n. (∃z)(∃w)(∃y)[(Fzwy ≡ Fwzy) ≡ Fyzw]

 4. Which of the following examples are substitution instances of the sentence
‘(∃w)(∀y)(Rwy ⊃ Byy)’?

 a. (∀y)Ray ⊃ Byy
 *b. (∀y)(Ray ⊃ Byy)
 c. (∀y)(Rwy ⊃ Byy)
 *d. (∀y)(Rcy ⊃ Byy)
 e. (∀y)(Ryy ⊃ Byy)
 *f. (∃y)(Ray ⊃ Byy)
 g. (Ray ⊃ Byy)
 *h. (∀y)(Ray ⊃ Baa)

 7.3 INTRODUCTION TO SYMBOLIZATION

Recall the sentences about Michael and his co-workers that we discussed in
Section 7.1:

Michael is easygoing.
Sue is easygoing.
Michael is taller than Sue and Sue is taller than Henry.
Sue likes Henry and Michael likes Rita.
If Rita likes Henry, then Rita is taller than Henry.
Michael is easygoing if and only if it is not the case that Rita is easygoing.

We can now symbolize these sentences in PL. Here, as will frequently
be the case throughout the rest of this chapter, we will use a symbolization
key. A symbolization key specifi es the universe of discourse (‘UD’ for short) or
set of things we are talking about. Every UD is a nonempty set. A symbolization
key also gives the English readings of the predicates of PL we will use in our
symbolizations and assigns members of the UD to the individual constants we
will use. Our symbolization keys will also assign truth-values to any sentence
letters of PL that we will use in our symbolizations. We will specify the set we
are using as the UD either as we do below, by listing the members inside curly
brackets, or by using a description of the set, for example ‘The set of positive
integers’. In symbolizing our sentences about Michael, Sue, Henry, and Rita
we will use the following symbolization key:

 UD: The set {Michael, Sue, Henry, Rita}
 Ex: x is easygoing
 Txy: x is taller than y

ber38413_ch07_262-328.indd Page 276 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 276 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 277

 Lxy: x likes y
 m: Michael
 s: Sue
 h: Henry
 r: Rita

The English sentences we are symbolizing and our symbolizations of them in
PL are as follows:

Michael is easygoing. Em
Sue is easygoing. Es
Michael is taller than Sue and Sue is taller than Henry. Tms & Tsh
Sue likes Henry and Michael likes Rita. Lsh & Lmr
If Rita likes Henry, then Rita is taller than Henry. Lrh ⊃ Trh
Michael is easygoing if and only if it is not the
case that Rita is easygoing.

Em ≡ ∼ Er

In constructing our symbolization key we selected predicate letters and indi-
vidual constants that may help us remember what English predicates and singu-
lar terms they symbolize. We will follow this practice throughout this chapter,
but we note that a strong mnemonic connection between the predicates and
singular terms of PL and the expressions of English they symbolize is not always
possible.

We can also use symbolization keys to provide English readings
of sentences of PL. For example, using our current symbolization key we
can read

Lrh ≡ (Lhr & ∼ Lhs)

as

Rita likes Henry if and only if Henry likes Rita and does not like Sue.

Using the same symbolization key we can also provide English readings for the
following sentences of PL:

Lhr & ∼ Lrh
Lrh ⊃ Lrm
Trh & ∼ Trs
Tsh ⊃ Lhs
(Lmh ∨ Lms) ⊃ (Lmh & Lms)

In English these become, respectively,

Henry likes Rita and Rita does not like Henry.
If Rita likes Henry, then Rita likes Michael.

ber38413_ch07_262-328.indd Page 277 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 277 12/4/12 1:19 PM F-400F-400

278 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Rita is taller than Henry and Rita is not taller than Sue.
If Sue is taller than Henry, then Henry likes Sue.
If Michael likes Henry or Michael likes Sue, then Michael likes
Henry and Michael likes Sue.

We can, of course, improve on the English. For example, the last sentence of
PL can be more colloquially read as

If Michael likes either Henry or Sue he likes both of them.

Earlier we gave several examples of English sentences having quantity expres-
sions in positions that singular terms can also occupy. Among these were

Everyone is easygoing.
No one is easygoing.

We can symbolize such sentences in PL without using quantifi ers provided the
discourse within which such sentences occur is about a fi nite, and for practical
purposes, a reasonably small number, of things or individuals. For example,
suppose we are again talking about only Michael, Sue, Henry, and Rita. Given
this context, ‘Everyone is easygoing’ is equivalent to ‘Michael, Sue, Henry, and
Rita are easygoing’ and this claim can be symbolized as an iterated conjunction:

(Em & Es) & (Eh & Er)

And ‘No one is easygoing’ is in this context equivalent to ‘Neither Michael nor
Sue nor Henry nor Rita is easygoing’ and can be symbolized as the negation
of an iterated disjunction:

∼ [(Em ∨ Es) ∨ (Eh ∨ Er)]

But these techniques are impractical when the number of things or individuals
we are talking about is even moderately large. And we cannot, even in principle,
symbolize quantity claims about an infi nite number of things, say the positive
integers, by using iterated conjunctions and disjunctions. For these purposes
we do need the quantifi ers of PL.

Suppose substantially more than four people work in Michael’s offi ce
and we want to symbolize sentences about this larger group of individuals. We
will use the following symbolization key to do so.

 UD: The set of people who work in Michael’s offi ce
 Lxy: x likes y
 Rxy: x respects y
 m: Michael
 r: Rita
 h: Henry

ber38413_ch07_262-328.indd Page 278 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 278 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 279

The fi rst sentence we will symbolize is

Everyone likes Michael.

In symbolizing English sentences in PL it will often be useful to fi rst para-
phrase those sentences. Our paraphrases will be analogous to those we used
in Chapter 2. We will use the terms ‘each’ and ‘there is a(n)’ followed by
a variable to specify where quantifi ers will occur in PL, and we will under-
line all expressions that are counterparts to the logical operators of PL. As
‘ Everyone likes Michael’ is a claim about everyone in the UD, we will para-
phrase it as:

Each x is such that x likes Michael.

Using ‘Lxy’ to symbolize ‘x likes y’ and using ‘m’ to designate Michael, our
symbolization is

(∀x)Lxm

This sentence says that ‘Lxm’ is true of each thing in the UD, that is, each
thing in the UD likes Michael. Our symbolization key includes

Lxy: x likes y

That we chose, arbitrarily, to use ‘x’ and ‘y’ in assigning an English reading
to this 2-place predicate does not mean that whenever we use this predicate it
must be followed by ‘x’ and then ‘y’. A predicate of PL can be followed by any
combination of the appropriate number of variables and individual constants.
More generally, in symbolization keys, variables are used to mark the gaps in
n-place predicates, not to specify what variables are to be used in symbolizations
containing those predicates. We also could have used any variable in our para-
phrase and any variable in our symbolization. For example, ‘(∀y)Lym’, ‘(∀z)
Lzm’, and ‘(∀w)Lwm’ are all correct symbolizations of ‘Everyone likes Michael’.

Having symbolized ‘Everyone likes Michael’ it is easy to symbolize
‘Michael likes everyone’. An appropriate paraphrase is

Each x is such that Michael likes x.

Our symbolization is ‘(∀x)Lmx’. Note that since Michael is part of the UD, it
follows both from ‘Everyone likes Michael’ and from ‘Michael likes everyone’
that Michael likes Michael, that is, that Michael likes himself.

The sentence

Someone likes Michael and someone does not like Michael

ber38413_ch07_262-328.indd Page 279 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 279 12/4/12 1:19 PM F-400F-400

280 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

can be paraphrased and symbolized as a conjunction. Our paraphrase is

There is a y such that y likes Michael and there is a y such that it is not
the case that y likes Michael.

Our paraphrase is readily symbolized as

(∃y)Lym & (∃y) ∼ Lym

Again, there is no requirement that the variables we use in symbolization keys
also be used in corresponding positions in symbolizations based on those symboli-
zation keys. And there is no requirement that the variable we use in one subfor-
mula of a sentence of PL also be used in other subformulas unless those variables
are being interpreted by the same quantifi er. So we could equally correctly have
symbolized ‘Someone likes Michael and someone does not like Michael’ as

(∃x)Lxm & (∃z) ∼ Lzm

Note that ‘(∃y)(Lym & ∼ Lym)’ says something very different from ‘(∃y)Lym
& (∃y) ∼ Lym’. The former sentence says that there is someone who both likes
Michael and does not like Michael.

The sentence

Everyone who likes Michael also respects him

is readily paraphrased and symbolized as follows:

Each x is such that (if x likes Michael then x respects Michael).

(∀w)(Lwm ⊃ Rwm)

And ‘Someone likes and respects Michael’ can be paraphrased and symbolized as

There is a y such that (y likes Michael and y respects Michael).

(∃y)(Lym & Rym)

It is important to understand why the main logical operator of the immedi-
ate subformula of ‘(∀w)(Lwm ⊃ Rwm)’ is a ‘⊃’ while that of ‘(∃x)(Lxm &
Rxm)’ is an ‘&’. ‘(∀w)(Lwm & Rwm)’ and ‘(∀w)(Lwm ⊃ Rwm)’ say quite
different things. The former says that each member of the UD both likes
and respects Michael. The latter attributes ‘respects Michael’ only to those
members of the UD who do like Michael. When the UD is heterogeneous
and we want to attribute some property to members of the UD that are of
a particular sort, the most common way of doing so is to use a universally
quantifi ed sentence whose immediate subformula is a material conditional,

ber38413_ch07_262-328.indd Page 280 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 280 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 281

that is, to use a sentence of the form (∀x)(P ⊃ Q). Such a sentence does
not say that every member of the UD is of the sort P, nor does it say that
every member of the UD is of the sort Q. Rather, it says of those members
of the UD that are of the sort P that they are also of the sort Q. So, while
a sentence of the form (∀x)(P ⊃ Q) does say of every member of the UD
that it is of the sort P ⊃ Q, when a member of the UD is not of the sort P
this comes to naught.

On the other hand, when we do want to say that one or more mem-
bers of the UD are of the sort P and of the sort Q our symbolization will be
a sentence of the form (∃x)(P & Q). Note that ‘⊃’ is not appropriate in this
case, for (∃x)(P ⊃ Q) says that there is at least one member of the UD such
that if it is of the sort P then it is also of the sort Q. If a member of the UD
is not of the sort P, then trivially it is such that if it is of the sort P (which it is
not) then it is also of the sort Q. This is a much weaker claim than the claim
made by a sentence of the form (∃x)(P & Q).

For the reasons just given, many of our symbolizations of English sen-
tences will be either of the form (∀x)(P ⊃ Q) or of the form (∃x)(P & Q)
(where the variable x occurs in both P and Q). Sentences of the form (∀x)(P
& Q) as well as those of the form (∃x)(P ⊃ Q) are far less common as sym-
bolizations of English sentences. Sentences of the form (∀x)(P & Q) are very
strong. They say each thing in the UD is both of the sort P and of the sort Q.
On the other hand, sentences of the form (∃x)(P ⊃ Q) are extremely weak. On
truth-functional grounds such sentences are equivalent to sentences of the form
(∃x)(∼ P ∨ Q), which means all they say is that there is at least one thing that
either is not of the sort P or is of the sort Q. The moral in both cases is that
when we fi nd we have constructed a symbolization that is of the form (∀x)(P
& Q) or of the form (∃x)(P ⊃ Q) it is a good idea to double-check to make
sure our symbolization is correct.

The quantity terms ‘any’ and ‘anyone’ are often appropriately symbol-
ized by universal quantifi ers. Such is the case in the sentence

Anyone who respects Michael also respects Rita.

Our paraphrase and symbolization are

Each x is such that (if x respects Michael then x respects Rita)

(∀x)(Rxm ⊃ Rxr)

But some uses of ‘any’ can be symbolized by an existential quantifi er. Consider
‘If anyone respects Rita, Henry does’. This sentence is a material conditional
and the consequent says that a specifi c person, Henry, respects Rita. This sen-
tence can be paraphrased in two different ways:

If there is an x such that x respects Rita then Henry respects Rita,
Each x is such that (if x respects Rita then Henry respects Rita).

ber38413_ch07_262-328.indd Page 281 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 281 12/4/12 1:19 PM F-400F-400

282 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

These can be symbolized, respectively, as ‘(∃x)Rxr ⊃ Rhr’ and ‘(∀x)(Rxr ⊃
Rhr)’. The fi rst sentence of PL is a material conditional, while the second is
a universally quantifi ed sentence whose immediate component is a material
conditional. These sentences are equivalent, as are our paraphrases. If it is
true that if there is a person that respects Rita, then Henry does, it is also
true of each person that if that person respects Rita (which means that at
least one person respects Rita) then Henry does, and vice versa. But neither
of the following is a correct symbolization of ‘If anyone respects Rita, Henry
does’:

(∀x)Rxr ⊃ Rhr
(∃x)(Rxr ⊃ Rhr)

The fi rst of these sentences of PL says that if each person x is such that x
respects Rita then Henry respects Rita, that is, that if everyone respects Rita then
Henry does. This is not news, for Henry, being one of ‘everyone’, of course
respects Rita if everyone does. That is, the sentence is logically true.

The second of these sentences of PL is an existentially quantifi ed
sentence whose immediate subformula, ‘Rxr ⊃ Rhr’, is a material condi-
tional. As pointed out above, a sentence of a form such as ‘(∃x)(Rxr ⊃ Rhr)’
is equivalent to ‘(∃x)(∼ Rxr ∼ Rhr)’, which says that there is someone such
that either that person does not respect Rita or Henry respects Rita. This
is also a logical truth—and not surprisingly, because it is equivalent to the
symbolization ‘(∀x)Rxr ⊃ Rhr’ that we discussed in the previous paragraph
(later in this section we will explain why the equivalence holds). Not all
sentences of the form (∃x)(P ⊃ Q), where P contains x but Q does not,
are logically true but, as we have noted, no such sentence makes a very
strong claim.

In English there are a fair number of different ways we can say that
everything of this sort is also of that sort. For example, if we are talking about
the people in Michael’s offi ce, all of the following sentences can be used to
make the same claim:

Everyone who respects Henry also respects Rita.
Each person who respects Henry also respects Rita.
All those who respect Henry also respect Rita.
Anyone who respects Henry also respects Rita.
Those who respect Henry also respect Rita.
A person who respects Henry also respects Rita.

All of these can appropriately be paraphrased and symbolized as follows:

Each x is such that (if x respects Henry then x respects Rita).

(∀x)(Rxh ⊃ Rxr)

ber38413_ch07_262-328.indd Page 282 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 282 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 283

Examples of English sentences that are appropriately symbolized as existentially
quantifi ed sentences are

There is someone who respects Henry and Rita,
Someone respects Henry and Rita,

and

At least one person respects Henry and Rita

These can all be paraphrased and symbolized as

There is an x such that (x respects Henry and x respects Rita)

(∃x)(Rxh & Rxr)

It is at least arguable that there are some uses of ‘some’ in English where ‘some’
means ‘at least two’. We here note that the existential quantifi er of PL always
means ‘there is at least one’. In Section 7.5 we will introduce an expansion of
PL, PLE, and in that language we will be able to adequately symbolize such
expressions as ‘there are at least two’ and ‘there are exactly two’ and thus accom-
modate those uses of ‘some’ in English where ‘some’ means’ ‘at least two’.

We next symbolize some sentences about the animals in the Saint
Louis Zoo.5

• The dolphins want to swim with us.
• The jaguars prance on tree limbs.
• The grizzlies are discontent when forced to dine without wine.
• The alligators sup in sullen silence and the polar bears sunbathe with-

out swim suits.
• The gorillas stare mutely but intently as the rhinos dance divinely.
• The great horned owls see and know all but say nothing.
• Neither the tigers nor the zebras ever change their stripes.

Our symbolization key will be

 UD: The set consisting of animals in the Saint Louis Zoo
 Az: z is an alligator
 Bz: z is a grizzly bear
 Cz: z sometimes changes its stripes
 Dz: z is a dolphin
 Ez: z sees everything
 Fz: z is discontent when forced to dine without wine
 Gz: z is a gorilla

5Some readers will recognize the infl uence of Simon and Garfunkel’s whimsical song At the Zoo.

ber38413_ch07_262-328.indd Page 283 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 283 12/4/12 1:19 PM F-400F-400

284 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 Iz: z stares intently
 Jz: z is a jaguar
 Kz: z knows everything
 Mz: z stares mutely
 Nz: z says nothing
 Oz: z is a great horned owl
 Pz: z is a polar bear
 Rz: z is a rhinoceros
 Sz: z sups in sullen silence
 Tz: z is a tiger
 Uz: z prances upon tree limbs
 Vz: z dances divinely
 Wz: z wants to swim with us
 Xz: z sunbathes without a swim suit
 Zz: z is a zebra

As is to be expected with this large a symbolization key, not all of the predicate
letters we have selected are mnemonic reminders of what they symbolize. Our
fi rst three symbolizations are straightforward:

• The dolphins want to swim with us.

(∀x)(Dx ⊃ Wx)

• The jaguars prance upon tree limbs.

(∀y)(Jy ⊃ Uy)

We can paraphrase our third example

• The grizzlies are discontent when forced to dine without wine. Each
x is such that if x is a grizzly then x is discontent when forced to
dine without wine and symbolize it as

(∀w)(Bw ⊃ Fw)

Our next three examples can be paraphrased and symbolized as conjunctions.

• The alligators sup in sullen silence and the polar bears sunbathe
without swimsuits.

 Each w is such that if w is an alligator then x sups in sullen silence
and each x is such that if x is a polar bear then x sunbathes without
a swimsuit.

(∀w)(Aw ⊃ Sw) & (∀x)(Px ⊃ Xx)

Our current example can also (and equivalently) be paraphrased and sym-
bolized as

ber38413_ch07_262-328.indd Page 284 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 284 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 285

 Each w is such that [(if w is an alligator then w sups in sullen silence)
and (if w is a polar bear then w sunbathes without a swimsuit)]

(∀w)[(Aw ⊃ Sw) & (Pw ⊃ Xw)]

• The gorillas stare mutely but intently; moreover, the rhinos dance
divinely.

 Each z is such that [if z is a gorilla then (z stares mutely and z stares
intently)] and each z is such that (if z is a rhino then z dances
divinely)

(∀z)[Gz ⊃ (Mz & Iz)] & (∀z)(Rz ⊃ Vz)

An alternative paraphrase and symbolization are equally appropriate:

 Each x is such that ([if x is a gorilla then (x stares mutely and x
stares intently)] and (if x is a rhino then x dances divinely))

(∀x)([Gx ⊃ (Mx & Ix)] & (Rx ⊃ Vx))

Note that in our paraphrases we have used ‘and’ in place of both ‘but’ and
‘moreover’.

• The great horned owls see and know all but say nothing.

 Each y is such that (if y is a great horned owl then [(y sees all and y
knows all) and y says nothing])

(∀y)(Oy ⊃ [(Ey & Ky) & Ny])

• Neither the tigers nor the zebras ever change their stripes

can be paraphrased and symbolized in various ways, including as a conjunction of
two universally quantifi ed sentences and as a quantifi ed sentence whose immedi-
ate component is a material conditional whose antecedent is a disjunction:

Each x is such that (if x is a tiger then it is not the case that x sometimes
changes its stripes) and each y is such that (if y is a zebra then it is not the
case that y sometimes changes its stripes).

(∀x)(Tx ⊃ ∼ Cx) & (∀y)(Zy ⊃ ∼ Cy)

Each x is such that [if (x is a tiger or x is a zebra) then it is not the case
that x sometimes changes its stripes]

(∀x)[(Tx ∨ Zx) ⊃ ∼ Cx]

ber38413_ch07_262-328.indd Page 285 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 285 12/4/12 1:19 PM F-400F-400

286 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

We specifi ed that the sentences we have just symbolized are about a
specifi c group of animals—those at the Saint Louis Zoo. This makes the use of
‘the’ (‘The dolphins . . .’, ‘The grizzlies . . .’) appropriate. In English, as we have
already seen, we don’t always use ‘all’, ‘every’, ‘each’ or other quantity terms
when making universal claims. For example, ‘Dolphins are good swimmers’ is
appropriately used to make a claim about all dolphins, everywhere. But in ‘The
dolphins want to swim with us’ the use of ‘the’ indicates we are talking about
some specifi c group of dolphins.

In our symbolization key we used ‘z’ in interpreting our one-place
predicates. But in our symbolizations we sometimes used ‘x’, sometimes ‘y’,
sometimes ‘w’, and sometimes ‘z’. As we noted earlier, the variables we use in
symbolization keys to interpret predicates need not be the variables we use in
quantifi ed sentences containing those predicates. What matters is that the vari-
able we use in a quantifi er matches the variables that the quantifi er is intended
to interpret. ‘(∀y)(Dy ⊃ Wy)’ and ‘(∀w)(Dw ⊃ Ww)’ are equally good symboli-
zations of ‘The dolphins want to swim with us’ but ‘(∀x)(Dx ⊃ Wy)’ is not a
symbolization of that sentence at all. It is, in fact, not a sentence of PL because
it contains a free variable, ‘y’.

In symbolizing our sentences about zoo animals we constructed uni-
versally quantifi ed sentences whose immediate components are truth-functional
compounds, often material conditionals. Because these symbolizations are uni-
versally quantifi ed sentences their immediate components—-truth-functional
compounds—-are attributed to each and every member of the UD. We again
note that the attribution is vacuous, comes to nothing, when the attribution is
to a member of the UD that is not of the sort specifi ed by the antecedent of the
material conditional. So while ‘(∀w)(Jw ⊃ Uw)’ attributes ‘Jw ⊃ Uw’ to all mem-
bers of the UD, it attributes ‘Uw’ (‘w prances upon tree branches’) only to those
members that ‘Jw’ (‘w is a jaguar’) is true of and says nothing of the non-jaguars.

We now augment our present symbolization key by adding the follow-
ing two-place predicates to symbolize the sentences that follow:

 Hxy: x is heavier than y
 Lxy: x likes y

• Every animal likes every animal

Each x and each y are such that (or each pair x and y is such that)
x likes y.

(∀x)(∀y)Lxy

• Every animal likes at least one animal.

Each x is such that there is a y such that x likes y.

(∀x)(∃y)Lxy

ber38413_ch07_262-328.indd Page 286 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 286 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 287

• There is an animal that likes all the animals.

There is a z such that each w is such that z likes w.

(∃z)(∀w)Lzw

• No animal is heavier than every animal.

It is not the case that there is an x such that each y is such that x is
heavier than y.

∼ (∃x)(∀y)Hxy

• If an animal is heavier than another, then the second is not heavier
than the fi rst.

Each x and each y are such that (if x is heavier than y then it is not the
case that y is heavier than x).

(∀x)(∀y)(Hxy ⊃ ∼ Hyx)

• No animal is heavier than itself.

It is not the case that there is an x such that x is heavier than x.

∼ (∃x)Hxx

• Every gorilla likes every rhinoceros.

Each x is such that [if x is gorilla then each y is such that (if y is a
 rhinoceros then x likes y)].

(∀x)[Gx ⊃ (∀y)(Ry ⊃ Lxy)]

‘Every gorilla likes every rhinoceros’ can also be equivalently paraphrased and
symbolized as:

Each x and each y are such that if [(x is a gorilla and y is a rhinoceros)
then x likes y].

(∀x)(∀y)[(Gx & Ry) ⊃ Lxy]

• Every gorilla likes at least one rhinoceros.

ber38413_ch07_262-328.indd Page 287 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 287 12/4/12 1:19 PM F-400F-400

288 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Each x is such that [if x is a gorilla then there is a y such that (y is a
 rhinoceros and x likes y)].

(∀x)[Gx ⊃ (∃y)(Ry & Lxy)]

• Every gorilla likes at least one rhinoceros and does not like at least
one jaguar.

Each z is such that (if z is a gorilla then [there is a w such that (w is a
rhinoceros and z likes w) and there is a y such that (y is a jaguar and it is
not the case that z likes y)]).

(∀z)(Gz ⊃ [(∃w)(Rw & Lzw) & (∃y)(Jy & ∼ Lzy)])

• The dolphins don’t like the grizzly bears.

Each y is such that [if y is a dolphin then each w is such that (if w is a
grizzly bear then it is not the case that y likes w)].

(∀y)[Dy ⊃ (∀w)(Bw ⊃ ∼ Lyw)]

• Some tigers like all the jaguars but no tiger likes any grizzly bear.

There is an x such that [x is a tiger and each y is such that (if y is a jaguar
then x likes y)] and it is not the case that there is a w such that [w is a
tiger and there is a z such that (z is a grizzly bear and w likes z)].

(∃x)[Tx & (∀y)(Jy ⊃ Lxy)] & ∼ (∃w)[Tw & (∃z)(Bz & Lwz)]

The right conjunct of our paraphrase can also be correctly symbolized as
‘∼ (∃w)(∃z)[(Tw & Bz) & Lwz)]’.

• Every dolphin is heavier than every great horned owl but no dolphin
is heavier than any rhinoceros.

Each x and each y are such that [if (x is a dolphin and y is a great horned
owl) then x is heavier than y] and it is not the case that there is an x and
there is a y such that [(x is a dolphin and y is an rhinoceros) and x is
heavier than y].

(∀x)(∀y)[(Dx & Oy) ⊃ Hxy] & ∼ (∃x)(∃y)[(Dx & Ry) & Hxy]

• Anything that is heavier than every gorilla is a rhinoceros.

Each w is such that [if each y is such that (if y is a gorilla then w is heavier
than y) then w is a rhinoceros].

(∀w)[(∀y)(Gy ⊃ Hwy) ⊃ Rw]

ber38413_ch07_262-328.indd Page 288 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 288 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 289

Notice that the scope of ‘(∀w)’ is the entire sentence, while the scope of ‘(∀y)’
is just ‘(∀y)(Gy ⊃ Hwy)’. Compare this sentence of PL to

(∀w)(∀y)[Gy ⊃ (Hwy ⊃ Rw)],

which says that each pair of members of the UD is such that if one is a gorilla
then if the other is heavier than that gorilla then it is a rhinoceros. In better
English, this comes to ‘Anything that is heavier than any gorilla [even one
gorilla] is a rhinoceros’.

We can also use our symbolization key to construct English readings
of the following sentences of PL:

• (∀y)[Jy ⊃ (∀x)(Tx ⊃ ∼ Lyx)]

Each y is such that if [y is a jaguar then each x is such that (if x is a tiger
then it is not the case that y likes x)].

Since we are talking about each y and each x, this comes to

Each jaguar and each tiger are such that it is not the case that the jaguar
likes the tiger,

or more idiomatically:

The jaguars do not like the tigers.

Note that it would be a mistake to read the sentence of PL we are currently
considering as ‘All the jaguars don’t like all the tigers’, for this English sentence
is ambiguous. It can be taken to mean that it is not the case that all the jaguars
like all the tigers, which is consistent with some of the jaguars liking some or
all of the tigers. Our next example is

• (∃w)[Gw & (∀x)(Bx ⊃ Lwx)] & ∼ (∀z)[Gz ⊃ (∀x)(Bx ⊃ Lzx)]

The left conjunct can be read as

There is a w such that [w is a gorilla and each x is such that (if x is a griz-
zly bear then w likes x)]

which comes to ‘There is a gorilla that likes every grizzly bear’. The right con-
junct can be read as

It is not the case that each z is such that [if z is a gorilla then each x is
such that (if x is a grizzly bear then z likes x)]

ber38413_ch07_262-328.indd Page 289 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 289 12/4/12 1:19 PM F-400F-400

290 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

which comes to ‘Not every gorilla likes every grizzly bear’. An appropriate read-
ing of the entire conjunction is

Some, but not all, of the gorillas like all the grizzly bears.

While PL can be used to symbolize claims about almost anything,
including people, animals, all living things, countries, numbers, and whatever
else our ontology (those things we take to exist) includes, the positive integers
(the whole numbers 1, 2, 3, . . .) constitute an especially interesting UD for
at least two reasons, and we will frequently use them as our UD in examples
and exercises in the rest of this chapter as well as throughout Chapter 8. First,
once one is familiar with the basic nature of the positive integers, symbolizing
claims about them becomes fairly straightforward. Many claims about the posi-
tive integers and the relations among them are clear and unambiguous. This
is often not true of sentences about other kinds of things. Second, if there is
an interpretation of a set of sentences of PL on which all the members of the
set are true then there is such an interpretation that uses the positive integers
as the universe of discourse. This will be of considerable importance when we
are working with the semantics of PL, as we will see in Chapter 8.

We will next symbolize a number of sentences about the positive inte-
gers. Readers may fi nd it useful to consult Appendix 1, which details some
simple facts about the positive integers, before proceeding. We will use the
following symbolization key:

 UD: The set of positive integers
 Lxy: x is less than y
 Ox: x is odd
 Ex: x is even
 Exy: x times y is even
 Oxy: x times y is odd
 Px: x is a prime number
 Sxy: x is the successor of y (x � y � 1)
 a: 2

• There is a smallest positive integer.

Symbolizing this sentence is fairly straightforward. All we need say is that there is
a positive integer such that no positive integer is smaller than it. And this is what

(∃y) ∼ (∃x)Lxy

says.

• There is no largest positive integer.

We do not have a predicate for ‘x is larger than y’ in our symbolization key, and
we do not need one to symbolize this sentence. What would a largest positive
integer be? It would be an integer such that there is no positive integer it is

ber38413_ch07_262-328.indd Page 290 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 290 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 291

less than. And we do have a predicate for ‘x is less than y’: ‘Lxy’. So the follow-
ing says that there is a positive integer y such that there is no positive integer
x such that y is less than x. That is, it says there is a largest positive integer.

(∃y) ∼ (∃x)Lyx

So the negation of this sentence

∼ (∃y) ∼ (∃x)Lxy

symbolizes ‘There is no largest positive integer’.

• An odd positive integer times an odd positive integer is odd.

We can paraphrase and symbolize this sentence as follows:

Each x and each y are such that [if (x is odd and y is odd) then x times
y is odd]

(∀x)(∀y)[(Ox & Oy) ⊃ Oxy]

• There is a pair of primes such that one member of the pair is the
successor of the other member of the pair.

Our paraphrase and symbolization are

There is an x and there is a y such that [(x is prime and y is prime) and
y is the successor of x]

(∃x)(∃y)[(Px & Py) & Syx]

(This claim is true; 2 and 3 are both primes and 3 is the successor of 2.)

• An even positive integer times an even positive integer is an even
positive integer.

Our paraphrase and symbolization are

Each x and each y are such that [(if x is even and y is even) then x times
y is even]

(∀x)(∀y)[(Ex & Ey) ⊃ Exy]

• An even positive integer times an odd positive integer is an even positive
integer.

ber38413_ch07_262-328.indd Page 291 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 291 12/4/12 1:19 PM F-400F-400

292 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Our symbolization of this sentence is like that of the preceding one, substitut-
ing ‘Oy’ for ‘Ey’, thus specifying that the second member of the pair is an odd,
not an even, positive integer:

(∀x)(∀y)[(Ex & Oy) ⊃ Exy]

Our next example combines the claims of the preceding two examples:

• An even positive integer times an even or an odd positive integer is even.

Our symbolization is

(∀x)(∀y)[(Ex & (Ey ∨ Oy)) ⊃ Exy]

Our fi nal three sentences concern prime numbers. The fi rst is

• 2 is prime and 2 has a prime successor.

Pa & (∃y)(Sya & Py)

A literal reading of this sentence is ‘2 is prime and there is a successor of 2
and it is prime’.

Our second sentence about primes is

• 2 is prime and no prime number is less than 2.

Our symbolization is straightforward:

Pa & ∼ (∃x)(Px & Lxa)

Our last sentence concerning primes is

• 2 is an even prime and every prime greater than 2 is odd.

We can symbolize this sentence as a conjunction:

(Pa & Ea) & (∀y)[(Py & Lay) ⊃ Oy]

Before concluding this section, we note a limited parallel between PL and
Aristotelian logic. Aristotelian logic recognizes four kinds of quantity claims,
traditionally termed ‘A-’, ‘E-’, ‘I-’, and ‘O-sentences’:6

A-sentences All As are Bs.
E-sentences No As are Bs.

6The use of ‘A’, ‘E’, ‘I’, and ‘O’ to designate kinds of sentences apparently dates to the Middle Ages. A- and
I-sentences are thought of as affi rmations and match the fi rst two vowels in the Latin verb ‘affi rmo’ (which means
‘I affi rm’) while E- and O-sentences are thought of as denials and match the fi rst two vowels in the Latin verb
‘nego’ (which means ‘I deny’). See Francis Garden, Outline of Logic: For the Use of Teachers and Students, 2nd ed.
(Oxford and London: Rivingtons, 1871, p. 65).

ber38413_ch07_262-328.indd Page 292 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 292 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 293

I-sentences Some As are Bs.
O-sentences Some As are not Bs.

Here ‘A’ and ‘B’ are metavariables ranging over general terms, that is, terms
such as ‘people’, ‘horses’, ‘orators’, ‘fi sh’, ‘voters’, and ‘Athenians’. Here are
examples of each kind of sentence:

A-sentence All horses are mammals.
E-sentence No horses are mammals.
I-sentence Some horses are mammals.
O-sentence Some horses are not mammals.

PL contains analogues to each of these kinds of sentences. Where x is a variable
of PL and P and Q are open sentences of PL, each of which contains at least
one occurrence of x and no x-quantifi er, the PL analogues are

A-sentence (∀x)(P ⊃ Q)
E-sentence (∀x)(P ⊃ ∼ Q)
I-sentence (∃x)(P & Q)
O-sentence (∃x)(P & ∼ Q)

We can use these templates to provide symbolizations of the above four claims
about horses:

A-sentence (∀x)(Hx ⊃ Mx)
E-sentence (∀x)(Hx ⊃ ∼ Mx)
I-sentence (∃x)(Hx & Mx)
O-sentence (∃x)(Hx & ∼ Mx)

We are here taking our UD to be the set of living things, and using ‘Hx’ to sym-
bolize ‘x is a horse’ and ‘Mx’ to symbolize ‘x is a mammal’. The relations among
these kinds of claims are often presented through a square of opposition:

A-sentence
(∀x)(P ⊃ Q)

E-sentence
(∀x)(P ⊃ ∼ Q)

I-sentence
(∃x)(P & Q)

O-sentence
(∃x)(P & ∼ Q)

C o n t r a d i c t o r i e s C
o n t r a d c

t o r i e
s

ber38413_ch07_262-328.indd Page 293 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 293 12/4/12 1:19 PM F-400F-400

294 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Aristotle held that there are several interesting relationships among the
four types of sentences displayed at the corners of the square of opposition. In
PL the interesting relations are those between sentence types at opposite ends
of the diagonal lines. These constitute contradictory sentence pairs. That is, an
A- sentence is equivalent to the negation of the corresponding O-sentence and
vice versa. And an E-sentence is equivalent to the negation of the corresponding
I- sentence, and vice versa, yielding the following pairs of equivalent sentence
forms:

(∀x)(P ⊃ Q) and ∼ (∃x)(P & ∼ Q)
(∀x)(P ⊃ ∼ Q) and ∼ (∃x)(P & Q)
(∃x)(P & Q) and ∼ (∀x)(P ⊃ ∼ Q)
(∃x)(P & ∼ Q) and ∼ (∀x)(P ⊃ Q)

Knowing the foregoing equivalences can be helpful in symbolizing English
 sentences in PL, for these equivalences provide alternative patterns for sym-
bolizing sentences that can be symbolized as A-, E-, I-, or O-sentences.

 7.3E EXERCISES

 1. Symbolize the following sentences in PL, without using quantifi ers, using the
following symbolization key:

 UD: The set {Bob, Carol, David, Emily}
 Gy: y will graduate
 Jy: y will get a job
 Ay: y will join the Army
 Ly: y will become a longshoreman
 Mxy: x will make more money than y
 b: Bob
 c: Carol
 d: David
 e: Emily

 a. Bob and Carol will graduate and so will either David or Emily.
 *b. If David doesn’t graduate he will join the Army and if Emily doesn’t graduate

she will become a longshoreman.
 c. If David joins the Army and Emily becomes a longshoreman, she will make

more money than he will.
 *d. All of those who graduate will get jobs.
 e. If David will graduate they will all graduate.
 *f. If at least one of them graduates they will all graduate.

 2. Symbolize the following sentences in PL.

 UD: The set of positive integers
 Ex: x is even
 Ox: x is odd

ber38413_ch07_262-328.indd Page 294 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 294 12/4/12 1:19 PM F-400F-400

7.3 INTRODUCTION TO SYMBOLIZATION 295

 Lxy: x is less than y
 Px: x is prime
 a: 1
 b: 2
 c: 4
 d: 100

 a. Some positive integers are odd and some are even.
 *b. Some positive integers are prime but not all positive integers are prime.
 c. No positive integer is less than 1.
 *d. No positive integer is less than itself.
 e. 2 is less than 4 and 4 is less than some positive integer.
 *f. Not every positive integer is less than 100.
 g. Not all positive integers are prime and not all positive integers are even.
 *h. Not all positive integers are primes and not all positive integers are non-primes.
 i. All positive integers are even if and only if all positive integers are not odd.
 *j. 1 is not prime and no positive integer is less than 1.
 k. There is a positive integer that is less than 100.

 3. Symbolize the following sentences in PL, using quantifi ers wherever appropri-
ate, using the following symbolization key:

 UD: The set of seniors at Dartmouth College
 Gy: y will graduate
 Jy: y will get a job
 Ay: y will join the Army
 Ly: y will become a longshoreman
 Mxy: x will make more money than y
 b: Bob
 c: Carol
 d: David
 e: Emily

 a. All of those who graduate will get jobs.
 *b. If David will graduate, all seniors will graduate.
 c. If at least one senior graduates, they will all graduate.
 *d. Everyone who doesn’t graduate will join the Army.
 e. If anyone joins the Army both Carol and David will.
 *f. Everyone will graduate or no one will graduate.
 g. Each senior will either graduate or not graduate.
 *h. If anyone who graduates becomes a longshoreman Emily will become a long-

shoreman.
 i. Everyone who becomes a longshoreman will make more money than will eve-

ryone who does not.
 *j. Each senior will join the Army if and only if he or she does not graduate.

 4. Using the following symbolization key, symbolize the following sentences in PL.
(Note: Not all of these sentences are true.)

 UD: The set of positive integers
 Px: x is a prime

ber38413_ch07_262-328.indd Page 295 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 295 12/4/12 1:19 PM F-400F-400

296 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 7.4 SYMBOLIZATION FINE-TUNED

In this section we discuss some missteps that need to be avoided in symbol-
izing English sentences in PL, and we symbolize some sentences that are more
complex than the ones we have so far dealt with.

There are contexts in English and other natural languages in which
singular terms cannot be interpreted as denoting or referring to anything, and
there are contexts in which predicates cannot be interpreted as we have been
interpreting them. These contexts arise because we can think, dream, specu-
late, hunt for, and believe in (and give names to) things that do not exist.
Consider, for example, the following claims:

Ponce de Leon is hunting for the Fountain of Youth.
Max is looking for trolls.

Ponce de Leon was a Spanish explorer of the fi fteenth century who allegedly
spent a lot of time looking for the Fountain of Youth. But of course there is no
such thing. The nonexistence of such a fountain does not keep people from
looking for it, though of course that nonexistence does prevent anyone from
fi nding it. So too, although Norse mythology contains numerous descriptions
of trolls there are no trolls. Nonetheless, it may well be true that our benighted
friend Max is out looking for trolls.

Because there is no Fountain of Youth we cannot symbolize the sen-
tence concerning Ponce de Leon as

Hpf

 Ox: x is odd
 Ex: x is even
 Lxy: x is less than y
 Txy: x times y is prime
 Dxy: x is evenly divisible by y (x is divisible by y without remainder)
 a: 2

 a. There is a positive integer that is less than all primes.
 *b. A positive integer is even if and only if it is evenly divisible by 2.
 c. A prime times a prime is not prime.
 *d. A prime times an even positive integer is not prime.
 e. A prime times any positive integer greater than 1 is not prime.
 *f. If a pair of positive integers is such that the fi rst is evenly divisible by the

 second, then either both integers are even or both are odd.
 g. If a pair of positive integers is such that the fi rst is evenly divisible by the second

and the second is greater than 1, then either both integers are even or both
are odd.

 *h. For each prime, there is a greater non-prime.

ber38413_ch07_262-328.indd Page 296 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 296 12/4/12 1:19 PM F-400F-400

7.4 SYMBOLIZATION FINE-TUNED 297

where ‘Hxy’ symbolizes ‘x is hunting for y’, ‘p’ designates Ponce de Leon, and
‘f’ designates the Fountain of Youth, because there is no such thing for ‘f’ to
designate. Nor can we symbolize ‘Max is looking for trolls’ as

(∃y)(Ty & Lmy)

where ‘Tx’ symbolizes ‘x is a troll’, ‘Lxy’ symbolizes ‘x is looking for y’, and ‘m’
designates Max, because the English sentence ‘Max is looking for trolls’ does
not entail ‘There are trolls’. For these reasons, we should instead symbolize the
claim about Ponce de Leon as an atomic sentence of PL such as

Fp

where ‘Fx’ symbolizes ‘x is looking for the Fountain of Youth’ and ‘p’ desig-
nates Ponce de Leon. And we should symbolize our sentence about Max as an
atomic sentence such as

Tm

where ‘m’ designates ‘Max’ and ‘Tx’ symbolizes ‘x is looking for trolls’. In the
fi rst case we have embedded the non-referring expression ‘the Fountain of
Youth’ in a predicate, thus keeping it out of referential position. In the second
case we have embedded ‘trolls’ in a larger predicate to avoid the problematic
existential quantifi cation.

A related problem arises when someone is looking for or seeking an
object of a kind of which there are instances, but no particular instance is being
looked for. Suppose that an orangutan—Sally, to be specifi c—has gone missing
from the Saint Louis Zoo and the zookeeper, Mike by name, is in pursuit of her.
In this situation the zookeeper is looking for a particular orangutan. Finding
another orangutan might be a surprise, and perhaps even a pleasant surprise
(for the zoo is short on orangutans), but this will not bring Mike’s search to
an end. He is after Sally, not just any orangutan. In this situation, we can sym-
bolize ‘Mike is looking for an orangutan missing from the Saint Louis Zoo’ as

(∃z)[(Oz & Mz) & Lmz],

where ‘Oz’ symbolizes ‘z is an orangutan’, ‘Mz’ symbolizes ‘z is missing from
the Saint Louis Zoo’, ‘Lwz’ symbolizes ‘w is looking for z’, and ‘m’ designates
Mike. Similarly, if all of the zoo’s orangutans have gone missing and Mike is
in pursuit, we can accurately say that Mike is looking for all of the missing
orangutans and symbolize this claim as

(∀y)[(Oy & My) ⊃ Lmy]

In the envisioned situation this sentence of PL accurately says ‘Each y is such
that if y is an orangutan and y is missing from the Saint Louis Zoo then Mike

ber38413_ch07_262-328.indd Page 297 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 297 12/4/12 1:19 PM F-400F-400

298 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

is looking for y’. But the situation is quite different if Mike has been sent to
Indonesia to acquire an orangutan for the zoo. In this context

Mike is looking for an orangutan
 cannot be symbolized as

(∃x)(Ox & Lmx)

because it is not true that there is a particular orangutan that Mike is looking
for. Nor is

(∀x)(Ox ⊃ Lmx)

an appropriate characterization of Mike’s activity, for this sentence says that
he is looking for all orangutans, and he is not. Mike is neither looking for one
particular orangutan nor looking for all orangutans. He does want to acquire
an orangutan, but any orangutan will suffi ce. So we should symbolize ‘Mike is
looking for an orangutan’ as an atomic sentence of PL, say, ‘Lm, where ‘Lx’
symbolizes ‘x is looking for an orangutan’ and ‘m’ again designates Mike.

The general point is that we can look for, believe in, and dream about
things that do not exist and we can look for, speculate about, and hope to
fi nd a certain sort of thing without there being a particular thing that we are
looking for, speculating about, or hoping to fi nd. We must symbolize sentences
concerning these activities as we have just done, by embedding the problematic
language in predicates that specify the relevant activity (thinking about, search-
ing for, hoping to fi nd, and so on).

We turn now to a more general discussion of how to decide what predi-
cates it is appropriate to use in symbolizing sentences in PL. Usually this is a
straightforward matter. But consider sentences such as the following:

There are rabid bats in the attic.

In symbolizing sentences such as this, where an adjective modifi es a noun,
we must decide how many predicates we should use. Should we use a single
predicate, ‘x is a rabid bat in the attic’, two predicates, ‘x is a rabid bat’ and
‘x is in the attic’, or three, ‘x is a bat, ‘x is rabid’, and ‘x is in the attic’? Using
just one predicate will yield ‘(∃x)Ix’ where ‘Ix’ symbolizes ‘x is a rabid bat in
the attic’. If we use two predicates our symbolization might be

(∃x)(Bx & Ax),

where ‘Bx’ symbolizes ‘x is a rabid bat’ and ‘Ax’ symbolizes ‘x is in the attic’.
An appropriate symbolization using three predicates is

(∃x)[(Rx & Bx) & Ax],

here using ‘Rx’ to symbolize ‘x is rabid’, ‘Bx’ to symbolize ‘x is a bat’, and ‘Ax’
to symbolize ‘x is in the attic’.

ber38413_ch07_262-328.indd Page 298 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 298 12/4/12 1:19 PM F-400F-400

7.4 SYMBOLIZATION FINE-TUNED 299

When the sentence ‘There are rabid bats in the attic’ is taken in isola-
tion, or as part of a set of symbolization exercises, all three ways of symbolizing
the sentence are correct symbolizations of ‘There are rabid bats in the attic’.
But there are contexts in which one symbolization is clearly preferable to the
others. Consider this simple and clearly valid argument:

Rabid animals are dangerous.

There are rabid bats in the attic.

There are dangerous animals in the attic.

The symbolization key

 UD: The set of all animals
 Rx: x is rabid
 Dx: x is dangerous
 Bx: x is a rabid bat
 Ax: x is in the attic

yields an argument that is not valid in PL:

(∀x)(Rx ⊃ Dx)

(∃x)(Bx & Ax)

(∃x)(Dx & Ax)

This argument is invalid because its component sentences do not reveal the
connection between there being rabid bats in the attic and there being rabid
animals in the attic. But if we use ‘Bx’ to symbolize ‘x is a bat’, rather than ‘x
is a rabid bat’ the resulting symbolization of our argument is valid in PL:

(∀x)(Rx ⊃ Dx)

(∃x)[(Rx & Bx) & Ax]

(∃x)(Dx & Ax)

The lesson to be learned here is that when we are symbolizing a number
of sentences and are interested in the relations among them it is advisable
to select predicates that will capture as many of the connections among
the English sentences as possible. But we must be careful. It is not always
correct to extract two separate predicates when an adjective modifi es a noun.
Consider:

Sue is a ninety-eight pound gymnast.
Ed is an attractive candidate.
Stan is a meticulous accountant.

ber38413_ch07_262-328.indd Page 299 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 299 12/4/12 1:19 PM F-400F-400

300 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

We can extract two predicates from the fi rst of these sentences, parsing it as
‘Sue is a gymnast and Sue weighs ninety-eight pounds’, and symbolize it as ‘Gs
& Ns’, using ‘s’ to designate Sue, ‘Gx’ to symbolize ‘x is a gymnast’, and ‘Nx’
to symbolize ‘x weighs ninety-eight pounds’. But we cannot similarly parse ‘Ed
is an attractive candidate’, at least not in every context. Suppose Ed is running
for state offi ce and that he is fi scally conservative and a wounded war veteran.
These traits may well make him an attractive candidate for state offi ce, but
they don’t have anything to do with his being attractive in the sense of being
a handsome man. In this case, we must treat ‘is an attractive candidate’ as one
predicate. Similarly, it is probably unwise to parse ‘Stan is a meticulous account-
ant’ as ‘Stan is meticulous and Stan is an accountant’, for although Stan is a
meticulous accountant, he may be anything but meticulous in the rest of his life.

We now turn our attention to fi ner issues concerning quantifi ers. The
syntax of PL requires that each variable occurring in a sentence of PL be bound,
that is, fall within the scope of a matching quantifi er. So ‘(∀x)(Fx ⊃ Gy)’ is a
formula but not a sentence of PL, because ‘y’ is free in ‘(∀x)(Fx ⊃ Gy)’. We
have also seen that quantifi ers can have overlapping scope. For example, we can
transform ‘(∀x)(Fx ⊃ Gy)’ into a sentence by adding a universal y-quantifi er.
The three sentences we can obtain in this way are

(∀x)(Fx ⊃ (∀y)Gy)
(∀x)(∀y)(Fx ⊃ Gy)
(∀y)(∀x)(Fx ⊃ Gy)

The question now arises: are these three sentences equivalent? In subsequent
chapters we will present techniques for answering this question but at present
our concern is with symbolizing sentences in PL, and in symbolizing sentences
in PL we need to understand the effects of placing quantifi ers in different
positions.

In fact, the three sentences of PL are equivalent. The second and third
sentences are equivalent because whenever a sentence begins with multiple
universal quantifi ers or with multiple existential quantifi ers and the rest of
the sentence is in the scope of all of these quantifi ers, the order in which
the quantifi ers appear does not matter. That is, changing the order does not
change what the sentence says. So

(∃x)(∃y)(∃z)Fxyz
(∃y)(∃x)(∃z)Fxyz
(∃z)(∃y)(∃x)Fxyz

are also equivalent sentences of PL, as are the results of placing the three exis-
tential quantifi ers in any order. And as all of ‘Fy ⊃ Gx’ falls within the scope
of both quantifi ers in

(∃x)(∃y)(Fy ⊃ Gx)

ber38413_ch07_262-328.indd Page 300 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 300 12/4/12 1:19 PM F-400F-400

7.4 SYMBOLIZATION FINE-TUNED 301

reversing the order of the quantifi ers produces an equivalent sentence:

(∃y)(∃x)(Fy ⊃ Gx)

But our rule about reversing the order of initial quantifi ers does not apply to
‘(∃x)[(∃y)Fy ⊃ Gx]’, as this sentence does not begin with two existential quan-
tifi ers both having scope over the rest of the sentence. The scope of ‘(∃y)’ in
‘(∃x)[(∃y)Fy ⊃ Gx]’ is just ‘(∃y)Fy’.

When a sentence contains consecutive quantifi ers of different types,
existential and universal, such as ‘(∀x)(∃y)’, we cannot in general change the
order of those quantifi ers. ‘(∀x)(∃y)Lxy’ and ‘(∃y)(∀x)Lxy’ are not equivalent
sentences. Suppose we are using the set of positive integers as the UD and
using ‘Lxy’ to symbolize ‘x is less than y’. Then the fi rst sentence says that every
positive integer is less than some positive integer, while the second sentence
says that there is a specifi c positive integer such that every positive integer is
less than it.

Quantifi ers can often be moved without producing nonequivalent sen-
tences. They can, of course, only be moved if the result is not a formula con-
taining a free variable. Consider the following pairs of sentences:

Fa & (∃x)Gx (∃x)(Fa & Gx)
Fa & (∀x)Gx (∀x)(Fa & Gx)
Fa ∨ (∃x)Gx (∃x)(Fa ∨ Gx)
Fa ∨ (∀x)Gx (∀x)(Fa ∨ Gx)
Fa ⊃ (∃x)Gx (∃x)(Fa ⊃ Gx)
Fa ⊃ (∀x)Gx (∀x)(Fa ⊃ Gx)

Careful refl ection should convince the reader that all of these are pairs of
equivalent sentences.

But there are two cases in which changing the scope of a quantifi er
requires changing the quantifi er: in these cases if we broaden the scope of an
existential quantifi er we must replace it with a universal quantifi er, and if we
broaden the scope of a universal quantifi er we must replace it with an existen-
tial quantifi er. Here is an example of the fi rst case:

(∃x)Gx ⊃ Fa (∀x)(Gx ⊃ Fa)

These sentences are equivalent and it is fairly easy to see why they are. We dis-
cussed such a case when we symbolized ‘If anyone respects Rita, Henry does’.
We saw that this sentence can be correctly symbolized either as ‘(∃x)Rxr ⊃ Rhr’
or as ‘(∀x)(Rxr ⊃ Rhr)’. Both will be true if either the UD does not contain
anyone who respects Rita, or it contains at least one person who respects Rita
and Henry respects Rita. So we can add ‘(∃x)Gx ⊃ Fa’ and ‘(∀x)(Gx ⊃ Fa)’
to our list of pairs of equivalent sentences.

ber38413_ch07_262-328.indd Page 301 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 301 12/4/12 1:19 PM F-400F-400

302 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

The second case in which extending the scope of a quantifi er requires
changing the quantifi er is illustrated by the following pair of sentences:

(∀x)Gx ⊃ Fa (∃x)(Gx ⊃ Fa)

It turns out, perhaps surprisingly, that these sentences are equivalent. It should
be apparent that the fi rst of these sentences is equivalent to ‘∼ (∀x)Gx ∨ Fa’
on truth-functional grounds. Because ‘∼ (∀x)Gx’ is equivalent to ‘(∃x) ∼ Gx’,
‘∼ (∀x)Gx ∨ Fa’ is equivalent to ‘(∃x) ∼ Gx ∨ Fa’. And since we can extend
the scope of an existential quantifi er over a wedge (providing the result is a
sentence of PL), this sentence is equivalent to ‘(∃x)(∼ Gx ∨ Fa)’, which, again
on truth-functional grounds, is equivalent to ‘(∃x)(Gx ⊃ Fa)’. So ‘(∀x)Gx ⊃ Fa’
and ‘(∃x)(Gx ⊃ Fa)’ are equivalent sentences.

The following table displays equivalent sentence forms. Here P is a
formula containing at least one free occurrence of x and Q is a sentence of
PL in which x does not occur.

(∃x)P ⊃ Q (∀x)(P ⊃ Q)
(∀x)P ⊃ Q (∃x)(P ⊃ Q)
Q ⊃ (∃x)P (∃x)(Q ⊃ P)
Q ⊃ (∀x)P (∀x)(Q ⊃ P)
(∃x)P ∨ Q (∃x)(P ∨ Q)
(∀x)P ∨ Q (∀x)(P ∨ Q)
Q ∨ (∃x)P (∃x)(Q ∨ P)
Q ∨ (∀x)P (∀x)(Q ∨ P)
(∃x)P & Q (∃x)(P & Q)
(∀x)P & Q (∀x)(P & Q)
Q & (∃x)P (∃x)(Q & P)
Q & (∀x)P (∀x)(Q & P)

Conspicuously absent from this table are sentence forms containing the
triple bar. It turns out that in general, a sentence of the form (∀x)Px ≡ Q is
equivalent neither to the corresponding sentence of the form (∀x)(Px ≡ Q)
nor to the corresponding sentence of the form (∃x)(Px ≡ Q). Hence, the scope
of a quantifi er that includes only one side of a material biconditional cannot in
general be broadened to have scope over the entire biconditional without creat-
ing a nonequivalent sentence.

We now turn to more complex symbolizations. Recall the argument we
considered at the beginning of this chapter:

None of David’s friends supports Republicans. Sarah supports Breitlow
and Breitlow is a Republican. So Sarah is no friend of David’s.

ber38413_ch07_262-328.indd Page 302 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 302 12/4/12 1:19 PM F-400F-400

7.4 SYMBOLIZATION FINE-TUNED 303

We saw that symbolizations of this argument in SL are not valid. We are now
in a position to provide a symbolization in PL that is valid. We will use the fol-
lowing symbolization key:

 UD: The set of all people
 Fxy: x is a friend of y
 Sxy: x supports y
 Rx: x is a Republican
 d: David
 b: Breitlow
 s: Sarah

The second premise is readily symbolized as the conjunction ‘Ssb &
Rb’. The conclusion is also easy to symbolize since it simply amounts to the
claim that Sarah is not a friend of David’s: ‘∼ Fsd’. The fi rst premise, however,
may pose diffi culties. An appropriate paraphrase is

It is not the case that there is an x such that [x is a friend of David’s and
(there is a y such that y is a Republican and x supports y)].

The expressions ‘there is an x’ and ‘there is a y’ are standing proxy for existen-
tial quantifi ers. The structure of our paraphrase indicates that our symbolization
will be a negation containing two existential quantifi ers and two occurrences of
‘&’. Our symbolization mirrors the syntax of our paraphrase:

∼ (∃x)[Fxd & (∃y)(Ry & Sxy)]

This is a somewhat complicated case of a negated I-sentence. Our English argu-
ment can thus be symbolized as the following argument of PL:

∼ (∃x)[Fxd & (∃y)(Ry & Sxy)]
Ssb & Rb
∼ Fsd

The techniques presented in subsequent chapters can be used to show that this
is a valid argument of PL.

We know that the negation of an I-sentence is equivalent to the cor-
responding E-sentence. This suggests that there is an alternative but equally
correct symbolization of the fi rst premise of our argument that has the form
(∀x)(P ⊃ ∼ Q), and there is. We can alternatively paraphrase the argument’s
fi rst premise as

Each x is such that [if x is a friend of David’s then it is not the case
that there is a y such that (y is a Republican and x supports y)].

ber38413_ch07_262-328.indd Page 303 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 303 12/4/12 1:19 PM F-400F-400

304 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Our symbolization of this paraphrase is

(∀x)[Fxd ⊃ ∼ (∃y)(Ry & Sxy)]

Here is a somewhat more interesting, and convoluted, argument:

Anyone who is proud of anyone is proud of Samantha. Rhoda isn’t proud
of anyone who’s proud of him- or herself, but she is proud of everyone
who has mastered calculus. Therefore if Art has mastered calculus, Sa-
mantha isn’t proud of herself.

We will use the following symbolization key:

 UD: The set of students in Samantha’s class
 Pxy: x is proud of y
 Mx: x has mastered calculus
 a: Art
 r: Rhoda
 s: Samantha

The fi rst premise can be paraphrased as

Each x is such that [if there is a y such that x is proud of y then x is proud
of Samantha]

and can be symbolized as

(∀x)[(∃y)Pxy ⊃ Pxs]

The second premise of our argument is a conjunction. The fi rst conjunct is

Rhoda isn’t proud of anyone who’s proud of him- or herself.

Although the quantity expression ‘anyone’ does not occur at the beginning of
this sentence, it is clear that the sentence is saying something about anyone
who is proud of him- or herself. And ‘anyone’ in this sentence will go over to
a universal quantifi er in our symbolic sentence, for the sentence says something
about all those individuals in Samantha’s class who are proud of themselves.
Our paraphrase is

Each x is such that (if x is proud of x then it is not the case that
Rhoda is proud of x).

The second conjunct of the second premise is

she (Rhoda) is proud of everyone who has mastered calculus

ber38413_ch07_262-328.indd Page 304 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 304 12/4/12 1:19 PM F-400F-400

7.4 SYMBOLIZATION FINE-TUNED 305

This is a claim about everyone in Samantha’s class who has mastered calculus.
Our paraphrase is

Each x is such that (if x has mastered calculus then Rhoda is proud of x).

Our symbolization of the entire second premise is thus

(∀x)(Pxx ⊃ ∼ Prx) & (∀x)(Mx ⊃ Prx)

The conclusion, ‘If Art has mastered calculus, Samantha isn’t proud of herself’
is a simple truth-functional claim and can be symbolized as

Ma ⊃ ∼ Pss

Our complete argument of PL is therefore

(∀x)[(∃ y)Pxy ⊃ Pxs]
(∀x)(Pxx ⊃ ∼ Prx) & (∀x)(Mx ⊃ Prx)
Ma ⊃ ∼ Pss

Techniques developed in subsequent chapters can be used to show that this is
a valid argument of PL.

We will next paraphrase and symbolize a number of sentences about
the positive integers. We will paraphrase each sentence before we symbolize
it, and we will classify our paraphrases and symbolizations according to the
Aristotelian classifi cation system introduced at the end of the last section. But
our classifi cation is arbitrary in the sense that, as the square of opposition illus-
trates, an English sentence that can be symbolized as an A-sentence can also be
symbolized as the negation of an O-sentence, one that can be symbolized as an
E-sentence can also be symbolized as the negation of an I-sentence, and so on.
Some readers will fi nd identifying sentences in terms of the Aristotelian classifi -
cation system useful; others will not. We will use the following symbolization key:

 UD: The set of positive integers
 Px: x is prime
 Ex: x is even
 Ox: x is odd
 Gxy: x is greater than y
 Dxy: x is evenly divisible by y
 Sxyz: x is the sum of y and z
 Txyz: x is the product of y and z
 a: 1
 b: 2

• Not every positive integer is prime.
 Negation of an A-sentence

ber38413_ch07_262-328.indd Page 305 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 305 12/4/12 1:19 PM F-400F-400

306 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

It is not the case that each x is such that x is prime.

∼ (∀x)Px

• Every prime greater than 2 is odd.
 A-sentence

Each x is such that [(if x is prime and x is greater than 2) then x is
odd].

(∀x)[(Px & Gxb) ⊃ Ox]

• The sum of two primes each of which is greater than 2 is even.
 A-sentence

Each x, each y, and each z are such that if [([(x is prime and y is prime)
and (x is greater than 2 and y is greater than 2)] and z is the sum of x
and y) then z is even].

(∀x)(∀y)(∀z)[([(Px & Py) & (Gxb & Gyb)] & Szxy) ⊃ Ez]

• The sum of 2 and a prime greater than 2 is odd.
 A-sentence

Each x and each y are such that if ([(x is prime and x is greater than 2)
and y is the sum of 2 and x] then y is odd).

(∀x)(∀y)([(Px & Gxb) & Sybx] ⊃ Oy)

• No product of primes is a prime.
 Negation of an I-sentence

It is not the case that there is an x and a y and a z such that [(x is prime
and y is prime) and (z is the product of x and y and z is prime)].

∼ (∃x)(∃y)(∃z)[(Px & Py) & (Tzxy & Pz)]

• No product of a prime and a non-prime greater than 1 is prime.
 Negation of an I-sentence

It is not the case that there is an x and a y and a z such that [(x is prime
and it is not the case that y is prime) and [(y is greater than 1 and (z is
the product of x and y and z is prime)]].

∼ (∃x)(∃y)(∃z)[(Px & ∼ Py) & [Gya & (Tzxy & Pz)]]

• No prime greater than 2 is evenly divisible by 2.
 Negation of an I-sentence

ber38413_ch07_262-328.indd Page 306 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 306 12/4/12 1:19 PM F-400F-400

7.4 SYMBOLIZATION FINE-TUNED 307

It is not the case that there is a y such that [(y is prime and y is greater
than 2) and y is evenly divisible by 2].

∼ (∃y)[(Py & Gyb) & Dyb]

• No prime greater than 2 is evenly divisible by an even number.
 E-sentence

Each w is such that [if (w is prime and w is greater than 2) then it is not
the case that there is a z such that (z is even and w is evenly divisible by z)].

(∀w)[(Pw & Gwb) ⊃ ∼ (∃z)(Ez & Dwz)].

• There are pairs of primes whose sum is prime.
 I-sentence

There is an x and a y and a z such that [(x is prime and y is prime) and
(z is the sum of x and y and z is prime)].

(∃x)(∃y)(∃z)[(Px & Py) & (Szxy & Pz)]

The last group of sentences we symbolize are more complex than those we
have so far dealt with, and the last of these is very complex. We will use the
symbolization key:

 UD: The set of all books and all people
 Uxy: x understands y
 Lxy: x likes y
 Axy: x admires y
 Rxy: x reads y
 Lx: x is a logician
 Px: x is a person
 p: Principia Mathematica
 a: Alice in Wonderland
 g: Green Eggs and Ham

We note that the universe of discourse does not consist exclusively of people.
This means that when we want to say something about people we will have to
use the predicate ‘Px’ to distinguish them from other members of the UD.

Our fi rst example can be symbolized as an I-sentence; our second exam-
ple can be symbolized as the conjunction of two I-sentences:

• Someone understands Principia Mathematica and Alice in Wonderland.

There is an x such that [x is a person and (x understands Principia Math-
ematica and x understands Alice in Wonderland)].

(∃x)[Px & (Uxp & Uxa)]

ber38413_ch07_262-328.indd Page 307 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 307 12/4/12 1:19 PM F-400F-400

308 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

• Someone understands Principia Mathematica and someone under-
stands Alice in Wonderland.

There is an x such that (x is a person and x understands Principia Math-
ematica) and there is an x such that (x is a person and x understands Alice
in Wonderland).

(∃x)(Px & Uxp) & (∃x)(Px & Uxa)

The difference between the two sentences we have just paraphrased and sym-
bolized is that the fi rst says that there is some one person who understands
both the books in question. The second sentence says only that there is some-
one who understands Principia Mathematica and that there is someone who
understands Alice in Wonderland. It does not say whether these are one and the
same person.

The third example can be symbolized as an A-sentence, and the fourth
as the negation of an I-sentence:

• Everyone who reads Green Eggs and Ham both understands it and
likes it.

Each y is such that [if (y is a person and y reads Green Eggs and Ham) then
(y is understands Green Eggs and Ham and y likes Green Eggs and Ham)].

(∀y)[(Py & Ryg) ⊃ (Uyg & Lyg)]

• No one who reads Principia Mathematica either understands it or likes it.

It is not the case that there is a w such that [(w is a person and w reads
Principia Mathematica) & (w understands Principia Mathematica or w likes
Principia Mathematica)].

∼ (∃w)[(Pw & Rwp) & (Uwp ∨ Lwp)]

Our fi fth example can be symbolized as an E-sentence and our sixth example
as an A-sentence:

• Anyone who reads Green Eggs and Ham and likes it doesn’t
 understand anyone who reads it and doesn’t like it.

Each z is such that if ([z is a person and (z reads Green Eggs and Ham and
z likes Green Eggs and Ham)] then it is not the case that there is a w such
that ([(w is a person and w reads Green Eggs and Ham) and it is not the
case that w likes Green Eggs and Ham] and z understands w)]).

(∀z)([Pz & (Rzg & Lzg)] ⊃ ∼ (∃w)([(Pw & Rwg) & ∼ Lwg] & Uzw))

ber38413_ch07_262-328.indd Page 308 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 308 12/4/12 1:19 PM F-400F-400

7.4 SYMBOLIZATION FINE-TUNED 309

• Anyone who understands both Principia Mathematica and Alice in
 Wonderland is admired by every logician.

Each x is such that if ([x is a person and (x understands Principia Math-
ematica and x understands Alice in Wonderland) then each y is such that (if
y is a logician then y admires x))

(∀x)([Px & (Uxp & Uxa)] ⊃ (∀y)(Ly ⊃ Ayx))

Our seventh example can be paraphrased and symbolized as the negation of
an I-sentence:

• No one who is not a logician understands either Principia Mathematica
or Alice in Wonderland.

It is not the case that there is an x such that [x is a person and it is not
the case that x is a logician and (x understands Principia Mathematica or
x understands Alice in Wonderland)].

∼ (∃x)[(Px & ∼ Lx) & (Uxp ∨ Uxa)]

We can symbolize our eighth example as a conjunction of an O-sentence and
the negation of an O-sentence:

• There are logicians who understand but do not like Principia
 Mathematica but there are no logicians who understand but do
not like Alice in Wonderland.

There is a z such that [(z is a logician and z understands Principia
 MathematicaI) and it is not the case that z likes Principia Mathematica] and it
is not the case that there is a y such that [(y is a logician and y understands
Alice in Wonderland) and it is not the case that y likes Alice in Wonderland]

(∃z)[Lz & (Uzp & ∼ Lza)] & ∼ (∃y)[Ly & (Uya & ∼ Lya)]

We can symbolize our last example as a conjunction whose left conjunct is a
negation of an A-sentence and whose right conjunct is an A-sentence.

• Not everyone admires those who understand Principia Mathematica, but
those who do also admire those who understand Alice in Wonderland.

It is not the case that each w is such that [if w is a person then each z is
such that (if (z is a person and z understands Principia Mathematica) then
w admires z)] and each x is such that [if [x is a person and each y is such

ber38413_ch07_262-328.indd Page 309 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 309 12/4/12 1:19 PM F-400F-400

310 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

that [if (y is a person and y understands Principia Mathematica) then x
admires y]] then each z is such that [if (z is a person and z understands
Alice in Wonderland) then x admires z]].

∼ (∀w)[Pw ⊃ (∀z)((Pz & Uzp) ⊃ Awz)] & (∀x)[[Px & (∀y)
[(Py & Uyp) ⊃ Axy]] ⊃ (∀z)[(Pz & Uza) ⊃ Pxz]]

 7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED)

The language PLE is an expansion of PL and as such includes all the vocabulary
of PL. In addition, PLE includes a two-place predicate that is defi ned as the
identity predicate, and functors (used to express functions).

Our standard reading of ‘some’ is ‘at least one’. Some may object that
this is not an accurate reading, that ‘some’ sometimes means something like
‘at least two’. It is alleged, for example, that to say

There are still some apples in the basket

when there is only one apple in the basket is at best misleading and at worst false.
In any event we clearly do want a means of symbolizing such claims as

There are at least two apples in the basket.

We can do this by interpreting one of the two-place predicates of PL as express-
ing the identity relation. For example, we could interpret ‘Ixy’ as ‘x is identical
with y’. Given the symbolization key

 UD: The set of items in a basket of fruit
 Nxy: x is in y
 Ixy: x is identical with y
 Ax: x is an apple
 b: the basket

both

(∃x)(Ax & Nxb)

and

(∃x)[(Ax & Nxb) & (∃y)(Ay & Nyb)]

say ‘There is at least one apple in the basket’. The latter merely says it twice.
But

(∃x)(∃y)([(Ax & Ay) & (Nxb & Nyb)] & ∼ Ixy)

ber38413_ch07_262-328.indd Page 310 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 310 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 311

does say ‘There are at least two apples in the basket’. This sentence of PL can be
paraphrased as ‘There is an x and there is a y such that ([(x is an apple and y is
an apple) and (x is in the basket and y is in the basket)] and it is not the case that
x is identical to y)’. This last clause is not redundant because using different vari-
ables does not commit us to there being more than one thing of the specifi ed sort.

THE IDENTITY PREDICATE

An alternative to interpreting one of the two-place predicates of PL as expressing
identity is to introduce a special two-place predicate and specify that it always be
interpreted as expressing the identity relation. This is the course we shall follow.
In adding this predicate to PL, we generate a new language, PLE. As an extension
of PL, it includes all the vocabulary of PL and an additional two-place predicate.
PLE also includes, as we detail later in this section, functors (used to express func-
tions). The formulas and sentences of PL are also formulas and sentences of PLE.

The new two-place predicate that is distinctive of PLE is the identity
predicate,

��

When using this predicate we shall, as we have been doing with other predicates,
omit the two primes as the number of individual terms used (two) will show that
this is a two-place predicate. This predicate is always interpreted as the identity
predicate. For example, ‘� ab’ says that a is identical to b. However, it is customary
to write, informally, ‘a � b’, rather than ‘� ab’—that is to place one individual
term before the predicate and one after it—and we shall follow this custom.

So, instead of ‘� ab’, ‘ � xy’, and ‘ � aa’, we write ‘a � b’, ‘x � y’,
and ‘a � a’. And in place of, for example, ‘∼ � ab’, we write ‘∼ a � b’. Since
the interpretation of ‘�’ is fi xed, we never have to include an interpretation
of this predicate in a symbolization key.

We can now symbolize ‘There are at least two apples in the basket’
in PLE, using the preceding symbolization key (but dispensing with the now
superfl uous ‘Ixy’), as

(∃x)(∃y)([(Ax & Ay) & (Nxb & Nyb)] & ∼ x � y)

In PLE we can also say that there are just so many apples in the basket
and no more—for example, that there is exactly one apple in the basket. An
appropriate paraphrase is

There is a y such that [(y is an apple and y is in the basket) and each thing z
is such that [(if z is an apple and z is in the basket) then z is identical to y]].

A full symbolization is

(∃y)[(Ay & Nyb) & (∀z)[(Az & Nzb) ⊃ z � y]]

ber38413_ch07_262-328.indd Page 311 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 311 12/4/12 1:19 PM F-400F-400

312 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

What we are saying is that there is at least one apple in the basket and that
anything that is an apple and is in the basket is that very apple.

Consider next

Henry hasn’t read Alice in Wonderland but everyone else in the class has.

If we limit our universe of discourse to the students in the class in question,
let ‘h’ designate Henry, and interpret ‘Ax’ as ‘x has read Alice in Wonderland’,
we can symbolize this claim as

∼ Ah & (∀y)[∼ y � h ⊃ Ay]

And, using ‘b’ to designate Bob, we can symbolize ‘Only Henry and Bob have
not read Alice in Wonderland’, as

∼ (Ah ∨ Ab) & (∀x)[∼ (x � h ∨ x � b) ⊃ Ax]

This says that neither Henry nor Bob has read Alice in Wonderland and that eve-
ryone else—that is, each person in the class who is neither identical to Henry
nor identical to Bob—has read it.

We can also use the identity predicate to symbolize the following sen-
tences of PLE:

1. There are apples and pears in the basket.
2. The only pear in the basket is rotten.
3. There are at least two apples in the basket.
4. There are two (and only two) apples in the basket.
5. There are no more than two pears in the basket.
6. There are at least three apples in the basket.

 UD: The set of items in a fruit bowl
 Ax: x is an apple
 Nxy: x is in y
 Px: x is a pear
 Rx: x is rotten
 b: the basket

We can recast sentence 1 as ‘There is at least one apple and at least one pear
in the basket’, and symbolize it without using the identity predicate:

(∃x)(∃y)[(Ax & Py) & (Nxb & Nyb)]

However, if we take sentence 1 to assert that there are at least two apples and
at least two pears in the basket, we do need the identity predicate:

(∃x)(∃y)[((Ax & Ay) & (Nxb & Nyb)) & ∼ x � y] &
(∃x)(∃y)[((Px & Py) & (Nxb & Nyb)) & ∼ x � y]

ber38413_ch07_262-328.indd Page 312 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 312 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 313

Sentence 2 says that there is one and only one pear in the basket and that that
one pear is rotten:

(∃x)[((Px & Nxb) & Rx) & (∀y)[(Py & Nyb) ⊃ y � x]]

Sentence 3 says only that there are at least two apples in the basket, not that
there are exactly two. Hence

(∃x)(∃y)[((Ax & Ay) & (Nxb & Nyb)) & ∼ x � y]

To symbolize sentence 4 we start with the symbolization for sentence 3 and add
a clause saying there are no additional apples in the basket:

(∃x)(∃y)([((Ax & Ay) & (Nxb & Nyb)) & ∼ x � y] &
(∀z)[(Az & Nzb) ⊃ (z � x ∨ z � y)])

The added clause says, in effect, ‘and anything that is an apple and is in the
basket is either x or y’. Sentence 5 does not say that there are two pears in the
basket; rather, it says that there are at most two pears in the basket. We can
express this in PLE by saying that of any pears, x, y, and z that are in the basket
these are really at most two; that is, either x is identical to y, or x is identical
to z, or y is identical to z. In other words

(∀x)(∀y)(∀z)[([(Px & Py) & Pz] & [(Nxb & Nyb) & Nzb]) ⊃
((x � y ∨ x � z) ∨ y � z)]

Finally sentence 6 can be symbolized by building on the symbolization for
sentence 3:

(∃x)(∃y)(∃z)(([(Ax & Ay) & Az] & [(Nxb & Nyb) & Nzb]) &
[(∼ x � y & ∼ y � z) & ∼ x � z)]

We now return to our discussion of positive integers. This time we will
use this symbolization key for the sentences that follow.

 UD: The set of positive integers
 Bxyz: x is between y and z
 Lxy: x is larger than y
 Sxy: x is a successor of y
 Ex: x is even
 Px: x is prime
 a: 1
 b: 2
 c: 10
 d: 14

ber38413_ch07_262-328.indd Page 313 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 313 12/4/12 1:19 PM F-400F-400

314 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

1. There is no largest positive integer.
2. There is a unique smallest positive integer.
3. 2 is the only even prime.
4. Every positive integer has exactly one successor.
5. 2 is the only prime whose successor is prime.

As we saw in our earlier discussion, we can symbolize sentence 1 without using
the identity predicate, for to say that there is no largest positive integer it
suffi ces to say that for every integer there is a larger integer (no matter what
integer one might pick, there is an integer larger than it):

(∀x)(∃y)Lyx

It is also tempting to symbolize sentence 2 without using the identity predicate,
for to say that there is a smallest positive integer seems to be to say that there
is an integer that is not larger than any integer:

(∃x) ∼ (∃y)Lxy

But while the foregoing does say that there is a smallest positive integer, it
does not say that there is a unique such integer. So a better symbolization is

(∃x)(∀y)(∼ y � x ⊃ Lyx)

This sentence of PL says that there is an integer such that every integer not
identical to it is larger than it. This does imply uniqueness.

Sentence 3, ‘2 is the only even prime’, says that 2 is prime and is even
and that all other primes are not even:

2 is prime and 2 is even, and each z is such that if z is prime and z is not
identical with 2 then z is not even.

In PLE

(Pb & Eb) & (∀z)[(Pz & ∼ z � b) ⊃ ∼ Ez]

This is equivalent to

(Pb & Eb) & (∀z)[(Pz & Ez) ⊃ z � b]

Notice that we could equally well have paraphrased and symbolized sentence
3 as

2 is prime and 2 is even, and it is not the case that there is a z such that z
is prime and z is even, and z is not identical with 2

ber38413_ch07_262-328.indd Page 314 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 314 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 315

and symbolized this claim as

(Pb & Eb) & ∼ (∃z)[(Pz & Ez) & ∼ z � b]

Notice, too, that all three symbolic versions of sentence 3 are truth-functional
compounds, not quantifi ed sentences.

Sentence 4, ‘Every positive integer has exactly one successor’, can be
symbolized as

(∀x)(∃y)[Syx & (∀z)(Szx ⊃ z � y)]

This says that each positive integer x has a successor y and that any integer
that is a successor of x is identical to y—that is, that each positive integer has
exactly one successor.

Sentence 5, ‘2 is the only prime whose (only) successor is prime’, can
be paraphrased as a conjunction:

(2 is prime and there is an x such that [(x is the successor of 2 and each
y is such that (if y is the successor of 2 then y � x)) and x is prime]) and
each x and each y are such that [(if x is the successor of y and (y is prime
and it is not the case that y � b)) then it is not the case that x is prime]

The fi rst conjunct can be symbolized as

Pb & (∃x)[(Sxb & (∀y)(Syb ⊃ y � x)) & Px]

The second conjunct can be symbolized as

(∀x)(∀y)[(Sxy & (Py & ∼ y � b)) ⊃ ∼ Px]

Putting these together we obtain

(Pb & (∃x)[(Sxb & (∀y)(Syb ⊃ y � x)) & Px]) & (∀x)(∀y)
[(Sxy & (Py & ∼ y � b)) ⊃ ∼ Px]

DEFINITE DESCRIPTIONS

In Section 7.1 we discussed three kinds of singular terms of English: proper names,
pronouns, and defi nite descriptions. We subsequently noted that individual con-
stants of PL can be used analogously to singular terms of English that do refer. But
following this practice means that the internal structure of defi nite descriptions is
not represented in PL. Consider, by way of illustration, this argument:

The Roman general who defeated Pompey invaded both Gaul and
 Germany. Therefore Pompey was defeated by someone who invaded
both Gaul and Germany.

ber38413_ch07_262-328.indd Page 315 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 315 12/4/12 1:19 PM F-400F-400

316 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

This is fairly obviously a valid argument. But its symbolization in PL is not valid:

 UD: The set of persons and countries
 Ixy: x invaded y
 Dxy: x defeated y
 r: The Roman general who defeated Pompey
 p: Pompey
 g: Gaul
 e: Germany

Treating ‘The Roman general who defeated Pompey’ as an unanalyzable unit,
to be symbolized by ‘r,’ and paraphrasing the conclusion as ‘There is an x such
that [x defeated Pompey and (x invaded Gaul and x invaded Germany)]’ yields
the following symbolization:

Irg & Ire
(∃x)[Dxp & (Ixg & Ixe)]

The techniques we develop for testing arguments of PL will show that this argu-
ment of PL is invalid. This should not be surprising, for the premise tells us only
that the thing designated by ‘r’ invaded both Gaul and Germany; it does not
tell us that that thing is a thing that defeated Pompey, as the conclusion claims.

By using the identity predicate we can capture the structure of defi -
nite descriptions within PLE. Suppose we paraphrase the fi rst premise of the
preceding argument as

There is an x such that [[(x is a Roman general and x defeated Pompey)
and each y is such that [if (y is a Roman general and y defeated Pompey)
then y � x]] and (x invaded Gaul and x invaded Germany)].

Defi nite descriptions are, after all, descriptions that purport to specify condi-
tions that are satisfi ed by exactly one thing. Using our current symbolization
key, plus ‘Rx’ for ‘x is a Roman general’, we can symbolize the fi rst premise as

(∃x)[[(Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y � x]] & (Ixg & Ixe)]

We shall later show that in PLE the conclusion ‘(∃x)[Dxp & (Ixg & Ixe)]’ does
follow from this premise.

By transforming defi nite descriptions into unique existence claims, that
is, claims that there is exactly one object of such-and-such a sort, we gain the
further benefi t of being able to symbolize English language defi nite descriptions
that may, in fact, not designate anything. For example, taking the UD to be per-
sons and using ‘Dxy’ for ‘x is a daughter of y’, ‘Bx’ for ‘x is a biochemist’, and ‘j’
to designate John, we might symbolize ‘John’s only daughter is a biochemist’ as

(∃x)[(Dxj & (∀y)(Dyj ⊃ y � x)) & Bx]

ber38413_ch07_262-328.indd Page 316 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 316 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 317

If it turns out that John has no, or more than one, daughter, or that his only
daughter is not a biochemist, the above sentence of PLE will be false, not
meaningless or truth-valueless. This is an acceptable result.

PROPERTIES OF RELATIONS

Identity is a relation with three rather special properties. First, identity is a
transitive relation. That is, if an object x is identical with an object y, and y is
identical with an object z, then x is identical with z. The following sentence of
PLE says, in effect, that identity is transitive:

(∀x)(∀y)(∀z)[(x � y & y � z) ⊃ x � z]

Many relations other than identity are also transitive relations. The predicates

x is larger than y
x is taller than y
x is an ancestor of y
x is heavier than y
x occurs before y

all express transitive relations. But, ‘x is a friend of y’ does not represent a
transitive relation. That is, ‘Any friend of a friend of mine is a friend of mine’
is a substantive claim, and one that is generally false. Where x, y, and z are all
variables of PL or PLE and A is a two-place predicate of PL or PLE, the follow-
ing says that A expresses a transitive relation:

(∀x)(∀y)(∀z)[(Axy & Ayz) ⊃ Axz]

Identity is also a symmetric relation; that is, if an object x is identical
with an object y, then y is identical with x. The following says that A is a sym-
metric relation:

(∀x)(∀y)(Axy ⊃ Ayx)

The following predicates also express symmetric relations:

x is a sibling of y
x is a classmate of y
x is a relative of y
x has the same father as does y

Note that neither ‘x is a sister of y’ nor ‘x loves y’ expresses a symmetric rela-
tion. Jane Fonda is a sister of Peter Fonda, but Peter Fonda is not a sister of

ber38413_ch07_262-328.indd Page 317 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 317 12/4/12 1:19 PM F-400F-400

318 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Jane Fonda. And, alas, it may be that Manfred loves Hildegard even though
Hildegard does not love Manfred.

A relation is refl exive if and only if each object stands in that relation
to itself. In PL and PLE the following says that A expresses a refl exive relation:

(∀x)Axx

Identity is a refl exive relation. In an unrestricted UD it is rather hard to fi nd
other refl exive relations. For example, a little thought should show that none
of the following expresses a refl exive relation in an unrestricted universe of
discourse:

x is the same age as y
x is the same height as y
x is in the same place as y

Since the number 48 is not of any age, it is not the same age as itself nor the
same height as itself. Numbers have neither age nor height, though inscriptions
of numerals usually have both. So, too, neither the number 93 nor the set of
human beings is in any place. Numbers and sets do not have spatial positions;
hence neither is in the same place as itself. However, the relations just discussed
are refl exive relations in suitably restricted universes of discourse. For example,
if the universe of discourse consists exclusively of people, then

x is the same age as y

expresses a refl exive relation (it is also transitive and symmetric). Every person is
the same age as him- or herself. In this restricted universe ‘x is the same height
as y’ and ‘x is in the same place as y’ also represent refl exive relations. Each
person is the same height as him- or herself and is in the same place as him- or
herself. And, if the universe of discourse is restricted to the positive integers, then

x is evenly divisible by y

expresses a refl exive relation, for every positive integer is evenly divisible by
itself. This relation is not symmetric (not every positive integer evenly divides
all the positive integers it is evenly divisible by). However, ‘x is evenly divisible
by y’ does express a transitive relation.

FUNCTIONS

A function is an operation that takes one or more element of a set as argu-
ments and returns a single value. Addition, subtraction, multiplication, square,
and successor are all common functions of arithmetic. Each returns, for each
number or pair of numbers, a single value. Addition takes a pair of numbers

ber38413_ch07_262-328.indd Page 318 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 318 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 319

as arguments and returns their sum; multiplication takes a pair of numbers and
returns the product of those numbers; subtraction returns, for each pair of num-
bers, the fi rst number minus the second. The square function returns, for each
number, the result of multiplying that number by itself; the successor function
returns, for any positive integer n, the integer n � 1.

Not all functions are arithmetic functions. We have already encoun-
tered truth-functions—functions that map values from the set consisting of the
truth-values (the set {T, F}) to truth-values. Negation is a function of one argu-
ment that returns F when given T as an argument and returns T when given F
as an argument. Conjunction, disjunction, the material conditional, and the material
biconditional are all functions that take two arguments (two truth-values) and
return a single truth-value. Characteristic truth-tables display the value of each
of these functions for each pair of truth-values.

Functions are also found outside of formal logic and mathematics. Con-
sider a set of monogamously married individuals.7 Here spouse is a function that
takes a single member of the set as an argument and returns that person’s spouse
as its value. For the set of all twins, the function twin returns, for each member of
the set, that member’s twin. In PLE we shall use lowercase italicized Roman letters
a–z, with or without a positive-integer subscript, followed by one or more prime
marks to symbolize functions. We call these symbols functors. Where n is the
number of prime marks after the functor, the function assigned to the functor
takes n arguments. For example, in talking about the set of positive integers, we
might assign the successor function to the functor f.8 We specify this assignment
in a symbolization key much the way we have been assigning interpretations to
predicates. The following symbolization key assigns the successor function to f �:

 UD: The set of positive integers
 f �(x): the successor of x
 Ex: x is even
 Ox: x is odd
 a: 2
 b: 3

The variable x in parentheses indicates that we are assigning to f � a function
that takes a single argument. The expression to the right of the colon assigns
the successor function to f �. Given the above symbolization key,

Ob

says 3 is odd. The sentence

Of �(a)

7The example is from Geoffrey Hunter, Metalogic: An Introduction to the Metatheory of Standard First Order Logic,
Paperback ed. (Berkeley: University of California Press, 1996).
8It is customary to use, where only a few functors are needed, the letters ‘f �, ‘g’, ‘h’, . . . We will follow this custom.

ber38413_ch07_262-328.indd Page 319 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 319 12/4/12 1:19 PM F-400F-400

320 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

says the successor of 2, which is 3, is odd. Both claims are, of course, true. And

f �(a) � b

says the successor of 2 is 3, which it is. Similarly,

(∃x)Of �(x) & (∃x)Ef �(x)

says there is a positive integer whose successor is odd and there is a positive
integer whose successor is even. We can also use the symbolization key to sym-
bolize ‘The successor of an even number is odd’. A fi rst step is the quasi-English

(∀x)(Ex ⊃ the successor of x is odd)

The successor of x is f �(x), so the full symbolization is

(∀x)(Ex ⊃ Of �(x))

We can add the following to our symbolization key

h�(x,y): the sum of x and y

and symbolize ‘The sum of an even number and an odd number is odd’ as

(∀x)(∀y)[(Ex & Oy) ⊃ Oh�(x,y)]

Since the number of distinct individual terms occurring within the parentheses
after a functor indicates how many arguments the function assigned to that
functor takes, we can informally omit the primes that offi cially follow functors,
just as we do for predicate letters. Hereafter we will do so.

Returning to our example of the set of twins, we can use the following
symbolization key

 UD: The set of all twins
 f(x): the twin of x
 c: Cathy
 h: Henry
 j: Jose
 s: Simone

to symbolize

Simone is Henry’s twin
as

s � f(h)

ber38413_ch07_262-328.indd Page 320 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 320 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 321

and

Jose is Cathy’s twin

as

j � f(c)

Using ‘Bx’ for ‘x is bald’, we can symbolize ‘A twin is bald if and only if her
or his twin is bald’ as

(∀x)[Bx ≡ Bf(x)]

and ‘Some bald twins have twins that are not bald’ as

(∃x)[Bx & ∼ Bf(x)]

The symbolization

(∀x)(∀y)[(∃z)(z � f(x) & z � f(y)) ⊃ x � y]

says, in quasi-English, ‘Any members of the UD x and y who are such that if
there is a z who is both a twin of x and a twin of y then x and y are identical’,
or ‘No one is a twin of two different twins’.

We require that the functions we symbolize with functors have the
 following characteristics:

1. An n-place function must yield one and only one value for each
n-tuple of arguments.9

2. The value of a function for an n-tuple of members of a UD must be a
member of that UD.

If the UD is the set of integers, the square root operation does not meet
condition 1 because it can yield more than one value for its arguments (there are
two square roots of 4, 2 and �2.). (It also fails to meet condition 2 because not
all square roots of integers are integers.) If the UD is the set of positive integers,
the subtraction function does not meet condition 2, because when y is greater
than x, x minus y yields a value that is not a positive integer (3 minus 9 is �6, and
�6 is not a positive integer). Subtraction does meet condition 2 when the UD is
the set of all integers—positive, zero, and negative. If the UD is the set of positive
integers, division also fails to meet condition 2 (3 divided by 9 yields 1/3, which
is not a positive integer). Division does meet condition 2 when the UD is the set
of positive rational numbers (positive integers plus numbers expressible as the
ratio between positive integers). Finally division does not meet condition 1 when
the UD is the set of all integers because it is undefi ned when the divisor is zero.

9An n-tuple is an ordered set containing n members.

ber38413_ch07_262-328.indd Page 321 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 321 12/4/12 1:19 PM F-400F-400

322 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

As we have just seen, functors can be used to generate a new kind of
individual term (in addition to the individual constants and variables of PL).
We call these new terms complex terms. Complex terms are of the form

f(t1, t2, . . . tn)

where f is an n-place functor and t1, t2, . . . tn are individual terms. Further
examples of complex terms include

f(a,b)
h(a,b,c)
g(a)
f(b,b)
f(x,y)
f(a,y)
f(y,a)
g(x)
f(g(a),b)
f(a,g(x))

Complex terms are complex in that they are always formed from a functor
and at least one individual term. Some complex terms contain variables, and
some do not. We call individual terms that do not contain variables closed
terms, and those that do open terms. This makes both individual constants and
complex terms that contain no variables closed terms. Complex terms that do
contain at least one variable, as well as variables themselves, are open terms.
Individual terms that are not complex terms (the individual constants and indi-
vidual variables) are simple individual terms. In the above list, the fi rst four
complex terms are closed, the next four open, the ninth closed, and the last
open. Note the last two examples. In each, one of the individual terms from
which the example is built is itself a complex term. This is wholly in order, as
complex terms are individual terms and can occur anywhere a constant can
occur. The kinds of individual terms included in PLE are summarized in the
following table:

INDIVIDUAL TERMS OF PLE

 Open Closed

Simple Individual variables Individual constants

Complex Individual term formed from a
functor and at least one individual
variable—for example, f(x),
f(a,x), g(f(a),y), g(h(x,y),a)

Individual term formed from
a functor and containing no
individual variable—for example,
f(a), g(a,b), f(g(a,f(a,c)))

ber38413_ch07_262-328.indd Page 322 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 322 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 323

All of the following are formulas of PLE:

Faf(x)
Ff(x)a
Ff(a)b
(∀x)Faf(x)
(∀x)(∃y)Fxf(y)

In each of these examples ‘F’ is a two-place predicate. The fi rst and second are
formulas of PLE but are not sentences (because the x in ‘f(x)’ is not bound).
The third, fourth, and fi fth examples are all both formulas and sentences of
PLE. The third says that f(a) bears the relation F to b. The fourth says that
each thing x in the UD is such that a bears the relation F to f(x), that is, to
the value of the function f as applied to x. The fi fth says that each thing x in
the UD is such that there is a thing y such that x bears the relation F to f(y).
Every example contains a complex individual term, and all but the third an
open complex individual term.

Consider this symbolization key:

 UD: The set of positive integers
 Ox: x is odd
 Ex: x is even
 Px: x is prime
 Gxy: x is greater than y
 h(x,y): the sum of x and y
 f(x): the successor of x
 a: 1
 b: 2

The sentence

(∀x)[Ex ⊃ Of(x)]

says, truly, that each positive integer is such that if it is even then its successor
is odd. And

(∀x)[Ex ⊃ Ef(f(x))]

says, truly, that each positive integer is such that if it is even then the successor
of its successor is also even. The sentence

(∀x)(∀y)[(Ex & Ey) ⊃ Eh(x,y)]

can be read in quasi-English as ‘Each x and each y are such that [if (x is even
and y is even) then the sum of x and y is even]. This is, of course, true.

ber38413_ch07_262-328.indd Page 323 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 323 12/4/12 1:19 PM F-400F-400

324 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

Here are further sentences of PLE that can be read in English using
the above symbolization key. The sentence

(∀x)(∀y)[Gh(x,y)x & Gh(x,y)y]

says that for any positive integers x and y the sum of x and y is greater than x,
and the sum of x and y is greater than y. This is true. The sentence

(∃x)Gxh(a,b)

says that there is a positive integer, x, that is greater than the sum of 1 and
2—that is, there is a positive integer that is greater than 3. This is also true.
The sentence

(∀x)(∀y)[(Ex & Oy) ⊃ Oh(x,y)]

says that, for any pair of positive integers x and y, if the fi rst is even and
the second is odd, then their sum is odd. This is true as well. Finally the
sentence

(∀x)(∀y)[Ph(x,y) ⊃ ∼ (Px & Py)]

says that, for any pair of positive integers, if their sum is prime then it is not
the case that they are both prime, or, in other words, that there are no prime
numbers x and y such that their sum is also prime. This sentence is false; 2
and 3 are both prime, and so is their sum, 5.

THE SYNTAX OF PLE

In addition to the vocabulary of PL, the vocabulary of PLE also includes

��: The two-place identity predicate (fi xed interpretation)
Functors of PLE: Lowercase italicized Roman letters a, b, c, . . . , with
or without a numeric subscript, followed by n primes.
Individual terms of PLE:

 Individual constants are individual terms of PLE

 Individual variables are individual terms of PLE

 Expressions of the form f(t1, t2, . . . tn), where f is an n-place
 functor and t1, t2, . . . , tn are individual terms of PLE

We can classify the individual terms of PLE as follows:

Simple terms of PLE: The individual constants and individual variables
of PLE

ber38413_ch07_262-328.indd Page 324 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 324 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 325

Complex terms of PLE: Individual terms of the form f(t1, t2, . . . , tn), where
f is an n-place functor
Closed individual term: An individual term in which no variable occurs
Open individual term: An individual term in which at least one variable
occurs

Individual variables and functors that contain at least one individual variable
are thus open terms. Individual constants and functors that contain no variables
are thus closed terms.

In PLE a substitution instance is defi ned as follows:

Substitution instance of P: If P is a sentence of PLE of the form
(∀x)Q or (∃x)Q and t is a closed individual term, then Q(t/x) is a
 substitution instance of P. The individual term t is the instantiating
individual term.

Note that every substitution instance of a sentence of PL is also a substitution
instance of that same sentence in PLE.

 7.5E EXERCISES

 1. Symbolize the following sentences in PLE using the following symbolization
key:

 UD: The set of all people
 Sx: x is a sailor
 Lx: x is lucky
 Cx: x is careless
 Yx: x dies young
 Sxy: x is a son of y
 Dxy: x is a daughter of y
 Wx: x is a Wilcox
 d: Daniel Wilcox
 j: Jacob Wilcox
 r: Rebecca Wilcox

 a. Every Wilcox except Daniel is a sailor.
 *b. Every Wilcox except Daniel is the offspring of a sailor.
 c. Every Wilcox except Daniel is either a sailor or the offspring of sailor.
 *d. Daniel is the only son of Jacob.
 e. Daniel is the only child of Jacob.
 *f. All the Wilcoxes except Daniel are sailors.
 g. Rebecca’s only son is Jacob’s only son.
 *h. Rebecca Wilcox has only one son who is a sailor.
 i. Rebecca Wilcox has at least two daughters who are sailors.

ber38413_ch07_262-328.indd Page 325 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 325 12/4/12 1:19 PM F-400F-400

326 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 *j. There are two and only two sailors in the Wilcox family.
 k. Jacob Wilcox has one son and two daughters, and they are all sailors.

 2. Give fl uent English readings for the following sentences of PLE using the given
symbolization key.

 UD: The set of positive integers
 Lxy: x is less than y
 Gxy: x is greater than y
 Ex: x is even
 Ox: x is odd
 Px: x is prime
 f(x,y): the product of x and y
 t: 2
 f: 5
 n: 9

 a. (∀x)(∃y)Lxy
 *b. (∃x)(∀y)(∼ x � y ⊃ Lxy)
 c. (∃x)(∀y) ∼ Lyx
 *d. ∼ (∃x)(Ex & Lxt)
 e. (Pt & Et) & (∀x)[(Px & Ex) ⊃ x � t]
 *f. ∼ (∃x)(∃y)[(Px & Py) & Pf(x,y)]
 g. (∀y)(∀z)[(Oy & Oz) ⊃ Of(y,z)]
 *h. (∀y)(∀z)[(Ey & Ez) ⊃ Ef(z,y)]
 i. (∀y)(∀z)[(Ey ∨ Ez) ⊃ Ef(y,z)]
 *j. (∀x)[Ex ⊃ (∃y)(Oy & Gxy)] & ∼ (∀x)[Ox ⊃ (∃y)(Ey & Gxy)]
 k. (∃x)[[Px & (Gxf & Lxn)] & (∀y)([Py & (Gyf & Lyn)] ⊃ y � x)]

 3. For a–p, decide whether the specifi ed relation is refl exive, whether it is symmet-
ric, and whether it is transitive (in suitably restricted universes of discourse).
In each case give the sentences of PL that assert the appropriate properties
of the relation in question. If the relation is refl exive, symmetric, or transitive
only in a restricted universe of discourse, specify such a universe of discourse.

 a. Nxy: x is a neighbor of y
 *b. Mxy: x is married to y
 c. Axy: x admires y
 *d. Nxy: x is north of y
 e. Rxy: x is a relative of y
 *f. Sxy: x is the same size as y
 g. Txy: x is at least as tall as y
 *h. Cxy: x coauthors a book with y
 i. Exy: x enrolls in the same course as y
 *j. Fxy: x fi ghts y
 k. Wxy: x weighs the same as y
 *l. Cxy: x contracts with y
 m. Axy: x is an ancestor of y
 *n. Cxy: x is a cousin of y
 o. Lxy: x and y have the same taste in food
 *p. Rxy: x respects y

ber38413_ch07_262-328.indd Page 326 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 326 12/4/12 1:19 PM F-400F-400

7.5 THE LANGUAGE PLE (PREDICATE LOGIC EXTENDED) 327

 4. Symbolize the following sentences in PLE using the given symbolization key.

 UD: The set of people in Doreen’s hometown
 Dxy: x is a daughter of y
 Sxy: x is a son of y
 Bxy: x is a brother of y
 Oxy: x is older than y
 Mxy: x is married to y
 Txy: x is taller than y
 Px: x is a physician
 Bx: x is a baseball player
 Mx: x is a marine biologist
 d: Doreen
 c: Cory
 j: Jeremy
 h: Hal

 a. Jeremy is Cory’s son.
 *b. Jeremy is Cory’s only son.
 c. Jeremy is Cory’s oldest son.
 *d. Doreen’s only daughter is a physician.
 e. Doreen’s eldest daughter is a physician.
 *f. Doreen is a physician and so is her eldest daughter.
 g. Cory is Doreen’s eldest daughter.
 *h. Cory is married to Hal’s only son.
 i. Cory is married to Hal’s tallest son.
 *j. Doreen’s eldest daughter is married to Hal’s only son.
 k. The only baseball player in town is the only marine biologist in town.
 *l. The only baseball player in town is married to one of Jeremy’s daughters.
 m. Cory’s husband is Jeremy’s only brother.

 5. Symbolize the following sentences in PLE using the given symbolization key.

 UD: The set of positive integers
 Ox: x is odd
 Ex: x is even
 Px: x is prime
 a: 1
 b: 2
 f(x): the successor of x
 q(x): x squared
 t(x,y): the product of x and y
 s(x,y): the sum of x and y

 a. One is not the successor of any integer.
 *b. One is not prime but its successor is.
 c. There is a prime that is even.
 *d. There is one and only one even prime.
 e. Every integer has a successor.

ber38413_ch07_262-328.indd Page 327 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 327 12/4/12 1:19 PM F-400F-400

328 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION

 *f. The square of a prime is not prime.
 g. The successor of an odd integer is even.
 *h. The successor of an even integer is odd.
 i. If the product of a pair of positive integers is odd, then the product of the

successors of those integers is even.
 *j. If the product of a pair of positive integers is even, then one of those integers

is even.
 k. If the sum of a pair of positive integers is odd, then one member of the pair

is odd and the other member is even.
 *l. If the sum of a pair of positive integers is even, then either both members of

the pair are even or both members are odd.
 m. The product of a pair of prime integers is not prime.
 *n. There are no primes such that their product is prime.
 o. The square of an even number is even and the square of an odd number

is odd.
 *p. The successor of the square of an even number is odd.
 q. The successor of the square of an odd number is even.
 *r. 2 is the only even prime.
 s. The sum of 2 and a prime other than 2 is odd.
 *t. There is exactly one integer that is prime and is the successor of a prime.
 u. There is a pair of primes such that their product is the successor of their sum.

ber38413_ch07_262-328.indd Page 328 12/4/12 1:19 PM ber38413_ch07_262-328.indd Page 328 12/4/12 1:19 PM F-400F-400

8.1 INTERPRETATIONS 329

Chapter 8

Section 8.1 of this chapter introduces interpretations, which are the foun-
dation for the quantifi cational semantics for PL. Sections 8.2 through 8.4
present the quantifi cational versions of the core logical concepts: quantifi -
cational truth, falsehood, and indeterminacy, quantifi cational equivalence,
quantifi cational consistency, and quantifi cational entailment validity. Section
8.5 presents truth-functional expansions, which can sometimes be used to
reason about quantifi cational semantics. Section 8.6 augments PL’s quantifi -
cational semantics for PLE, the language of predicate logic with identity and
functors.

PREDICATE LOGIC:
SEMANTICS

 8.1 INTERPRETATIONS

The basic semantic concept for the language of sentential logic, SL, is that
of a truth-value assignment. The semantics for PL is more complex than
truth-functional semantics. One source of the added complexity is this:
Whereas atomic sentences of SL are not analyzable in terms of more basic
linguistic expressions of SL, this is not true of all of the atomic sentences
of PL. Atomic sentences such as ‘Fa’ are complex expressions composed
of predicates and individual constants. Consequently, we directly assign

ber38413_ch08_329-401.indd Page 329 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 329 12/4/12 12:10 PM F-400F-400

330 PREDICATE LOGIC: SEMANTICS

truth-values only to the atomic sentences of PL that are sentence letters.
The truth-values of complex atomic sentences like ‘Fa’ will be determined
by the interpretations of the predicates and individual constants that con-
stitute such sentences.

The basic semantic concept of PL, in terms of which other semantic
concepts are defi ned, is that of an interpretation. Just as truth-value assign-
ments for SL assign truth-values to every sentence of SL, an interpretation
for PL interprets every individual constant, predicate, and sentence letter of
PL. There is a sense in which the symbolization keys presented in Chapter
7 provide interpretations for the symbolic sentences of PL, for the truth-
conditions of sentences of PL depend on the universe of discourse we
choose, the interpretations that we provide for the predicates and individual
constants that occur in the sentences, and the truth-values that we assign to
the sentence letters that occur in those sentences. Consider, for example,
the symbolization key

 UD: The set {1, 2, 3, 4, 5}
 Ex: x is even
 Gxy: x is greater than or equal to y
 Pxyz: the sum of x, y, and z is odd
 a: 1
 b: 2
 c: 3
 d: 4
 e: 5

Given this symbolization key,

• ‘Eb’ and ‘Ed’ are true because 2 and 4 are even
• ‘Ea’, ‘Ec’, and ‘Ee’ are false because 1, 3, and 5 are not even
• ‘Gca’ is true because 3 is greater than or equal to 1
• ‘Gbe’ is false because 2 is not greater than or equal to 5
• ‘Pace’ and ‘Pabd’ are true because the sum of 1, 3, and 5 is an odd

number (9), and the sum of 1, 2, and 4 is an odd number (7)
• ‘Pabc’ is false because the sum of 1, 2, and 3 (6) is not an odd number.

However, the symbolization key provides more information than is
needed for an actual interpretation. When we interpret predicates, we do not
need to know what they mean, but only what they do or do not apply to. To
understand this, consider the following symbolization key:

 UD: The set {1, 2, 3, 4, 5}
 Ex: x is even
 Gxy: x is greater than or equal to y
 Pxyz: either x, y, and z are all odd or exactly one of x, y, and z is odd

ber38413_ch08_329-401.indd Page 330 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 330 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 331

 a: 1
 b: 2
 c: 3
 d: 4
 e: 5

Given this symbolization key, ‘Pace’ and ‘Pabd’ are still true, because 1, 3, and 5
are all odd and exactly one of the integers 1, 2, and 4 is odd. Moreover, ‘Pabc’
is still false because 1, 2, and 3 are not all odd, nor is it the case that exactly
one of these integers is odd. In fact, no matter which combination of three (not
necessarily distinct) individual constants we write after ‘P’, the atomic sentence
that is formed will have the same truth-value with respect to both symboliza-
tion keys. The reason is that the sum of 3 positive integers is odd if and only
if either exactly one or all three of the positive integers are themselves odd.
Thus, given either symbolization key, ‘P’ applies to, or is true of, the same inte-
gers. Since the purpose of our interpretations is to provide truth-conditions for
sentences of PL, our interpretations only need to specify the things of which
the predicates are true, rather than provide English-language readings for the
predicates. (Similarly, to provide truth-conditions for sentences of SL, we only
needed to assign truth-values to the language’s atomic sentences rather than
provide English readings of those sentences).

To this end, we need the concept of an n-tuple, which is an ordered
set containing n members. An n-tuple is ordered in the sense that one
member is designated as the fi rst member, another as the second (assum-
ing that n � 1), and so on. Moreover, because each member is associated
with a position, the same item can occur in more than one position in a
single n-tuple. We designate an n-tuple by listing its members, in the order
in which they occur in the n-tuple, between the angle brackets ‘�’ and ‘�’.
For example, we designate the 3-tuple whose members are 1, 2, and 3 in
that order as

�1, 2, 3�.

Because n-tuples are ordered, this 3-tuple is distinct from all of the following
3-tuples (which are also distinct from one another):

�1, 3, 2�, �2, 1, 3�, �2, 3, 1�, �3, 1, 2�, �3, 2, 1�.

Here are examples of 3-tuples in which the same integer occurs more than
once:

�3, 3, 4�, �3, 4, 3�, �4, 3, 3�, �3, 3, 3�.

To interpret an n-place predicate, we will assign a set of n-tuples to
that predicate. We call this set the ‘extension’ of the predicate. For example, if

ber38413_ch08_329-401.indd Page 331 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 331 12/4/12 12:10 PM F-400F-400

332 PREDICATE LOGIC: SEMANTICS

we want to produce an interpretation that corresponds to either symbolization
key above, we would assign the following set of 3-tuples to ‘P’ as its extension:

{ �1, 1, 1�, �3, 3, 3�, �5, 5, 5�, �1, 1, 3�, �1, 3, 1�, �3, 1, 1�,
�1, 1, 5�, �1, 5, 1�, �5, 1, 1�, �3, 3, 1�, �3, 1, 3�, �1, 3, 3�,
�3, 3, 5�, �3, 5, 3�, �5, 3, 3�, �5, 5, 1�, �5, 1, 5�, �1, 5, 5�,
�1, 3, 5�, �1, 5, 3�, �3, 1, 5�, �3, 5, 1�, �5, 1, 3�, �5, 3, 1�,
�1, 2, 2�, �2, 1, 2�, �2, 2, 1�, �1, 4, 4�, �4, 1, 4�, �4, 4, 1�,
�1, 2, 4�, �1, 4, 2�, �2, 1, 4�, �4, 1, 2�, �2, 4, 1�, �4, 2, 1�,
�3, 2, 2�, �2, 3, 2�, �2, 2, 3�, �3, 4, 4�, �4, 3, 4�, �4, 4, 3�,
�3, 2, 4�, �3, 4, 2�, �2, 3, 4�, �4, 3, 2�, �2, 4, 3�, �4, 2, 3�,
�5, 2, 2�, �2, 5, 2�, �2, 2, 5�, �5, 4, 4�, �4, 5, 4�, �4, 4, 5�,
�5, 2, 4�, �5, 4, 2�, �2, 5, 4�, �4, 5, 2�, �2, 4, 5�, �4, 2, 5�}.

That is, the three members of each of these 3-tuples are such that their sum is odd
or, alternatively, they are such that either all three are odd or exactly one is odd;
and these are the only 3-tuples of members of the UD that satisfy the conditions.

The ordering in n-tuples allows us to characterize relations that are asym-
metric and antisymmetric. The ‘greater than or equal to’ relation is antisymmetric,
that is, if x is greater than or equal to y and y is greater than or equal to x, then
x and y are identical. To capture this, we want to be able to distinguish between
the 2-tuple �2, 1� and the 2-tuple �1, 2�, for example, since 2 is greater than
or equal to 1, but not vice versa. To capture the reading of ‘G’ in the above
symbolization keys, we assign the following set of 2-tuples to ‘G’ as its extension:

{�1, 1�, �2, 1�, �3, 1�, �4, 1�, �5, 1�, �2, 2�, �3, 2�, �4, 2�,
�5, 2�, �3, 3�, �4, 3�, �5, 3�, �4, 4�, �5, 4�, �5, 5�}.

The two members of each 2-tuple are such that the fi rst is greater than or
equal to the second, and these are the only 2-tuples of members of the UD of
which this is true.

1-tuples are sometimes called singletons (like single-member sets). To
capture the truth-conditions for ‘E’ in the above symbolization keys, we would
assign the set of singletons

{�2�, �4�}

as its extension. It may seem odd to assign this set as an extension of ‘E’, rather
than merely the set {2, 4}, so we shall explain that the reason for doing so in the
formal semantics is that defi ning all extensions of predicates as sets of n-tuples
allows us to state truth-conditions more simply than if we had one exception
to the general rule. Finally, the empty set may be assigned to any predicate as
its extension. Such an extension is appropriate when we want a predicate to
apply to, or be true of, nothing in the UD.

Interpretations for PL can now be defi ned as follows:
An interpretation for PL specifi es a nonempty set as a UD and assigns a
truth-value to each sentence letter of PL, a member of the UD to each

ber38413_ch08_329-401.indd Page 332 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 332 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 333

individual constant of PL, and a set of n-tuples of members of the UD
to each n-place predicate of PL.

Here is an example of how we will specify interpretations in the remainder of
this section:

 UD: The set {1, 2, 3, 4, 5}
 a: 1
 b: 2
 c: 3
 d: 4
 e: 5
 E: {�2�, �4�}
 G: {�1, 1�, �2, 1�, �3, 1�, �4, 1�, �5, 1�, �2, 2�, �3, 2�, �4, 2�,

�5, 2�, �3, 3�, �4, 3�, �5, 3�, �4, 4�, �5, 4�, �5, 5�}
 P: {�u1, u2, u3� : the sum of u1, u2, and u3 is odd}
 where u1, u2, and u3 range over members of the UD

This example shows two ways that we can specify the extensions that are assigned
to predicates. We can list the members of the extension explicitly, as we have
for the extensions of ‘E’ and ‘G’, or we can describe the members, as we have
for ‘P’. The notation ‘{�u1, u2, u3� : the sum of u1, u2, and u3 is odd}’ means:
the set of ordered triples in which the sum of the fi rst, second, and third members (or the
sum of the three members) is odd. This is a useful way to specify a large extension or
one that has an infi nite number of members. We can also specify small exten-
sions in this way, if we so desire—that is, we could also have written:

 E: {�u� : u is even}
 G: {�u1, u2� : u1 is greater than or equal to u2}

In what follows, we will adopt the convention that when an interpretation specifi es
extensions in this second way, the lowercase boldface letter ‘u’, with or without
a subscript, always ranges over members of the interpretation’s UD. With this
convention, we do not need the last (italicized) line in our example interpreta-
tion. Finally, in this example, we have only specifi ed part of an interpretation; an
interpretation must interpret every individual constant, predicate, and sentence
letter of PL. Throughout this chapter and the next, we will display only those
parts of an interpretation that are relevant for the sentences that we are discussing.

We note that a single interpretation can interpret two or more individual
constants as designating the same member of the UD. This is no different from
two or more names or descriptions in a natural language applying to a single indi-
vidual. For example, ‘George Washington’ and ‘the fi rst president of the United
States’ refer to the same person. So we could have interpreted both ‘a’ and ‘b’,
for example, as designating the integer 1. However, while one name can apply to
more than one individual in a natural language, an interpretation for PL cannot
use a single individual constant to designate more than one member of the UD.

ber38413_ch08_329-401.indd Page 333 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 333 12/4/12 12:10 PM F-400F-400

334 PREDICATE LOGIC: SEMANTICS

We also note that interpretations do not assign anything to individual variables!
As Chapter 7 has made clear, the purpose of individual variables is to allow us
to speak generally about members of a UD rather than about particular things.

We can now state the truth-conditions for atomic sentences of PL (we
will revise the clauses somewhat after we discuss quantifi ed sentences, but the
end result will be the same). In stating truth-conditions, we use the expression

I(X)

to mean: the value that interpretation I assigns to the symbol X. We adopt the con-
vention that when a symbol of PL occurs inside the parentheses, it is being
mentioned, so that we will not need to indicate this with quotation marks
(the same convention will apply within square brackets in notation that we
shall introduce below). As we did in Chapter 7, we will use boldface letters as
metavariables as follows:

• ‘P’, ‘Q’, and ‘R’ will be used to range over formulas of PL,
• ‘A’ will be used to range over predicates of PL,
• ‘a’ will be used to range over individual constants of PL,
• ‘x’ will be used to range over individual variables of PL, and
• ‘t’ will be used to range over individual terms (individual constants

and individual variables) of PL.

All of these may be subscripted. The fi rst clause of our defi nition of truth-
conditions is:

If P is a sentence letter, P has the truth-value T on an interpretation
I if and only if I(P) � T.

Since every sentence of PL will have either the truth-value T or the truth-value
F on an interpretation, it follows that a sentence letter P has the truth-value F
on an interpretation I if and only if I(P) � F.

In writing our next clause, we use the set membership symbol ‘∈’. For
example,

�2, 1� ∈ I(G)

indicates that �2, 1� is a member of the set I(G). We shall also use the
symbol ‘∉’ to indicate that something is not a member of a set. The clause
for atomic sentences that are formed from predicates and individual
constants is

If P is an atomic sentence of the form Aa1 . . . an (where A is an n-place
predicate), then P has the truth-value T on interpretation I if and only
if �I(a1), I(a2), . . . , I(an)� ∈ I(A).

ber38413_ch08_329-401.indd Page 334 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 334 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 335

It follows from this clause that an atomic sentence of the form Aa1 . . . an
will have the truth-value F on an interpretation I if and only if �I(a1), I(a2),
. . . , I(an)� ∉ I(A). Note that

�I(a1), I(a2), . . . , I(an)�,

which may look daunting, simply means:

the n-tuple whose fi rst member is the member of the UD that interpretation I
has assigned to a1, . . ., and whose nth member is the member of the UD that
interpretation I has assigned to an.

Let’s see how this clause works, using the previous interpretation, which we
shall number and refer to as ‘interpretation 1’ (and we will subsequently sub-
script ‘I’ with 1 to indicate that we are talking about this interpretation):

 1. UD: The set {1, 2, 3, 4, 5}
 a: 1
 b: 2
 c: 3
 d: 4
 e: 5
 E: {�2�, �4�}
 G: {�1, 1�, �2, 1�, �2, 2�, �3, 1�, �3, 2�, �3, 3�, �4, 1�, �4, 2�, �4, 3�,

�4, 4�, �5, 1�, �5, 2�, �5, 3�, �5, 4�, �5, 5�}
 P: {�u1, u2, u3� : the sum of u1, u2, and u3 is odd}

• ‘Eb’ has the truth-value T on interpretation 1 because �I1(b)�,
which is �2�, is a member of I1(E).

• ‘Ea’ has the truth-value F on interpretation 1 because � I1(a)�,
which is �1�, is not a member of I1(E).

• ‘Gca’ has the truth-value T on interpretation 1 because � I1(c),
I1(a)�, which is �3, 1�, is a member of I1(G).

• ‘Gdd’ has the truth-value T on interpretation 1 because �I1(d),
I1(d)�, which is �4, 4�, is a member of I(G).

• ‘Gbe’ has the truth-value F on interpretation 1 because � I1(b),
I1(e)�, which is �2, 5�, is not a member of I1(G).

Note that in the previous cases, we simply had to examine the lists of members
of the extensions of these predicates to determine whether the relevant 1- or
2-tuple was included in those extensions. In the next cases, we will need to
consult the description that interpretation 1 used to specify the 3-tuples that
are members of the extension assigned to ‘P’.

• ‘Pace’ and ‘Pabd’ both have the truth-value T on interpretation 1
because � I1(a), I1(c), I1(e)�, which is �1, 3, 5�, and � I1(a), I1(b),

ber38413_ch08_329-401.indd Page 335 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 335 12/4/12 12:10 PM F-400F-400

336 PREDICATE LOGIC: SEMANTICS

I1(d)�, which is �1, 2, 4�, are both members of I1(P)—the sum of
1, 3, and 5 and the sum of 1, 2, and 4 are both odd numbers.

• ‘Pabc’ has the truth-value F on interpretation 1 because � I1(a),
I1(b), I1(c)�, which is �1, 2, 3�, is not a member of I1(P); the sum
of 1, 2, and 3 is not an odd number.

The truth-conditions for negations, conjunctions, disjunctions, material
conditionals, and material biconditionals of PL will be based on the characteris-
tic truth-tables for these connectives. Because these will be straightforward, we
turn to a discussion of the truth-conditions for quantifi ed sentences of PL. We
will be defi ning the truth-conditions of sentences like ‘(∀x)(Fx ∨ Gx)’ in terms
of the semantics of their subformulas. But ‘Fx ∨ Gx’ is an open sentence, and
we consider open sentences to be neither true nor false. Free variables are not
names, and interpretations therefore do not assign values to them. To formally
explain how free variables work, we will need some additional defi nitions and
notation to capture a fairly clear intuitive understanding of the semantics of
quantifi ed sentences. We will talk about that intuitive understanding fi rst.

Consider the sentence ‘(∀x)(Ex ⊃ Gxx)’, which we may read as ‘Each
x is such that if x is F then x stands in the relation G to itself ‘ or ‘Everything
that is F stands in the relation G to itself’. When we specify a UD for interpret-
ing this sentence, we thereby specify what ‘everything’ is, namely, everything
in the UD. The part of the sentence that follows the universal quantifi er, the
open sentence ‘Ex ⊃ Gxx’, specifi es a condition that may or may not hold of
the individual members of the UD. The function of the universal quantifi er is to
state that this condition holds for each member of the UD, and consequently,
the sentence is true if and only if every member of the UD does meet that
condition. In the case of interpretation 1 and English readings of the predi-
cates ‘E’ and ‘G’ as ‘is even’ and ‘is greater than or equal to’, ‘everything’ is
comprised of the integers 1 through 5, and the sentence may be read as: ‘Each
of the integers 1 through 5 is such that if it is even, then it is greater than or
equal to itself’—which is true. Conversely, given interpretation 1, the sentence
‘(∀x)(Gxx ⊃ Ex)’ may be read as: ‘Each of the positive integers 1 through 5
is such that if it is greater than or equal to itself then it is even’, and this is
false. It is false because three members of the UD fail to satisfy the condition
specifi ed by the open sentence ‘Gxx ⊃ Ex’: the integers 1, 3, and 5 all satisfy
the antecedent but fail to satisfy the consequent, and therefore they all fail to
satisfy the open sentence.

Existential quantifers function in PL to indicate that at least one mem-
ber of the UD satisfi es a certain condition. So the sentence ‘(∃x)(Gxx & Ex)’
says that at least one member of the UD both stands in the relation G to itself
and has the property E. This sentence is true with respect to interpretation 1.
In fact, there are two such members of the UD: both 2 and 4 satisfy ‘Gxx’ and
‘Ex’, as each is both greater than or equal to itself and even. On the other
hand, the sentence ‘(∃x)(Ex & Pxxx)’ is false on interpretation 1 because not
even one member u of the UD satisfi es the condition specifi ed by ‘Ex & Pxxx’.

ber38413_ch08_329-401.indd Page 336 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 336 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 337

1, 3, and 5 fail to satisfy this condition because they are not even, while 2 and
4 fail to satisfy this condition because neither 2 � 2 � 2 nor 4 � 4 � 4 is odd.

We will now dive into the formal semantics. Some readers may wish to
skip or skim the following discussion and perhaps return to it later; we have
written the rest of this chapter on the assumption that some readers will do so.
However, those readers who plan to skip the following and proceed to Section
8.2 should fi rst read the last four paragraphs of Section 8.1.

To consider the different values that variables range over, we will use
variable assignments. A variable assignment for an interpretation I assigns to each
individual variable of PL a member of the UD. For example, given interpreta-
tion 1, each variable assignment will assign values from the set {1, 2, 3, 4, 5} to
the individual variables of PL. Intuitively, a variable assignment captures one
way in which the variables of PL, in their role as pronouns, can be used to refer
to objects in an interpretation’s UD. We use the notation

dI, dI(x)

to denote, respectively, a variable assignment for interpretation I (think of ‘dI’
as shorthand for ‘designates’ or ‘denotes’) and the value that dI assigns to x. So

d1(x) � 5
d1(y) � 1
d1(z) � 3
d1(x1) � 2
d1(y1) � 5

mean that the variable assignment d1 assigns the value 5 to ‘x’, the value 1 to
‘y’, the value 3 to ‘z’, the value 2 to ‘x1’, and the value 5 to ‘y1’. We will use this
example below, so we (arbitrarily) stipulate that d1 assigns 3 to all of the other
individual variables of PL. Note that a variable assignment can assign the same
value to more than one variable. Given the infi nitely many individual variables
in the language PL, this will certainly be the case for variable assignments for
interpretations that have fi nite UDs. Also note that variable assignments are not
required to assign each member of the UD to at least one variable; they can
leave some members of the UD unassigned.

In defi ning the truth-conditions for sentences of PL, we will defi ne
the conditions under which a variable assignment satisfi es a sentence or open
sentence of PL, and this will capture the intuitive concept of objects satisying
what an open sentence says.1 We’ll look at a simple example of how we’ll use

1Some authors allow all open sentences to be true or false on interpretations, so the concept of satisfaction
is not needed in their truth-defi nitions. Other authors use a type of semantics known as substitution semantics;
in this type of semantics the concept of satisfaction is also unnecessary. For obvious reasons, the semantics we
present in this section is known as satisfaction semantics (or sometimes as referential or objectual semantics). Satisfac-
tion semantics were proposed by Alfred Tarski in “der Wahrheitsbegriff in den formalisierten Sprachen,” Studia
Philosophica, 1 (1936), 261–405.

ber38413_ch08_329-401.indd Page 337 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 337 12/4/12 12:10 PM F-400F-400

338 PREDICATE LOGIC: SEMANTICS

variable assignments before putting together the full formal defi nition of the
truth-conditions for quantifi ed (and other) sentences of PL. Here are the sat-
isfaction conditions for an atomic formula in which all of the individual terms
are variables:

If P is an atomic formula of the form Ax1 . . . xn (where A is an n-place
predicate), then the variable assignment dI satisfi es P on interpretation
I if and only if �dI(x1), dI(x2), . . . , dI(xn)� ∈ I(A).

The variable assignment d1 that is partially displayed above satisfi es ‘Gxy’ on
interpretation 1, because �d1(x), d1(y)�, which is �5, 1�, is a member of
I1(G). On the other hand, a variable assignment that assigns 2 to ‘x’ and 3 to
‘y’ will not satisfy ‘Gxy’.

Now consider the quantifi ed sentence ‘(∃x)(∀y)Gxy’. To capture the
conditions under which a variable assignment dI satisfi es this sentence, we need
to know whether ‘(∀y)Gxy’ is satisfi ed by at least one variable assignment that
is exactly like the assignment dI except that it may assign any value to ‘x’. Put
more intuitively, if at least one member x of the UD satisfi es ‘(∀y)Gxy’, then
‘(∃x)(∀y)Gxy’ will be satisfi ed. To formalize the intuitive idea, we introduce
the notation

dI[u/x]

which means: the variable assignment for interpretation I that assigns the same
values as dI to all variables other than x, and that assigns the value u to x. dI[u/x]
is called a variant of the assignment dI. So, for example, given the sam-
ple variable assignment d1 above, the variant d1[2/x] makes the following
assignments:

d1[2/x](x) � 2
d1[2/x](y) � 1
d1[2/x](z) � 3
d1[2/x](x1) � 2
d1[2/x](y1) � 5,

and d1[2/x] assigns 3 to all of the other individual variables of PL (because
d1 does).

The following discussion will be easier to understand if the reader
remembers the following two simple points about the variants of a variable
assignment dI:

• dI[u/x](x) is simply u.
• For every variable y that is distinct from x, dI[u/x] assigns to y the

same member of the UD that dI assigns to y, that is, dI[u/x](y) is
simply dI(y).

ber38413_ch08_329-401.indd Page 338 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 338 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 339

Here’s how variable assignments work in the semantics. The satisfaction
clauses for quantifi ed formulas are

If P is a formula of the form (∀x)Q, then dI satisfi es P on interpreta-
tion I if and only if each member u of the UD is such that dI[u/x]
satisfi es Q on interpretation I

and

If P is a formula of the form (∃x)Q, then dI satisfi es P on interpreta-
tion I if and only if there is at least one member u of the UD such that
dI[u/x] satisfi es Q on interpretation I.

To illustrate these clauses, we fi rst consider the singly quantifi ed sentences
‘(∀x)Ex’ and ‘(∃x)Ex’, using interpretation 1 and our sample variable assign-
ment d1. For these examples, we note that given the fi ve-member UD of inter-
pretation 1, there are fi ve variants d1[u/x] of d1, only four of which are distinct
from d1. The variants are are d1[1/x], d1[2/x], d1[3/x], d1[4/x], and d1[5/x]
(the last of these is the same as d1). So d1 satisfi es ‘(∀x)Ex’ on interpretation 1
if and only if all fi ve of d1[1/x], d1[2/x], d1[3/x], d1[4/x], and d1[5/x] satisfy
‘Ex’. Not all of them do:

• d1[1/x] does not satisfy ‘Ex’ because �d1[1/x]� is �1�, and
�1� ∉ I(E).

• d1[2/x] does satisfy ‘Ex’ because �d1[2/x]� is �2�, and �2� ∈ I(E).
• d1[3/x] does not satisfy ‘Ex’ because �d1[3/x]� is �3�, and

�3� ∉ I(E).
• d1[4/x] does satisfy ‘Ex’ because �d1[4/x]� is �4�, and �4� ∈ I(E).
• d1[5/x] does not satisfy ‘Ex’ because �d1[5/x]� is �5�, and

�5� ∉ I(E).

Each of the variants d1[1/x], d1[3/x], and d1[5/x] taken alone is suffi cient to
establish that d1 does not satisfy ‘(∀x)Ex’. On the either hand, d1 does satisfy
‘(∃x)Ex’ because at least one of the fi ve variants of d1 satisfi es ‘Ex’—in fact,
both d1[2/x] and d1[4/x] do.

Now we’ll point out a very important fact about the variable assignment
d1: the value that d1 itself assigns to ‘x’ or to any other other variable has no
bearing on whether d1 satisfi es ‘(∀x)Ex’ or ‘(∃x)Ex’! The values assigned to
other variables don’t matter, because they don’t occur in these sentences. And
the value assigned to ‘x’ doesn’t matter because the satisfaction conditions call
for looking at variants that assign different values to ‘x’. In each case, what mat-
tered was whether all or some of the fi ve variants d1[1/x], d1[2/x], d1[3/x],
d1[4/x], and d1[5/x] satisfy ‘Ex’. And in determining this, we looked at the
value that the variant assigned to ‘x’, rather than the value that d1 assigns to
‘x’. The assignment d1 itself merely gave us a starting point for constructing

ber38413_ch08_329-401.indd Page 339 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 339 12/4/12 12:10 PM F-400F-400

340 PREDICATE LOGIC: SEMANTICS

the variants. We could have started with any other variable assignment for inter-
pretation 1, and we would have found that it also satifi es ‘(∃x)Ex’ and fails to
satisfy ‘(∀x)Ex’. Because we get the same results regardless of which variable
assignement we start with, we will defi ne truth across the board as satisfaction
by all variable assignments and falsehood as satisfaction by none.

We will formally defi ne satisfaction and truth and falsehood momentar-
ily, but we will fi rst introduce an additional piece of notation that is useful for
writing the satisfaction clause for atomic formulas. The satisfaction clauses that
we have examined so far for atomic formulas apply to formulas in which all
the individual terms are constants or all the individual terms are variables. We
need to generalize and provide a single satisfaction clause for atomic formulas
that contain any mixture of individual constants and/or variables. To this end,
we defi ne

denI,dI

(read this as: the denotation with respect to interpretation I and variable assignment
dI) as follows:

1. If t is a variable, then denI,dI(t) � dI(t).
2. If t is an individual constant, then denI,dI(t) � I(t).

The denotation of a term is simply the member of the UD that the variable
assignment or interpretation says it designates.

We can now recursively defi ne the concept of satisfaction of formulas
and then defi ne truth and falsehood for the sentences of PL. Let I be an inter-
pretation, dI a variable assignment for I, and P a formula of PL. Then

1. If P is a sentence letter, dI satisfi es P on interpretation I if and only
if I(P) � T.

2. If P is an atomic formula of the form At1 . . . tn (where A is an
n-place predicate), dI satisfi es P on interpretation I if and only if
�denI,dI(t1), denI,dI(t2), . . . , denI,dI(tn)� ∈ I(A).

3. If P is a formula of the form ~ Q, dI satisfi es P on interpretation I if
and only if dI does not satisfy Q on interpretation I.

4. If P is a formula of the form Q & R, dI satisfi es P on interpretation
I if and only if dI satisfi es Q on interpretation I and dI satisfi es R on
interpretation I.

5. If P is a formula of the form Q ∨ R, dI satisfi es P on interpretation I
if and only if either dI satisfi es Q on interpretation I or dI satisfi es R
on interpretation I.

6. If P is a formula of the form Q ⊃ R, dI satisfi es P on interpretation
I if and only if either dI does not satisfy Q on interpretation I or dI
satisfi es R on interpretation I.

ber38413_ch08_329-401.indd Page 340 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 340 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 341

7. If P is a formula of the form Q � R, dI satisfi es P on interpretation
I if and only if either dI satisfi es Q on interpretation I and dI satis-
fi es R on interpretation I, or dI does not satisfy Q on interpretation I
and dI does not satisfy R on interpretation I.

8. If P is a formula of the form (∀x)Q, dI satisfi es P on interpretation I
if and only if each member u of the UD is such that dI[u/x] satisfi es
Q on interpretation I.

9. If P is a formula of the form (∃x)Q, dI satisfi es P on interpretation
I if and only if there is at least one member u of the UD such that
dI[u/x] satisfi es Q on interpretation I.

We have already discussed clauses 8 and 9, with an example. Note that the
values that dI assigns to variables play no role in clause 1; all that matters in
the case of sentence letters are the truth-values that the interpretation assigns
to them. The second clause is a generalization of the restricted clauses that we
gave earlier for atomic formulas, and it says, for example, that d1 satisfi es ‘Gxa’
if �d1(x), I1(a)�—the 2-tuple whose fi rst member is the object that dI assigns
to the variable ‘x’ and whose second member is the object that I1 assigns to the
constant ‘a’—is a member of I1(‘G’). Clauses 3–7 are straightforward.

Finally, the defi nitions of truth and falsehood are

A sentence P of PL is true on an interpretation I if and only if every
variable assignment dI satisfi es P on I. A sentence P of PL is false on an
interpretation I if and only if no variable assignment dI satisfi es P on I.

In Chapter 11 we shall formally prove that given a sentence P and interpreta-
tion I, either all variable assignments for I satisfy P or none do. (This is not
generally true for open sentences.) Therefore, each sentence of PL will be true
or false on any interpretation.

We’ll end this section with a series of examples that use interpretation
1 and a few other interpretations. The sentence ‘(∃x)Ex & (∃x)Pxxx’ is true on
interpretation 1. Consider an arbitary variable assignment d1 for interpretation
1 (here and below, d1 can be any variable assignment for interpretation 1, not
necessarily the specifi c assignment we used in previous examples):

• By clause 4, d1 satisfi es ‘(∃x)Ex & (∃x)Pxxx’ if and only if d1 satisfi es
both ‘(∃x)Ex’ and ‘(∃x)Pxxx’.

• By clause 9, d1 satisfi es ‘(∃x)Ex’ if and only if at least one variant of
d1 satisfi es ‘Ex’. Both the variant d1[2/x] and the variant d1[4/x]
satisfy ‘Ex’ because both �2� and �4� are members of I1(E).

• By clause 9, d1 satisfi es ‘(∃x)Pxxx’ if and only if at least one variant
of d1 satisfi es ‘Pxxx’. The variants d1[1/x], d1[3/x], and d1[5/x] all
satisfy ‘Pxxx’, because �1, 1, 1�, �3, 3, 3�, and �5, 5, 5� are all
members of I1(P).

• Therefore, d1 satisfi es the sentence ‘(∃x)Ex & (∃x)Pxxx’.

ber38413_ch08_329-401.indd Page 341 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 341 12/4/12 12:10 PM F-400F-400

342 PREDICATE LOGIC: SEMANTICS

It follows that ‘(∃x)Ex & (∃x)Pxxx’ is true on interpretation 1. Note that the
satisfaction conditions for the two conjuncts are examined independently, and
that the variants of d1 that satisfy ‘(∃x)Ex’ are distinct from the variants that
satisfy ‘(∃x)Pxxx’.

In contrast, the sentence ‘(∃x)(Ex & Pxxx)’, in which everything falls
within the scope of a single existential quantifi er, is false on interpretation 1.
Let d1 be an arbitrary variable assignment for this interpretation.

• By clause 9, d1 satisfi es ‘(∃x)(Ex & Pxxx)’ if and only if there is at
least one member u of the UD such that d1[u/x] satisfi es ‘Ex & Pxxx’.

• By clause 4, a variant d1[u/x] satisfi es ‘Ex & Pxxx’ if and only if it
satisfi es both ‘Ex’ and ‘Pxxx’. We shall show that no variant satisfi es
both conjuncts.

• d1[1/x] does not satisfy ‘Ex’ because �1� ∉ I(E).
• d1[2/x] does not satisfy ‘Pxxx’ because �2, 2, 2� ∉ I(P).
• d1[3/x] does not satisfy ‘Ex’ because �3� ∉ I(E).
• d1[4/x] does not satisfy ‘Pxxx’ because �4, 4, 4� ∉ I(E).
• d1[5/x] does not satisfy ‘Ex’ because �5� ∉ I(E).
• Therefore, d1 does not satisfy ‘(∃x)(Ex & Pxxx)’.

We may conclude that ‘(∃x)(Ex & Pxxx)’ is false on interpretation 1.
Next we’ll look at some simple sentences with nested quantifi ers, still

using interpretation 1, to see how these work. Our fi rst sentence is ‘(∀x)(∀y)Gxy’.

• By clause 8, d1 satisfi es ‘(∀x)(∀y)Gxy’ if and only if all of the variants
d1[1/x], d1[2/x], d1[3/x], d1[4/x], and d1[5/x] satisfy ‘(∀y)Gxy’.

To determine whether these variants satisfy ‘(∀y)Gxy’, we need to know
whether, given the specifi ed value for ‘x’, ‘Gxy’ will be satisfi ed no matter
what value ‘y’ may have. So we will need to look at variants of these variants.
For this example and those that follow, we introduce a convention that makes
it easier to write variants of variants: dI[u1/x1, u2/x2, . . . , un/xn] is shorthand
for the variable assignment dI[u1/x1] [u2/x2] . . . [un/xn]—the variable assign-
ment that starts out like dI and results from successive stipulations that u1
will be assigned to x1, u2 to x2, . . . , and un to xn. To continue the example,
according to clause 8:

• d1[1/x] satisfi es ‘(∀y)Gxy’ if and only if all fi ve of d1[1/x, 1/y], d1[1/x,
2/y], d1[1/x, 3/y], d1[1/x, 4/y], and d1[1/x, 5/y] satisfy ‘Gxy’

• d1[2/x] satisfi es ‘(∀y)Gxy’ if and only if all fi ve of d1[2/x, 1/y], d1[2/x,
2/y], d1[2/x, 3/y], d1[2/x, 4/y], and d1[2/x, 5/y] satisfy ‘Gxy’

• d1[3/x] satisfi es ‘(∀y)Gxy’ if and only if all fi ve of d1[3/x, 1/y],
d1[3/x, 2/y], d1[3/x, 3/y], d1[3/x, 4/y], and d1[3/x, 5/y] satisfy ‘Gxy’

ber38413_ch08_329-401.indd Page 342 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 342 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 343

• d1[4/x] satisfi es ‘(∀y)Gxy’ if and only if all fi ve of d1[4/x, 1/y],
d1[4/x, 2/y], d1[4/x, 3/y], d1[4/x, 4/y], and d1[4/x, 5/y] satisfy ‘Gxy’

• d1[5/x] satisfi es ‘(∀y)Gxy’ if and only if all fi ve of d1[5/x, 1/y],
d1[5/x, 2/y], d1[5/x, 3/y], d1[5/x, 4/y], and d1[5/x, 5/y] satisfy ‘Gxy’.

Given the satisfaction clause for atomic formulas, the fi rst item in the previous
list amounts to

• d1[1/x] satisfi es ‘(∀y)Gxy’ if and only if �d1[1/x, 1/y](x), d1[1/x,
1/y](y)�, �d1[1/x, 2/y](x), d1[1/x, 2/y](y)�, �d1[1/x, 3/y](x),
d1[1/x, 3/y](y)�, �d1[1/x, 4/y](x), d1[1/x, 4/y](y)�, and �d1[1/x,
5/y](x), d1[1/x, 5/y](y)� are all members of I1(G).

But we can write this more simply. Because dI[u1/x, u2/y](x) is just u1 and
dI[u1/x, u2/y](y) is just u2, the 2-tuple �dI[u1/x, u2/y](x), dI[u1/x, u2/y](y)�
is simply �u1, u2�. So the previous fi ve items are equivalent to

• d1[1/x] satisfi es ‘(∀y)Gxy’ if and only if �1, 1�, �1, 2�, �1, 3�,
�1, 4�, and �1, 5� are all members of I1(G)

• d1[2/x] satisfi es ‘(∀y)Gxy’ if and only if �2, 1�, �2, 2�, �2, 3�,
�2, 4�, and �2, 5� are all members of I1(G)

• d1[3/x] satisfi es ‘(∀y)Gxy’ if and only if �3, 1�, �3, 2�, �3, 3�,
�3, 4�, and �3, 5� are all members of I1(G)

• d1[4/x] satisfi es ‘(∀y)Gxy’ if and only if �4, 1�, �4, 2�, �4, 3�,
�4, 4�, and �4, 5� are all members of I1(G)

• d1[5/x] satisfi es ‘(∀y)Gxy’ if and only if �5, 1�, �5, 2�, �5, 3�,
�5, 4�, and �5, 5� are all members of I1(G).

Only d1[5/x] satisfi es the specifi ed condition. Because d1[1/x], d1[2/x],
d1[3/x], and d1[4/x] do not satisfy ‘(∀y)Gxy’, d1 does not satisfy ‘(∀x)(∀y)
Gxy’ (actually, any one of these taken alone suffi ces), and this sentence is
therefore false on interpretation 1. Looking at the steps we have gone through
along with the 5-tuples that appear in the last bulleted list, we can see that the
sentence ‘(∀x)(∀y)Gxy’ is true on interpretation 1 if and only if the extension
of ‘G’ includes every 2-tuple of members of the UD. Of course, this is exactly
what we want, given the universal quantifi ers in this sentence.

We’ll be briefer in our discussions of the remaining examples, omitting
detailed explicit statements of every step. Consider ‘(∃x)(∃y)Gxy’:

• By clause 9, d1 satisfi es ‘(∃x)(∃y)Gxy’ if and only if at least one of
the fi ve variants d1[1/x], d1[2/x], d1[3/x], d1[4/x], and d1[5/x]
satisfi es ‘(∃y)Gxy’. In fact, they all do. For example,

• d1[1/x] satisfi es ‘(∃y)Gxy’ if and only if at least one of the variants
d1[1/x, 1/y], d1[1/x, 2/y], d1[1/x, 3/y], d1[1/x, 4/y], and d1[1/x,
5/y] satisfi es ‘Gxy’. One of these does:

ber38413_ch08_329-401.indd Page 343 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 343 12/4/12 12:10 PM F-400F-400

344 PREDICATE LOGIC: SEMANTICS

• d1[1/x, 1/y] satisfi es ‘Gxy’ because �1, 1� ∈ I1(G).
• So d1[1/x] satisfi es ‘(∃y)Gxy’, and d1 therefore satisfi es ‘(∃x)(∃y)Gxy’.

We conclude that ‘(∃x)(∃y)Gxy’ is true on interpretation 1. This is because we
were able to identify a 2-tuple that is in the extension of ‘G’. Although other
2-tuples are also members of this extension, the nested existential quantifi ers
only require that at least one 2-tuple is a member.

Next, consider ‘(∃x)(∀y)Gxy’:

• d1 satisfi es ‘(∃x)(∀y)Gxy’ if and only if at least one of the variants
d1[1/x], d1[2/x], d1[3/x], d1[4/x], and d1[5/x] satisfi es ‘(∀y)Gxy’.

• In the example before the last, we explained that d1[5/x] satisfi es
‘(∀y)Gxy’. So d1 satisfi es ‘(∃x)(∀y)Gxy’.

Because the satisfaction assignment d1 satisfi es ‘(∃x)(∀y)Gxy’, the sentence is
true on interpretation 1. Note that we were able to conclude that this sentence
is true because we were able to identify one member of the UD, 5, that is
greater than or equal to all members of the UD.

The sentence ‘(∀y)(∃x)Gxy’ reverses the order of quantifi ers in the
previous sentence:

• d1 satisfi es ‘(∀y)(∃x)Gxy’ if and only if all of the variants d1[1/y],
d1[2/y], d1[3/y], d1[4/y], and d1[5/y] satisfy ‘(∃x)Gxy’.

• d1[1/y] satisfi es ‘(∃x)Gxy’ if and only if at least one of the variants
d1[1/y, 1/x], d1[1/y, 2/x], d1[1/y, 3/x], d1[1/y, 4/x], and d1[1/y,
5/x] satisfi es ‘Gxy’. They all do.

• d1[2/y] satisfi es ‘(∃x)Gxy’ if and only if at least one of the variants
d1[2/y, 1/x], d1[2/y, 2/x], d1[2/y, 3/x], d1[2/y, 4/x], and d1[2/y,
5/x] satisfi es ‘Gxy’. The last four do.

• d1[3/y] satisfi es ‘(∃x)Gxy’ if and only if at least one of the variants
d1[3/y, 1/x], d1[3/y, 2/x], d1[3/y, 3/x], d1[3/y, 4/x], and d1[3/y,
5/x] satisfi es ‘Gxy’. The last three do.

• d1[4/y] satisfi es ‘(∃x)Gxy’ if and only if at least one of the variants
d1[4/y, 1/x], d1[4/y, 2/x], d1[4/y, 3/x], d1[4/y, 4/x], and d1[4/y,
5/x] satisfi es ‘Gxy’. The last two do.

• d1[5/y] satisfi es ‘(∃x)Gxy’ if and only if at least one of the variants
d1[5/y, 1/x], d1[5/y, 2/x], d1[5/y, 3/x], d1[5/y, 4/x], and d1[5/y,
5/x] satisfi es ‘Gxy’. The last does.

• Therefore, d1 satisfi es ‘(∀y)(∃x)Gxy’.

And the sentence ‘(∀y)(∃x)Gxy’ is therfore true on interpretation 1. Note that
in this case the sentence is true because each member of the UD is such that
there is at least one member that is greater than or equal to that member. This
refl ects the order of the initial quantifi ers.

ber38413_ch08_329-401.indd Page 344 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 344 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 345

The sentence ‘(∃x)(Ex & (∀y)Gxy) ⊃ Pebe’ is true on interpretation
1. Consider an arbitary variable assignment d1 for interpretation 1.

• By clause 6, d1 satisfi es ‘(∃x)(Ex & (∀y)Gxy) ⊃ Pebe’ if and only if
either d1 does not satisfy ‘(∃x)(Ex & (∀y)Gxy)’ or d1 does satisfy ‘Pbeb’.

• Looking at the consequent fi rst, d1 satisfi es ‘Pebe’ if and only if
�denI1,d1(e), denI1,d1(b), denI1,d1(e)� ∈ I(P).

• By defi nition, �denI1,d1(e), denI1,d1(b), denI1,d1(e)� is �I1(e), I1(b),
I1(e)�, or �5, 2, 5�, which is not a member of I(P). So d1 does not
satisfy ‘Pebe’.

• Looking at the antecedent, d1 satisfi es ‘(∃x)(Ex & (∀y)Gxy)’ if and only
if there is at least one member u of the UD such that d1[u/x] satisfi es
‘Ex & (∀y)Gxy’, which will be the case if and only if d1[u/x] satisfi es
both ‘Ex’ and ‘(∀y)Gxy’. We shall show that there is no such member.

• If u is 1, 3, or 5, then d1[u/x] does not satisfy ‘Ex’ because
�d1[u/x](x)�, which is either �1�, �3�, or �5� in this case, is
not a member of I1(E).

• If u is 2 or 4, then d1[u/x] does not satisfy ‘(∀y)Gxy’. We explained
this case earlier when we looked at the sentence ‘(∀x)(∀y)Gxy’.

• Therefore, d1 does not satisfy ‘(∃x)(Ex & (∀y)Gxy)’, and so it does
satisfy the conditional ‘(∃x)(Ex & (∀y)Gxy) ⊃ Pebe’.

We conclude that ‘(∃x)(Ex & (∀y)Gxy) ⊃ Pebe’ is true on interpretation 1.

We’ll now look at examples with other interpretations. Consider the
sentence

(∀y)(By ⊃ ~ (∃z)Dyz)

and interpretation 2:

 2. UD: The set {2, 4}
 B: {�2�}
 D: {�4, 2�}

Consider any variable assignment d2 for this interpretation.

• By clause 8, d2 satisfi es the sentence if and only if both d2[2/y] and
d2[4/y] satisfy the open sentence ‘By ⊃ ~ (∃z)Dyz’.

• d2[2/y] satisfi es the consequent of the open sentence (in addition
to its antecedent) because it fails to satisfy ‘(∃z)Dyz’. The latter is
because neither d2[2/y, 2/z] nor d2[2/y, 4/z] satisfi es ‘Dyz’:
• d2[2/y, 2/z] does not satisfy ‘Dyz’ because �2, 2� ∉ I2(D).
• d2[2/y, 4/z] does not satisfy ‘Dyz’ because �2, 4� ∉ I2(D).

ber38413_ch08_329-401.indd Page 345 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 345 12/4/12 12:10 PM F-400F-400

346 PREDICATE LOGIC: SEMANTICS

• Because d2[2/y] satisfi es ~ (∃z)Dyz’, it also satisfi es ‘By ⊃ ~ (∃z)Dyz’.
• The variant d2[4/y] satisfi es ‘By ⊃ ~ (∃z)Dyz’ because it fails to sat-

isfy the antecedent (it also fails to satisfy the consequent): �4� ∉
I2(B). So d2[4/y] satisfi es ‘By ⊃ ~ (∃z)Dyz’.

• d2 therefore satisfi es ‘(∀y)(By ⊃ ~ (∃z)Dyz)’.

Thus, the sentence ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ is true on interpretation 2.
However, ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ is false on the following interpretation:

 3. UD: The set of positive integers
 B: {�u�: u is prime}
 D: {�u1, u2�: u1 is greater than u2}

As we apply our defi nitions, it may be helpful to keep in mind the reading of
the sentence given this interpretation: ‘Every positive integer is such that if it is
prime then there is no positive integer than which it is greater’. The sentence
is obviously false on this interpretation. Let d3 be any variable assignment for
interpretation 3.

• By clause 8, d3 satisfi es ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ if and only if every
member u of the UD is such that d3[u/y] satisfi es ‘By ⊃ ~ (∃z)Dyz’.
We’ll look at the case where u is 2—for this will be suffi cient to show
that the sentence is false on interpretation 3.

• The variant d3[2/y] satisfi es ‘By ⊃ ~ (∃z)Dyz’ if and only if either
d3[2/y] does not satisfy ‘By’ or d3[2/y] does satisfy ‘~ (∃z)Dyz’.

• d3[2/y] satisfi es ‘By’ if and only if �2� ∈ I3(B). It is a member.
• d3[2/y] satisfi es ‘~ (∃z)Dyz’ if and only if it does not satisfy ‘(∃z)Dyz’.
• d3[2/y] satisfi es ‘(∃z)Dyz’ if and only if there is at least one member

u of the UD such that d3[2/y, u/z] satisfi es ‘Dyz’, that is, if and
only if there is at least one member u of the UD such that �2, u�
∈ I3(D).

• �2, 1� ∈ I(D), so d3[2/y] satisfi es ‘(∃z)Dyz’ and therefore does not
satisfy ‘~ (∃z)Dyz’.

• Hence d3[2/y] does not satisfy ‘By ⊃ ~ (∃z)Dyz’, because it satisfi es
the antecedent but fails to satisfy the consequent, and so d3 does not
satisfy ‘(∀y)(By ⊃ ~ (∃z)Dyz)’.

We conclude that the sentence ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ is therefore false
on interpretation 3. It is false because there is at least one member of the
UD that is a prime number and that is greater than at least one member
of the UD.

On the other hand, the sentence ‘(∃y)(By ⊃ ~ (∃z)Dyz)’, in which the
universal quantifi er of the previous sentence ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ has been

ber38413_ch08_329-401.indd Page 346 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 346 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 347

replaced by an existential quantifi er, is true on interpretation 3. Again, let d3
be an arbitrary variable assignment for interpretation 3.

• d3 satisfi es ‘(∃y)(By ⊃ ~ (∃z)Dyz)’ if and only if there is at least one
member u of the UD such that d3[u/y] satisfi es the open sentence
‘By ⊃ ~ (∃z)Dyz’, and the latter is the case if and only if either
d3[u/y] fails to satisfy ‘By’ or d3[u/y] does satisfy ‘(∃z)Dyz’.

• d3[4/y] fails to satisfy ‘By’, as does any other variant that assigns a
non-prime positive integer to ‘y’. d3[4/y] fails to satisfy ‘By’ because
�d3[4/y](y)�, which is �4�, is not a member of I3(B).

Therefore, d3 satisfi es ‘(∃y)(By ⊃ ~ (∃z)Dyz)’, so the sentence is true on inter-
pretation 3. We have shown that it is true by fi nding one member of the
UD that does not satisfy the condition expressed by ‘By’ and that therefore
does satisfy the condition expressed by the open sentence ‘By ⊃ ~ (∃z)Dyz’.
Thus we see that the truth-conditions for the universally quantifi ed sentence
‘(∀y)(By ⊃ ~ (∃z)Dyz)’ and the existentially quantifi ed sentence ‘(∃y)(By ⊃ ~
(∃z)Dyz)’ are signifi cantly different.

The universally quantifi ed sentence ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ is true on
interpretation 4:

 4. UD: The set of positive integers
 B: ∅
 D: {�u1, u2�: u1 is less than u2}

Consider any variable assignment d4 for this interpretation:

• d4 satisfi es ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ if every variant d4[u/x] satisfi es
‘By ⊃ ~ (∃z)Dyz’.

• Every variant d4[u/x] satisfi es ‘By ⊃ ~ (∃z)Dyz’ because every variant
d4[u/x] fails to satisfy ‘By’—I4(B) is the empty set.

Therefore, ‘(∀y)(By ⊃ ~ (∃z)Dyz)’ is true on this interpretation. Note that
because no variants satisfy the antecedent, it does not matter whether any vari-
ants do or do not satisfy ‘~ (∃z)Dyz)’. We say that the universally quantifi ed
conditional is “trivially true” in cases like this.

As a fi nal example, we may use our defi nitions to prove that the sen-
tence ‘(∀x)(Bx � ~ Bx)’ is false on every interpretation. We will do this by
assuming that there is an interpretation on which the sentence is true, and
then show that this is impossible. So:

• Suppose that I is an interpretation on which ‘(∀x)(Bx � ~ Bx)’ is
true. By defi nition, every variable assignment dI for I must therefore
satisfy ‘(∀x)(Bx � ~ Bx)’.

ber38413_ch08_329-401.indd Page 347 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 347 12/4/12 12:10 PM F-400F-400

348 PREDICATE LOGIC: SEMANTICS

• A variable assignment dI for I satisfi es ‘(∀x)(Bx � ~ Bx)’ if and only
if each member u of I’s UD is such that the variant dI[u/x] satisfi es
‘Bx � ~ Bx’ (by clause 8).

• No variant dI[u/x] of dI can satisfy ‘Bx � ~ Bx’, because any variant
that satisfi es ‘Bx’ will fail to satisfy ‘~ Bx’, and any variant that fails
to satisfy ‘Bx’ will satisfy ‘~ Bx’. By clause 7, therefore, no variant can
satisfy ‘Bx � ~ Bx’.

So no variable assignment dI can satisfy ‘(∀x)(Bx � ~ Bx)’ on interpretation
I, no matter what interpretation I may be, and this sentence must therefore be
false on every interpretation.

In the rest of this chapter, we will generally not pause to talk about
variable assignments or the n-tuples of objects that constitute the interpreta-
tions of predicates. It should be clear that these constructs allow us to rigorously
capture an informal notion of objects satisfying open sentences, and hence-
forth, we shall generally speak in this more informal manner. Do remember,
however, that there is a full-fl edged formal semantics for PL that rigorously
captures the informal talk.

Although we have used sets of positive integers as the UDs for each of the
interpretations in this section, it was not necessary to do so. Any nonempty set of
“things”, abstract or concrete, can serve as the UD for an interpretation. In fact,
the exercises for this section include interpretations that have UDs containing
things other than positive integers. However, because the focus of this chapter is
semantics rather than symbolization, it is convenient to stick with a single type of
UD with well-defi ned properties in our examples, and we shall continue to do so
in the remainder of this chapter. We have collected some simple facts about the
positive integers in Appendix 1, and the reader may fi nd it particularly useful to
consult this appendix when attempting to construct interpretations for sentences
and sets of sentences of PL. In the next section, we will provide an additional
reason for using sets of positive integers for the UDs in our interpretations.

Also, for the sake of readability, we will usually present interpretations
of predicates in the manner of symbolization keys, rather than using the explicit
n-tuple notation. For example, instead of writing

D: {�u1, u2�: u1 is less than u2},

we will write

Dxy: x is less than y.

Again, however, do remember that we are specifying extensions for predicates
and that although the English reading is used to specify the extension, it is not
offi cially part of the interpretation.

Finally, we note that an interpretation on which a sentence is true is
called a ‘model’ of that sentence, and we shall sometimes make use of this term
in the chapters that follow.

ber38413_ch08_329-401.indd Page 348 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 348 12/4/12 12:10 PM F-400F-400

8.1 INTERPRETATIONS 349

 8.1E EXERCISES

 1. Determine the truth-value of the following sentences on this interpretation:

 UD: The set of all integers
 A: {�u�: u is positive}
 C: {�u�: u is negative}
 B: {�u1, u2�: u1 is a square root of u2}
 a: 0
 b: 39
 c: �4

 a. Cc & (Ac ∨ Bca)
 *b. Ab ⊃ Ab
 c. ~ Bcb ⊃ (Bba ∨ ~ Ac)
 *d. Cb � (~ Ab � Ac)
 e. (Cb & Cc) & ~ Baa
 *f. ~ (~ Ab ∨ Cb) ⊃ Baa
 g. Baa � [Bca ⊃ (Cb ∨ ~ Ab)]
 *h. ~ (Ab ∨ Bcc) & (Cc ⊃ ~ Ac)

 2. Determine the truth-value of the following sentences on this interpretation:

 UD: The set of countries, cities, and people
 B: {�u1, u2, u3�: u1 is between u2 and u3}
 D: {�u1, u2�: u1 lives in u2}
 F: {<u>: u is a large city}
 a: Germany
 b: the United States
 c: Italy
 d: the U.S. president
 e: Tokyo
 f: Rome

 a. Fa ⊃ Dda
 *b. Ff ⊃ Ddb
 c. (~ Babc ∨ ~ Bbac) ∨ ~ Bcab
 *d. (Fa � Fe) ⊃ Dde
 e. (~ Fe ∨ Ddf) & (Fe ∨ Fb)
 *f. Baaa ⊃ Bfff
 g. (Dda ∨ Ddc) ∨ (Dde ∨ Ddf)
 *h. (Fa � Dda) & ~ (Ddb ⊃ Bccc)

 3. For each of the following sentences, construct an interpretation on which the
sentence is true.

 a. Nad ⊃ ~ Nda
 *b. Da � ~ (Fb ∨ Gc)
 c. (Lm & ~ Lm) ∨ Chm
 *d. ~ (Wab ⊃ (Wbb & Eb))
 e. (Ma ∨ Na) ∨ (Mb ∨ Nb)
 *f. ~ Fc & [(Fa ⊃ Na) & (Fb ⊃ Nb)]

ber38413_ch08_329-401.indd Page 349 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 349 12/4/12 12:10 PM F-400F-400

350 PREDICATE LOGIC: SEMANTICS

 4. For each of the following sentences, construct an interpretation on which the
sentence is false.

 a. (Crs ∨ Csr) ∨ (Css ∨ Crr)
 *b. (Ka � ~ Ma) � Gh
 c. (Li ∨ Lj) ∨ Lm
 *d. Iap ⊃ (Ipa ⊃ Iaa)
 e. (~ Ja � Jb) & (~ Jc � ~ Jd)
 *f. (Ha ∨ ~ Ha) ⊃ (Fbb ⊃ Fba)

 5. For each of the following pairs of sentences, construct an interpretation on
which one sentence is true and the other false.

 a. Fab ⊃ Fba, Fba ⊃ Fab
 *b. (Caa & Cab) ∨ Da, ~ Da � ~ (Caa & Cab)
 c. ~ Ma ∨ Cpqr, Capq ∨ ~ Mr
 *d. Kac ∨ Kad, Kac & Kad
 e. ~ Ljk � (Mjk ∨ Mkj), (Mjk & Mkj) & Ljk
 *f. Fab ⊃ (Fbc ⊃ Fac), Fac ⊃ (Fcb ⊃ Fab)

 6. Determine the truth-value of the following sentences on this interpretation:

 UD: The set of people
 B: {�u�: u is a child}
 C: {�u�: u is over 40 years old}
 D: {�u1, u2�: u1 and u2 are sisters}
 F: {�u1, u2�: u1 and u2 are brothers}

 a. (∀w)(Cw ⊃ (∃x)Dxx)
 *b. (∃x)(∃y)(Fxy & Cx)
 c. (∃x)(∀y)(By ∨ Fxy)
 *d. (∀x)(∀y)(Dxy � Fxy)
 e. (∃x)Cx ⊃ ((∃x)(∃y)Fxy ⊃ (∃y)By)
 *f. ~ (∀w)(Cw ∨ Bw)
 g. (∀x)Bx ⊃ (∀x)Cx
 *h. (∀x)[(∃y)(Dxy ∨ Fxy) ⊃ Bx]
 i. (∃x)[Cx ∨ (∃y)(Dxy & Cy)]
 *j. (∀w)((Cw ∨ Bw) ⊃ (∃y)Fwy)

 7. Determine the truth-value of each of the following sentences on this interpretation:

 UD: The set of U.S. presidents
 A: {�u�: u was the fi rst U.S. president}
 B: {�u�: u is a female}
 U: {�u�: u is a U.S. citizen}
 D: {�u1, u2�: u1 held offi ce after u2’s fi rst term of offi ce}
 g: George Washington

 a. (∀w)Dwg
 *b. (∀x)(∀y)((Bx & Ay) ⊃ Dyx)
 c. (∃x)(Ax & (∃y)Dyx)
 *d. ((∃x)Ax & ~ (∃z)Bz) & (Ag ⊃ (∀y)Uy)
 e. (∀y)(Uy ⊃ (∃x)(Dyx ∨ Dxy))

ber38413_ch08_329-401.indd Page 350 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 350 12/4/12 12:10 PM F-400F-400

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 351

 *f. (∀w)(Bw � ~ Uw)
 g. (∀x)(Dxg ⊃ (∃y)(~ Uy & Dxy))
 *h. (∃x)(Ax & Bx) � (∀y)(Ay ⊃ Uy)
 i. ~ (Bg ∨ (∃x)(∀y)Dxy)
 *j. (∀y)((By & Ay) ⊃ Dgy)

 8. Determine the truth-value of each of the following sentences on this interpretation:

 UD: The set of positive integers
 B: {�u�: u is even}
 G: {�u1, u2�: u1 is greater than u2}
 E: {�u1, u2�: u1 equals u2}
 M: {�u1, u2, u3�: u1 minus u2 equals u3}
 a: 1
 b: 2
 c: 3

 a. Bb & (∀w)(Gwb ⊃ ~ Ewb)
 *b. (∀x)(∀z)(~ Exz � Gxz)
 c. (∀x)(∀z)(Gxz ⊃ ~ Exz)
 *d. (∀x)(∃w)(Gwx & (∃z)Mzxw)
 e. ~ (∀w)(∀y)Gwy ⊃ Mcba
 *f. (∀y)(Eya ∨ Gya)
 g. (∀z)(Bz ⊃ ~ (∃y)(By & Mzay))
 *h. (∀y)[(Bb & (∃x)Exb) ⊃ Mcby]
 i. (∀x)(Exx � ~ (∃y)(∃z)Myzx)
 *j. (∃x)((Bx & Gxc) & ~ (∃z)Mxcz)

 8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY

Using the concept of an interpretation, we may now specify the quantifi cational
versions of the core logical concepts. Here are the quantifi cational properties
that individual sentences of PL may have:

A sentence P of PL is quantifi cationally true if and only if P is true on every
interpretation.

A sentence P of PL is quantifi cationally false if and only if P is false on every
interpretation.

A sentence P of PL is quantifi cationally indeterminate if and only if P is neither
quantifi cationally true nor quantifi cationally false.

The sentence ‘(∃x)(Gx ∨ ~ Gx)’ is quantifi cationally true. We can-
not hope to show this by going through every interpretation of the sentence,

ber38413_ch08_329-401.indd Page 351 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 351 12/4/12 12:10 PM F-400F-400

352 PREDICATE LOGIC: SEMANTICS

since there are infi nitely many. (To see this, it suffi ces to note that there are
infi nitely many possible universes of discourse for the sentence.) However, we
may reason about the sentence as follows: Because the sentence is existentially
quantifi ed, it is true on an interpretation just in case at least one member x of
the UD satisfi es the condition specifi ed by ‘Gx ∨ ~ Gx’—that is, just in case at
least one member of the UD either is or is not in the extension of ‘G’. Without
knowing what the interpretation of ‘G’ is, we know that every member x of the
UD satisfi es this condition. And since by defi nition every interpretation has a
nonempty UD, we know that the UD for any interpretation has at least one
member and thus at least one member that satisfi es the condition specifi ed by
the open sentence ‘Gx ∨ ~ Gx’. Therefore, ‘(∃x)(Gx ∨ ~ Gx)’ is true on every
interpretation.

In general, to show that a sentence of PL is quantifi cationally true,
we must use reasoning that shows that, no matter what the UD is and no
matter how the sentence letters, predicates, and individual constants are inter-
preted, the sentence always turns out to be true. Here is another example. The
sentence

(∃x)(∃y)(Gxy ⊃ (∀z)(∀w)Gzw)

is quantifi cationally true. That is, given any interpretation, there are always
members x and y of the UD that satisfy the condition specifi ed by ‘Gxy ⊃ (∀z)
(∀w)Gzw’. The sentence claims that there is a pair x and y of members of the
UD such that if x and y are in the extension of ‘G’ then all pairs of members
of the UD are in the extension of ‘G’. We will consider two possibilities: Either
every pair of members of the UD is in the extension of ‘G’ or not every pair
is in the extension of ‘G’.

If every pair is in the extension of ‘G’, then every pair x and y (and
thus at least one pair) satisfi es the condition specifi ed by ‘Gxy ⊃ (∀z)(∀w)
Gzw’ because the consequent is true in this case. Now consider the other
possibility—that some (at least one) pair is not in the extension of ‘G’. In this
case, x and y satisfy the condition specifi ed by ‘Gxy ⊃ (∀z)(∀w)Gzw’ because
they fail to satisfy the antecedent ‘Gxy’. Because either the extension of ‘G’
includes every pair of members of the UD or it does not, we have just shown
that whatever the extension of ‘G’ may be, there will always be at least one pair
of members of the UD that satisfi es ‘Gxy ⊃ (∀z)(∀w)Gzw’. This being so, the
sentence ‘(∃x)(∃y)(Gxy ⊃ (∀z)(∀w)Gzw)’ is true on every interpretation and
is therefore quantifi cationally true.

The sentence

(∀y)By & (∃z) ~ Bz

is quantifi cationally false. If an interpretation makes the fi rst conjunct true,
then every 1-tuple containing a member of the UD will be in the extension of
‘B’. But if this is so, then no member of the UD satisfi es the condition speci-
fi ed by ‘~ Bz’, and so the existentially quantifi ed second conjunct is false. So

ber38413_ch08_329-401.indd Page 352 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 352 12/4/12 12:10 PM F-400F-400

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 353

on any interpretation on which the fi rst conjunct is true, the entire sentence is
false. Obviously, the sentence is also false on any interpretation on which the
fi rst conjunct is false. It follows that the sentence ‘(∀y)By & (∃z) ~ Bz’ is false
on every interpretation.

The sentence

(∀x)(∃y)(Fx ⊃ Gy) � ((∃x)Fx & (∀y) ~ Gy)

is also quantifi cationally false. Because the sentence is a biconditional, it is
false on any interpretation on which its immediate components have differ-
ent truth-values, and we can show that this is the case for every interpreta-
tion. Consider fi rst an interpretation on which the immediate component
‘(∀x)(∃y)(Fx ⊃ Gy)’ is true. In this case, every member x of the UD must satisfy
the condition specifi ed by ‘(∃y)(Fx ⊃ Gy)’. That is, every member x must be
such that if x is in the extension of ‘F’ then there is some member y of the UD
that is in the extension of ‘G’. In this case, the second immediate component
of the biconditional, ‘(∃x)Fx & (∀y) ~ Gy’, cannot be true. If it were true, then
some member x of the UD would be in the extension of ‘F’ (to satisfy the fi rst
conjunct), and no member y of the UD would be in the extension of ‘G’. But
the truth of ‘(∀x)(∃y)(Fx ⊃ Gy)’, as we have seen, requires that if any object
is in the extension of ‘F’ then at least one object must be in the extension of
‘G’. It follows that if ‘(∀x)(∃y)(Fx ⊃ Gy)’ is true on an interpretation, then
‘((∃x)Fx & (∀y) ~ Gy)’ is false on that interpretation.

Now let us consider an interpretation on which ‘(∀x)(∃y)(Fx ⊃ Gy)’ is
false. In this case some member x of the UD must fail to satisfy the condition
specifi ed by ‘(∃y)(Fx ⊃ Gy)’—x must be in the extension of ‘F’ (to satisfy the
antecedent of the conditional), and the extension of ‘G’ must be empty (so
the consequent is not satisfi ed). But in this case ‘((∃x)Fx & (∀y) ~ Gy)’ must
be true because both conjuncts are true. ‘(∃x)Fx’ is true because something
is in the extension of ‘F’, and ‘(∀y) ~ Gy’ is true because the extension of ‘G’
is empty. So any interpretation that makes ‘(∀x)(∃y)(Fx ⊃ Gy)’ false makes
‘((∃x)Fx & (∀y) ~ Gy)’ true. Combined with the results of the previous para-
graph, this establishes that on any interpretation the immediate components
of ‘(∀x)(∃y)(Fx ⊃ Gy) � ((∃x)Fx & (∀y) ~ Gy)’ have different truth-values.
So the biconditional is false on every interpretation and therefore is quanti-
fi cationally false.

Unfortunately, it is not always so easy to show that a sentence is quan-
tifi cationally true or that it is quantifi cationally false. However, because a quan-
tifi cationally true sentence must be true on every interpretation, we can show
that a sentence is not quantifi cationally true by showing that it is false on at
least one interpretation. Take as an example the sentence

(Ga & (∃z)Bz) ⊃ (∀x)Bx

This sentence is not quantifi cationally true. To show this, we shall construct
an interpretation on which the sentence is false. The sentence is a material

ber38413_ch08_329-401.indd Page 353 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 353 12/4/12 12:10 PM F-400F-400

354 PREDICATE LOGIC: SEMANTICS

conditional, and so our interpretation must make its antecedent true and its
consequent false. For the antecedent to be true, ‘Ga’ must be true and at least
one member of the UD must be in the extension of ‘B’. For the consequent
to be false, at least one member of the UD must fail to be in the extension
of ‘B’. Using the set of positive integers as our UD, we shall interpret ‘G’ and
‘a’ so that ‘Ga’ comes out true, and we shall interpret ‘B’ so that at least one
member of the UD, but not all, falls into the extension of ‘B’. The following
interpretation will do the trick:

 5. UD: The set of positive integers
 Gx: x is odd
 Bx: x is prime
 a: 1

The antecedent ‘(Ga & (∃z)Bz)’ is true because the integer 1 is odd and at
least one positive integer is prime, but ‘(∀x)Bx’ is false because not all positive
integers are prime.

As a second example, ‘(∀x)[(Fx ∨ Gx) ∨ (∃y)Hxy]’ is not quantifi ca-
tionally true. We shall show this by constructing an interpretation on which
the sentence is false. Because the sentence is universally quantifi ed, the UD
must have at least one member that fails to satisfy the condition specifi ed by
‘(Fx ∨ Gx) ∨ (∃y)Hxy’. We choose the set of positive integers as our UD and
choose 2 as the member of the UD that does not satisfy the condition. (There
is no particular reason for using 2, but choosing an integer helps us develop
the rest of the interpretation.) We interpret ‘F’ and ‘G’ so that the integer 2
has neither property (otherwise it would satisfy either ‘Fx’ or ‘Gx’). We must
also interpret ‘H’ so that the integer 2 does not stand in the relation H to any
positive integer:

 6. UD: The set of positive integers
 Fx: x is odd
 Gx: x is greater than 4
 Hxy: x is equal to y squared

Because 2 is neither odd nor greater than 4, and it is not the square of any posi-
tive integer, it fails to satisfy the condition specifi ed by ‘(Fx ∨ Gx) ∨ (∃y)Hxy’.
Therefore the universally quantifi ed sentence is false on interpretation 6. Having
shown that there is at least one interpretation on which the sentence is false, we
may conclude that it is not quantifi cationally true.

We may show that a sentence is not quantifi cationally false by construct-
ing an interpretation on which it is true. The sentence

~ (~ Ga & (∃y)Gy)

is not quantifi cationally false. To construct an interpretation on which it is
true, we must make ‘~ Ga & (∃y)Gy’ false. To do so, we must make one or

ber38413_ch08_329-401.indd Page 354 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 354 12/4/12 12:10 PM F-400F-400

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 355

both conjuncts false. We choose the former and interpret ‘G’ and ‘a’ so that
‘~ Ga’ is false:

 7. UD: The set of positive integers
 Gx: x is even
 a: 2

Because the integer 2 is even, ‘Ga’ is true. Hence ‘~ Ga’ is false and so is
‘~ Ga & (∃y)Gy’. (The fact that the second conjunct turns out to be true on our
interpretation is irrelevant—the conjunction as a whole is still false.) Therefore
‘~ (~ Ga & (∃y)Gy)’ is true on interpretation 7, and we may conclude that the
sentence is not quantifi cationally false.

It is important to remember that we cannot show that a sentence is
quantifi cationally true or that it is quantifi cationally false by constructing a sin-
gle interpretation. To show that a sentence is quantifi cationally true, we must
demonstrate that it is true on every interpretation, and to show that a sentence
is quantifi cationally false, we must show that it is false on every interpretation.

A quantifi cationally indeterminate sentence is one that is neither quan-
tifi cationally true nor quantifi cationally false. We may show that a sentence is
quantifi cationally indeterminate by constructing two interpretations: one on
which it is true and one on which it is false. The sentence

~ (~ Ga & (∃y)Gy)

is quantifi cationally indeterminate. We have already constructed an interpre-
tation (interpretation 7) on which it is true; all that is left is to construct an
interpretation on which it is false. For the sentence to be false, ‘~ Ga & (∃y)
Gy’ must be true. To make ‘~ Ga’ true, our UD must contain at least one
member that is not in the extension of ‘G’, and ‘a’ will designate this mem-
ber. But the UD must also contain a member that is in the extension of ‘G’,
to make ‘(∃y)Gy’ true:

 8. UD: The set of positive integers
 Gx: x is odd
 a: 2

The integer 2 is not odd, but at least one positive integer is, and so ‘~ Ga &
(∃y)Gy’ is true and ‘~ (~ Ga & (∃y)Gy)’ is false on interpretation 8. The sen-
tence is therefore not quantifi cationally true. Having shown that the sentence
is neither quantifi cationally true nor quantifi cationally false, we may conclude
that it is quantifi cationally indeterminate.

Sometimes it takes ingenuity to fi nd an interpretation on which a sen-
tence is true or an interpretation on which a sentence is false. Examine the
sentence itself for guidelines, as we have just done. If it is a truth-functional
compound, then use your knowledge of the truth-conditions for that type of
compound. If the sentence is universally quantifi ed, then the sentence will be

ber38413_ch08_329-401.indd Page 355 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 355 12/4/12 12:10 PM F-400F-400

356 PREDICATE LOGIC: SEMANTICS

true if and only if the condition specifi ed after the quantifi er is satisfi ed by
all members of the UD you choose. If the sentence is existentially quantifi ed,
then it will be true if and only if the condition specifi ed after the quantifi er is
satisfi ed by at least one member of the UD. As you examine the components
of the sentence, you may reason in the same way—are they truth-functional
compounds or quantifi ed? Sometimes the desired interpretation cannot be
obtained. For example, a quantifi cationally true sentence is not false on any
interpretation; therefore any attempt to construct an interpretation that makes
the sentence false will fail.

Two theoretical points are of interest here. The fi rst is that, if a sen-
tence of predicate logic without identity is true on at least one interpretation,
then it is true on some interpretation that has the set of positive integers as
its UD. This result is known as the Löwenheim Theorem (it will be proved in the
exercises in Chapter 11). It follows from this result that, if a sentence of PL is
true on some interpretation with a fi nite UD, then it is true on some interpre-
tation that has the set of positive integers as its UD. And if a sentence of PL is
true on some interpretation for which the UD is larger than the set of positive
integers (for example, the set of real numbers), then it is true on at least one
interpretation that has the set of positive integers as its UD.

Note that this result means that the set of positive integers is always
a good choice for our UD as we construct interpretations. In fact, there are
sentences of PL that are not quantifi cationally true but that are nevertheless
true on every interpretation with a fi nite UD, and there are sentences of PL
that are not quantifi cationally false but are false on every interpretation with a
fi nite UD. For example, the following sentence is not quantifi cationally false:

(∀x)(∀y)(∀z)[(Bxy & Byz) ⊃ Bxz] & [(∀x)(∃y)Bxy & (∀z) ~ Bzz]

But it is false on every interpretation with a fi nite UD. To show that it is not
quantifi cationally false, then, we must choose a UD that has infi nitely many
members—and the set of positive integers is a good choice.

The second point is that there is no decision procedure that will tell us,
for each sentence of PL, whether that sentence is quantifi cationally true, quan-
tifi cationally false, or quantifi cationally indeterminate. (We shall not prove the
result in this text.) This is a very important way in which the semantics for PL
differs from the semantics for SL. For SL, the construction of truth-tables gives a
decision procedure for determining whether a sentence is truth-functionally true,
false, or indeterminate. That is, in a fi nite number of mechanical steps, we can
always correctly answer the questions ‘Is this sentence truth-functionally true?’,
‘Is this sentence truth-functionally false?’, and ‘Is this sentence truth-functionally
indeterminate?’ Alonzo Church proved that there is no analogous method for
predicate logic—we have no such general method now, and no such general
method will ever be found. This result does not mean that we cannot ever show
that some sentences of PL are quantifi cationally true, false, or indeterminate;
rather, it shows that there is no decision procedure (mechanical, certain, and
requiring only a fi nite number of steps) for determining the quantifi cational

ber38413_ch08_329-401.indd Page 356 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 356 12/4/12 12:10 PM F-400F-400

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 357

status of every sentence of PL. However, it is interesting to note that there is such a
procedure for determining the quantifi cational status of sentences of PL that con-
tain no many-place predicates, that is, in which the predicates are all one-place
predicates. This follows from a result by the logicians Bernays and Schönfi nkel.2

 8.2.E EXERCISES

 For these exercises, when you are asked to construct interpretations, you may
specify the interpretations either as they are specifi ed in Section 8.1 or in the
manner of symbolization keys.

 1. Show that each of the following sentences is not quantifi cationally true by
constructing an interpretation on which it is false.

 a. (∀x)(Fx ⊃ Gx) ⊃ (∀x)Gx
 *b. (∃x)(Fx ∨ Gx) ⊃ ((∃x)Fx ⊃ (∃x) ~ Gx)
 c. (∀x)(∃y)Bxy ⊃ (∃y)(∀x)Bxy
 *d. (∀x)(Fxb ∨ Gx) ⊃ [(∀x)Fxb ∨ (∀x)Gx]
 e. [(∀x)Fx ⊃ (∀w)Gw] ⊃ (∀z)(Fz ⊃ Gz)
 *f. (∀x)(Ax ⊃ (∀y)By) ⊃ (∀y)(By ⊃ (∀x)Ax)
 g. ~ (∃x)Gx ⊃ (∀y)(Fyy ⊃ Gy)
 *h. (∀x)(Bx � Hx) ⊃ (∃x)(Bx & Hx)

 2. Show that each of the following sentences is not quantifi cationally false by
constructing an interpretation on which it is true.

 a. ~ (∀w)(∀y)Bwy � (∀z)Bzz
 *b. (∃x)Fx & (∃x) ~ Fx
 c. ((∃x)Fx & (∃x)Gx) & ~ (∃x)(Fx & Gx)
 *d. (∃x)((∃y)Fy ⊃ ~ Fx)
 e. (∀x)(Fx ⊃ Gx) & (∀x)(Gx ⊃ ~ Fx)
 *f. (∃x)(∀y)(Dyx ⊃ ~ Dxy)
 g. (∀x)(Bx � Hx) ⊃ (∃x)(Bx & Hx)
 *h. (∃x)(∀y)Dxy ∨ ~ (∀y)(∃x)Dxy
 i. (∀x)(∀y)(∀z) [(Bxy & Byz) ⊃ Bxz] & [(∀x)(∃y)Bxy & (∀z) ~ Bzz]

 3. Show that each of the following sentences is quantifi cationally indeterminate
by constructing an interpretation on which it is true and an interpretation on
which it is false.

 a. (∃x)(Fx & Gx) ⊃ (∃x) ~ (Fx ∨ Gx)
 *b. (∃x)Fx ⊃ (∀w)(Cw ⊃ Fw)
 c. (∀x)Bnx ⊃ (∀x) ~ Bnx
 *d. (∃x)(Fx ⊃ Gx) ⊃ (∃x)(Fx & Gx)
 e. (∀x)(∀w)[(Nwx ∨ Nxw) ⊃ Nww]
 *f. (Ma & Mb) & (∃x) ~ Mx
 g. (∀x)(Cx ∨ Dx) � (∃y)(Cy & Dy)
 *h. [~ (∃x)Hx ∨ ~ (∃x)Gx] ∨ (∀x)(Hx & Gx)

2“Zum Entscheidungsproblem der mathematischen Logik,” Mathematische Annalen, 99 (1928), 342–372. Alonzo
Church’s proof about the general case appeared in “A Note on the Entscheidungsproblem,” Journal of Symbolic
Logic, 1 (1936), 40–41, 101–102.

ber38413_ch08_329-401.indd Page 357 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 357 12/4/12 12:10 PM F-400F-400

358 PREDICATE LOGIC: SEMANTICS

 4. Each of the following sentences is quantifi cationally true. Explain why.
 a. (∃x)(∀y)Bxy ⊃ (∀y)(∃x)Bxy
 *b. [(∀x)Fx ∨ (∀x)Gx] ⊃ (∀x)(Fx ∨ Gx)
 c. Fa ∨ [(∀x)Fx ⊃ Ga]
 *d. (∀x)(∃y)Mxy ⊃ (∃x)(∃y)Mxy
 e. (∃x)Hx ∨ (∀x)(Hx ⊃ Jx)

 5. Each of the following sentences is quantifi cationally false. Explain why.
 a. (∃w)(Bw � ~ Bw)
 *b. (∀w)(Fw ⊃ Gw) & [(∀w)(Fw ⊃ ~ Gw) & (∃w)Fw]
 c. [(∀x)Fx ⊃ (∃y)Gy] & [~ (∃x)Gx & ~ (∃x) ~ Fx]
 *d. (∃x)(Fx & ~ Gx) & (∀x)(Fx ⊃ Gx)
 e. ((∀w)(Aw ⊃ Bw) & (∀w)(Bw ⊃ Cw)) & (∃y)(Ay & ~ Cy)

 6. For each of the following sentences, decide whether it is quantifi cationally true,
quantifi cationally false, or quantifi cationally indeterminate. If the sentence is
quantifi cationally true or quantifi cationally false, explain why. If it is quantifi -
cationally indeterminate, construct interpretations that establish this.

 a. ((∃x)Gx & (∃y)Hy) & (∃z) ~ (Gz & Hz)
 *b. ((∃x)Gx & (∃y)Hy) & ~ (∃z)(Gz & Hz)
 c. (∀x)(Fx ⊃ Gx) ⊃ (∀x)(~ Gx ⊃ ~ Fx)
 *d. (∀x)Fx ⊃ ~ (∃x) ~ (Fx ∨ Gx)
 e. (∀x)(Dx ⊃ (∃z)Hxz) ⊃ (∃z)(∀x)(Dx ⊃ Hxz)
 *f. (∃z)(∀x)(Dx ⊃ Hxz) ⊃ (∀x)(Dx ⊃ (∃z)Hxz)

 8.3 QUANTIFICATIONAL EQUIVALENCE AND CONSISTENCY

The next concept to be introduced is that of quantifi cational equivalence.

Sentences P and Q of PL are quantifi cationally equivalent if and only if there
is no interpretation on which P and Q have different truth-values.

The sentences

(∃x)Fx ⊃ Ga

and

(∀x)(Fx ⊃ Ga)

are quantifi cationally equivalent. We may reason as follows: First suppose that
‘(∃x)Fx ⊃ Ga’ is true on some interpretation. Then ‘(∃x)Fx’ is either true or
false on this interpretation. If it is true, then so is ‘Ga’ (by our assumption
that ‘(∃x)Fx ⊃ Ga’ is true). But then, since ‘Ga’ is true, every object x in the
UD is such that if x is F then a is G. So ‘(∀x)(Fx ⊃ Ga)’ is true. If ‘(∃x)Fx’ is
false, however, then every object x in the UD is such that if x is F (which, on

ber38413_ch08_329-401.indd Page 358 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 358 12/4/12 12:10 PM F-400F-400

8.3 QUANTIFICATIONAL EQUIVALENCE AND CONSISTENCY 359

our assumption, it is not) then a is G. Again ‘(∀x)(Fx ⊃ Ga)’ is true. Hence,
if ‘(∃x)Fx ⊃ Ga’ is true on an interpretation, ‘(∀x)(Fx ⊃ Ga)’ is also true on
that interpretation.

Now suppose that ‘(∃x)Fx ⊃ Ga’ is false on some interpretation. Since
the sentence is a conditional, it follows that ‘(∃x)Fx’ is true and ‘Ga’ is false.
But if ‘(∃x)Fx’ is true, then there is at least one object x in the UD in the
extension of ‘F’. This object then does not satisfy the condition that if it is F
(which it is) then a is G (which is false on our present assumption). So ‘(∀x)
(Fx ⊃ Ga)’ is false if ‘(∃x)Fx ⊃ Ga’ is. Taken together with our previous result,
this demonstrates that the two sentences are quantifi cationally equivalent.

The sentences

~ (∃x)(∀y)(Gxy ∨ Gyx)

and

(∀x)(∃y)(~ Gxy & ~ Gyx)

are also quantifi cationally equivalent. As in the previous example, we will show
that if the fi rst sentence is true on an interpretation then so is the second sen-
tence, and that if the fi rst sentence is false on an interpretation then so is the
second sentence. First consider an interpretation on which ‘~ (∃x)(∀y)(Gxy ∨
Gyx)’ is true. ‘(∃x)(∀y)(Gxy ∨ Gyx)’ must be false on this interpretation, so
no member x of the UD satisfi es the condition specifi ed by ‘(∀y)(Gxy ∨ Gyx)’.
That is, no member x of the UD is such that for every object y either the pair
x and y or the pair y and x is in the extension of ‘G’. Put another way, for each
member x of the UD, there is at least one object y such that both ‘~ Gxy’ and
‘~ Gyx’ hold. And that is exactly what the second sentence says, so it is true as well.

Now consider an interpretation on which the fi rst sentence is false;
‘(∃x)(∀y)(Gxy ∨ Gyx)’ is true on such an interpretation. So there is at least
one member x of the UD such that for every object y, either ‘Gxy’ or ‘Gyx’
holds. Therefore, x does not satisfy the condition specifi ed by ‘(∃y)(~ Gxy &
~ Gyx)’ (because there is no y such that neither ‘Gxy’ nor ‘Gyx’ holds). And
so the universally quantifi ed sentence ‘(∀x)(∃y)(~ Gxy & ~ Gyx)’ is also false.
From this and the result of the preceding paragraph, we conclude that the two
sentences are quantifi cationally equivalent.

If we want to establish that two sentences are not quantifi cationally
equivalent, we can construct an interpretation to show this. The interpreta-
tion must make one of the sentences true and the other sentence false. For
example, the sentences

(∀x)(Fx ⊃ Ga)

and

(∀x)Fx ⊃ Ga

ber38413_ch08_329-401.indd Page 359 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 359 12/4/12 12:10 PM F-400F-400

360 PREDICATE LOGIC: SEMANTICS

are not quantifi cationally equivalent. We shall construct an interpretation on
which the fi rst sentence is false and the second sentence is true. To make the
fi rst sentence false, ‘Ga’ has to be false, and at least one object x must be in
the extension of ‘F’—for then x will fail to satisfy ‘Fx ⊃ Ga’. But we can still
make ‘(∀x)Fx ⊃ Ga’ true—because then the antecedent ‘(∀x)Fx’ will be false.
Here is our interpretation:

 9. UD: The set of positive integers
 Fx: x is prime
 Gx: x is even
 a: 1

The integer 3 (for example) does not satisfy the condition that if it is prime
(which it is) then the number 1 is even (which is false). So ‘(∀x)(Fx ⊃ Ga)’ is
false on the interpretation. But ‘(∀x)Fx ⊃ Ga’ is true because its antecedent,
‘(∀x)Fx’, is false—not every positive integer is prime. Once again we see that
the scope of quantifi ers is very important in determining the truth-conditions
of sentences of PL.

The sentences

(∀x)(∃y)(Hy ⊃ Lx)

and

(∀x)[(∃y)Hy ⊃ Lx]

are also not quantifi cationally equivalent. We shall show this by constructing an
interpretation on which the fi rst sentence is true and the second sentence is
false. To make ‘(∀x)[(∃y)Hy ⊃ Lx]’ false, some member of the UD must fail
to satisfy ‘(∃y)Hy ⊃ Lx’. Therefore the UD must contain at least one object
in the extension of ‘H’ (so that ‘(∃y)Hy’ is satisfi ed) and at least one object x
that is not in the extension of ‘L’ (so that this object does not satisfy ‘Lx’). To
make ‘(∀x)(∃y)(Hy ⊃ Lx)’ true, every member of the UD must satisfy ‘(∃y)(Hy
⊃ Lx)’—for every member x of the UD, there must be an object y such that if
y is H then x is L. We have already decided that at least one object x will not
be in the extension of ‘L’. So, if x (along with all other members of the UD)
is to satisfy ‘(∃y)(Hy ⊃ Lx)’, then there must be at least one member y of the
UD that is not in the extension of ‘H’—for then y will be such that if it is H
(which it will not be) then x is L.

To summarize, we need at least one object that is in the extension
of ‘L’ and at least one object that is not in the extension of ‘H’. Here is our
interpretation:

 10. UD: The set of positive integers
 Hx: x is odd
 Lx: x is prime

ber38413_ch08_329-401.indd Page 360 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 360 12/4/12 12:10 PM F-400F-400

8.3 QUANTIFICATIONAL EQUIVALENCE AND CONSISTENCY 361

The sentence ‘(∀x)[(∃y)Hy ⊃ Lx]’ is false—every positive integer x that is not
prime fails to satisfy the condition that if some positive integer is odd (which
at least one positive integer is) then x is prime. The sentence ‘(∀x)(∃y)(Hy ⊃
Lx)’ is true because at least one positive integer is not odd. So for any positive
integer x there is at least one positive integer y that is not odd, and hence at
least one positive integer y such that if y is odd (which y is not) then x is prime.

While we may construct single interpretations to show that two sentences
are not quantifi cationally equivalent, we may not use the same method to show that
sentences are quantifi cationally equivalent. In the latter case we must reason about
every interpretation as we did in the examples at the beginning of this section.

Quantifi cational consistency is our next concept.

A set of sentences of PL is quantifi cationally consistent if and only if there is
at least one interpretation on which all the members of the set are true. A
set of sentences of PL is quantifi cationally inconsistent if and only if the set is
not quantifi cationally consistent.

The set of sentences

{(∀x)Gax, ~ Gba ∨ (∃x) ~ Gax}

is quantifi cationally consistent. The following interpretation shows this:

 11. UD: The set of positive integers
 Gxy: x is less than or equal to y
 a: 1
 b: 2

On this interpretation ‘(∀x)Gax’ is true since 1 is less than or equal to every
positive integer. ‘~ Gba’ is true since 2 is neither less than nor equal to 1; so
‘~ Gba ∨ (∃x) ~ Gax’ is true. Since both members of the set are true on this
interpretation, the set is quantifi cationally consistent.

The set

{(∀w)(Fw ⊃ Gw), (∀w)(Fw ⊃ ~ Gw)}

is also quantifi cationally consistent. This may seem surprising since the fi rst
sentence says that everything that is F is G and the second sentence says that
everything that is F is not G. But the set is consistent because, if ‘F’ has an empty
extension, then every object w in the UD will be such that if w is F (which w is
not) then w is both G and not G. The following interpretation illustrates this.

 12. UD: The set of positive integers
 Fx: x is negative
 Gx: x is even

ber38413_ch08_329-401.indd Page 361 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 361 12/4/12 12:10 PM F-400F-400

362 PREDICATE LOGIC: SEMANTICS

Each positive integer w is such that if w is negative (which w is not) then w is
even, and each positive integer w is such that if w is negative (which w is not)
then w is not even. Both ‘(∀w)(Fw ⊃ Gw)’ and ‘(∀w)(Fw ⊃ ~ Gw)’ are true
on this interpretation.

Note that, while a single interpretation may be produced to show that
a set of sentences is quantifi cationally consistent, a single interpretation cannot
be used to show that a set of sentences is quantifi cationally inconsistent. To
show that a set is quantifi cationally inconsistent, we must show that on every
interpretation at least one sentence in the set is false. In some cases simple
reasoning shows that a set of sentences is quantifi cationally inconsistent. The set

{(∃y)(Fy & ~ Ny), (∀y)(Fy ⊃ Ny)}

is quantifi cationally inconsistent. For if ‘(∃y)(Fy & ~ Ny)’ is true on some inter-
pretation then some member y of the UD is F and is not N. But then that
member is not such that if it is F (which it is) then it is N (which it is not).
Hence the universally quantifi ed sentence ‘(∀y)(Fy ⊃ Ny)’ is false on such an
interpretation. So there is no interpretation on which both set members are
true; the set is quantifi cationally inconsistent.

 8.3E EXERCISES

For these exercises, when you are asked to construct interpretations, you may
specify the interpretations either as they are specifi ed in Section 8.1 or in the
manner of symbolization keys.

 1. Show that the sentences in each of the following pairs are not quantifi cationally
equivalent by constructing an interpretation on which one of the sentences is
true and the other is false.

 a. (∃x)Fx ⊃ Ga, (∃x)(Fx ⊃ Ga)
 *b. (∃x)Fx & (∃x)Gx, (∃x)(Fx & Gx)
 c. (∀x)Fx ∨ (∀x)Gx, (∀x)(Fx ∨ Gx)
 *d. (∃x)(Fx ∨ Ga), (∃x)(Fx ∨ Gb)
 e. (∀x)(Fx � Gx), (∃x)Fx � (∃x)Gx
 *f. (∀x)(Fx ⊃ Gx), (∀y)((∀x)Fx ⊃ Gy)
 g. (∃x)(Bx & (∀y)Dyx), (∀x)(Bx ⊃ (∀y)Dyx)
 *h. (∃y)(My � Ny), (∃y)My � (∃y)Ny
 i. (∀x)(∃y)(Fx ⊃ Kyx), (∃x)(∃y)(Fx ⊃ Kyx)

 2. In each of the following pairs the sentences are quantifi cationally equivalent.
Explain why.

 a. (∀x)Fx ⊃ Ga, (∃x)(Fx ⊃ Ga)
 *b. (∀x)(Fx ⊃ Gx), ~ (∃x)(Fx & ~ Gx)
 c. (∃x)(Fx ∨ Gx), ~ (∀y)(~ Fy & ~ Gy)
 *d. (∀x)(∀y)(Mxy & Myx), ~ (∃x)(∃y)(~ Mxy ∨ ~ Myx)
 e. (∀x)(∀y)Gxy, (∀y)(∀x)Gxy
 *f. (∀x)(∀y)(Fxy ⊃ Hyx), ~ (∃x)(∃y)(Fxy & ~ Hyx)

ber38413_ch08_329-401.indd Page 362 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 362 12/4/12 12:10 PM F-400F-400

8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY 363

 3. Decide, for each of the following pairs of sentences, whether the sentences are
quantifi cationally equivalent. If they are quantifi cationally equivalent, explain
why. If they are not quantifi cationally equivalent, construct an interpretation
that shows this.

 a. (∃x)(Fx ∨ Gx), (∀x) ~ (Fx & Gx)
 *b. (∃x)(Fx & Gx), ~ (∀x) ~ (Fx ∨ Gx)
 c. (∀w)(∀y)(Gyw ∨ Gwy), (∀w)(∀y)(Gww ∨ Gwy)
 *d. (∀y)((∃z)Hzy ⊃ Hyy), (∀y)((∃z)(Hzz ⊃ Hzy)

 4. Show that each of the following sets of sentences is quantifi cationally consistent
by constructing an interpretation on which every member of the set is true.

 a. {(∃x)Bx, (∃x)Cx, ~ (∀x)(Bx ∨ Cx)}
 *b. {(∃x)Fx ∨ (∃x)Gx, (∃x) ~ Fx, (∃x) ~ Gx}
 c. {(∀x)(Fx ⊃ Gx), (∀x)(Nx ⊃ Mx), (∀x)(Gx ⊃ ~ Mx)}
 *d. {(∀x)(Dax � Bax), ~ Dab, ~ Bba}
 e. {(∀w)(Nw ⊃ (∃z)(Mz & Cwz)), (∀z)(∀w)(Mz ⊃ ~ Cwz)}
 *f. {(∃w)Fw, (∀w)(Fw ⊃ (∃x)Bxw), (∀x) ~ Bxx}
 g. {~ (∀y)(Ny ⊃ My), ~ (∀y) ~ (Ny ⊃ My)}
 *h. {(∀x)(Bx � (∀y)Cxy), (∃x) ~ Bx, (∃x)(∃y)Cxy}
 i. {(∃y)Fay, (∃y) ~ Gay, (∀y)(Fay ∨ Gay)}

 5. Each of the following sets of sentences is quantifi cationally inconsistent. Explain
why.

 a. {(∃x)(Bx & Cx), (∀x) ~ (Bx ∨ Cx)}
 *b. {(∃x)(∃y)(Bxy ∨ Byx), ~ (∃x)(∃y)Bxy}
 c. {(∀x)(∀y)(Byx ∨ Bxy), (∃y) ~ Byy}
 *d. {Ba, (∃y)Day, (∀x)(Bx ⊃ (∀y) ~ Dxy)}
 e. {(∃x)(∀y)Gxy, (∀x)(∀y) ~ Gxy}
 *f. {(∀x)Fx ∨ (∀x) ~ Fx, (∃x)Fx � (∃x) ~ Fx}

 6. Decide, for each of the following sets of sentences, whether the set is quanti-
fi cationally consistent. If the set is quantifi cationally consistent, construct an
interpretation that shows this. If it is quantifi cationally inconsistent, explain why.

 a. {(∃x)Fx ⊃ (∀x)Fx, (∃x) ~ Fx, (∃x) Fx}
 *b. {(∃x)(∃y)Gxy, (∀y) ~ Gyy}
 c. {(∀x) ~ (∀y)Gxy, (∀x)Gxx}
 *d. {(∃x)Px, (∀y)(Py ⊃ Hya), ~ (∀x) ~ Hxa}

 7. Explain why sentences P and Q of PL are quantifi cationally equivalent if and
only if P � Q is quantifi cationally true.

 8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY

Our last two semantic concepts for the language PL are the concepts of quan-
tifi cational entailment and quantifi cational validity.

A set � of sentences of PL quantifi cationally entails a sentence P of PL if and
only if there is no interpretation on which every member of � is true and
P is false.

ber38413_ch08_329-401.indd Page 363 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 363 12/4/12 12:10 PM F-400F-400

364 PREDICATE LOGIC: SEMANTICS

An argument of PL is quantifi cationally valid if and only if there is no inter-
pretation on which every premise is true and the conclusion is false. An
argument of PL is quantifi cationally invalid if and only if the argument is not
quantifi cationally valid.

The set

{(∀x)(Bx ⊃ Ga), (∃x)Bx}

quantifi cationally entails the sentence ‘Ga’. As in SL, we may use the double
turnstile and write this as

{(∀x)(Bx ⊃ Ga), (∃x)Bx} Ga

Suppose that ‘(∀x)(Bx ⊃ Ga)’ and ‘(∃x)Bx’ are both true on some interpretation.
Since ‘(∀x)(Bx ⊃ Ga)’ is true, we know that every object x in the UD is such that
if x is B then a is G. Since ‘(∃x)Bx’ is true, we know that at least one object x in
the UD is in the extension of ‘B’. Since it is true that if x is B (which it is) then
a is G, ‘Ga’ must therefore be true. So, on any interpretation on which ‘(∀x)(Bx
⊃ Ga)’ and ‘(∃x)Bx’ are both true, ‘Ga’ is also true. So the entailment does hold.

The argument

(∃x)(Fx ∨ Gx)

(∀x) ~ Fx

(∃x)Gx

is quantifi cationally valid. Suppose that on some interpretation both premises
are true. If the fi rst premise is true, then some member x of the UD is either
F or G. If the premise ‘(∀x) ~ Fx’ is true, then no member of the UD is F.
Therefore, because the member that is either F or G is not F, it must be G.
Thus ‘(∃x)Gx’ will also be true on such an interpretation.

We can show that a set of sentences does not quantifi cationally entail a
sentence by constructing an interpretation. For example, the set

{~(∀x)(Gx � Fx), ~ Fb}

does not quantifi cationally entail the sentence

(∀x) ~ Gx

We will construct an interpretation on which the members of the set are true
and ‘(∀x) ~ Gx’ is false. For the sentence ‘~ (∀x)(Gx � Fx)’ to be true, the
UD must contain at least one member x that fails to satisfy ‘Gx � Fx’—x must

ber38413_ch08_329-401.indd Page 364 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 364 12/4/12 12:10 PM F-400F-400

8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY 365

be in the extension of one of the two predicates but not in the extension of
the other. For ‘~ Fb’ to be true, ‘b’ must designate an object that is not in the
extension of ‘F’. And ‘(∀x) ~ Gx’, which claims that everything is not G, will
be false if at least one object in the UD is in the extension of ‘G’. Here is an
interpretation that satisfi es these conditions:

 13. UD: The set of positive integers
 Fx: x is greater than 5
 Gx: x is prime
 b: 3

Not all positive integers are prime if and only if they are greater than 5—take
2 as an example—and 3 is not greater than 5. Therefore the set members
are both true on this interpretation. On the other hand, ‘(∀x) ~ Gx’ is false,
because some positive integers are prime.

To show that an argument is quantifi cationally invalid, we can construct
an interpretation on which its premises are true and its conclusion is false. The
argument

(∃x)[(∃y)Fy ⊃ Fx]

(∃y) ~ Fy

~ (∃x)Fx

is quantifi cationally invalid. We can make the fi rst premise true by interpreting
‘F’ so that at least one member of the UD is in its extension—for then that
object will satisfy the condition specifi ed by ‘(∃y)Fy ⊃ Fx’ because it will satisfy
its consequent. This object will also make the conclusion false. The second
premise will be true if at least one member of the UD is not in the extension
of ‘F’. So the extension of ‘F’ will include some, but not all, members of the
UD. The following interpretation will do the trick:

 14. UD: The set of positive integers
 Fx: x is prime

Some positive integer x is such that if there exists a prime positive integer
then x is prime—for example, the integer 5 satisfi es this condition—and some
positive integer is not prime, but it is false that no positive integer is prime.

Note that we cannot prove that a quantifi cational entailment does hold
or that an argument is quantifi cationally valid by constructing a single interpre-
tation. Proving either of these involves proving something about the truth-value
of sentences on every interpretation, not just a select few.

And, once again, there are limitations on deciding questions of
quantifi cational equivalence, consistency, entailment, and validity. Owing to
Church’s result, mentioned at the end of Section 8.2, we know that there is
no procedure for deciding these questions for every group of sentences of

ber38413_ch08_329-401.indd Page 365 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 365 12/4/12 12:10 PM F-400F-400

366 PREDICATE LOGIC: SEMANTICS

PL.3 However, our method of producing interpretations to establish quantifi -
cational consistency, nonequivalence, nonentailment, and invalidity, although
not a decision procedure, often produces the desired result.

 8.4E EXERCISES

For these exercises, when you are asked to construct interpretations, you may
specify the interpretations either as they are specifi ed in Section 8.1 or in the
manner of symbolization keys.

 1. Establish each of the following by constructing an appropriate interpretation.
 a. {(∀x)(Fx ⊃ Gx), (∀x)(Hx ⊃ Gx)} (∃x)(Hx & Fx)
 *b. {(∀y)(Fy � Fa), Fa} ~ Fb
 c. {(∃x)Fx} Fa
 *d. {(∀x)(Bx ⊃ Cx), (∃x)Bx} (∀x)Cx
 e. {(∃x)(Bx ⊃ Cx), (∃x)Cx} (∃x)Bx
 *f. {(∀x)(Fx ⊃ Gx), (∀x)(Hx ⊃ ~ Fx)} (∀x)(Hx ⊃ Gx)
 g. {(∀x)(∃y) ~ Lxy} (∀x) ~ Lxx
 *h. {(∃x)(∀y)(Hxy ∨ Jxy), (∃x)(∀y) ~ Hxy} (∃x)(∀y)Jxy

 2. Show that each of the following arguments is quantifi cationally invalid by con-
structing an appropriate interpretation.

 a. (∀x)(Fx ⊃ Gx) ⊃ (∃x)Nx

 (∀x)(Nx ⊃ Gx)

 (∀x)(~ Fx ∨ Gx)

 *b. (~ (∃y)Fy ⊃ (∃y)Fy) ∨ ~ Fa

 (∃z)Fz

 c. (∃x)(Fx & Gx)
 (∃x)(Fx & Hx)

 (∃x)(Gx & Hx)

 *d. (∀x)(Fx ⊃ Gx)

 Ga

 Fa

 e. (∀x)(Fx ⊃ Gx)

 ~ (∃x)Fx

 ~ (∃x)Gx

3Moreover, some arguments can be proved quantifi cationally invalid and some sets quantifi cationally consistent
only by means of interpretations with universes of discourse containing an infi nite number of members. However,
there is a result for sets of sentences analogous to the Löwenheim Theorem (mentioned in Section 8.2), which
says that if a set of sentences is quantifi cationally consistent—or an argument quantifi cationally invalid—then
there are interpretations with the set of positive integers as the UD that show this. It is not necessary in any case
to check interpretations with larger universes of discourse. This result is known as the Löwenheim-Skolem Theorem
and is assigned as an exercise in Chapter 11.

ber38413_ch08_329-401.indd Page 366 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 366 12/4/12 12:10 PM F-400F-400

8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY 367

 *f. (∀x)(∀y)(Mxy ⊃ Nxy)

 (∀x)(∀y)(Mxy ⊃ (Nxy & Nyx))

 g. (∃x)Gx

 (∀x)(Gx ⊃ Dxx)

 (∃x)(∀y)(Gx & Dxy)

 *h. Fa ∨ (∃y)Gya

 Fb ∨ (∃y) ~ Gyb

 (∃y)Gya

 i. (∀x)(Fx ⊃ Gx)

 (∀x)(Hx ⊃ Gx)

 (∀x)(Fx ∨ Hx)

 3. Using the given symbolization keys, symbolize the following arguments in PL.
Then show that the fi rst symbolized argument in each pair is quantifi cationally
valid while the second is not.

 a. UD: The set consisting of all living creatures
 Bx: x is beautiful
 Px: x is a person

 Every living creature is beautiful. Therefore some living creature is beautiful.

 Everyone is beautiful. Therefore someone is beautiful.

 *b. UD: The set of people
 Rx: x roller skates
 Dx: x can dance

 Not everyone can dance. Therefore someone can’t dance.

 No one who roller skates can dance. Therefore some roller skater can’t dance.

 c. UD: The set of people
 Lxy: x loves y

 There is a person who loves everyone. Therefore everyone is loved by
 someone.

 Everyone is loved by someone. Therefore there is a person who loves
 everyone.

 *d. UD: The set of integers
 Ex: x is even
 Dx: x is divisible by 2

 Some integers are even and some integers are divisible by 2. Therefore some
integers are even if and only if some integers are divisible by 2.

 An integer is even if and only if it is divisible by 2. Therefore some integer
is even.

ber38413_ch08_329-401.indd Page 367 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 367 12/4/12 12:10 PM F-400F-400

368 PREDICATE LOGIC: SEMANTICS

 e. UD: The set of people
 Tx: x is a student
 Sx: x is smart
 Hx: x is happy

 Some students are smart and some students are not happy. Therefore there
is a student who is smart or not happy.

 All students are smart, and no student is happy. Therefore there is a student
who is smart or not happy.

 *f. UD: The set of people
 Sx: x is a senator
 Rx: x is a Republican
 Dx: x is a Democrat

 Any senator who is not a Republican is a Democrat. There is a senator who
is not a Republican. Therefore some senator is a Democrat.

 There is a senator who is not a Republican. Therefore some senator is a
Democrat.

 g. UD: The set of people
 Ax: x likes asparagus
 Sx: x likes spinach
 Cx: x is crazy

 Anyone who likes asparagus is crazy, and anyone who is crazy likes spinach.
Therefore anyone who likes asparagus also likes spinach.

 Anyone who likes spinach is crazy, and anyone who is crazy likes asparagus.
Therefore anyone who likes asparagus also likes spinach.

 4. Decide, for each of the following arguments, whether it is quantifi cationally
valid. If the argument is quantifi cationally valid, explain why. If the argument
is not quantifi cationally valid, construct an interpretation that shows this.

 a. (∀x)((Lx & Dx) ⊃ Fx)

 (∃x)(Dx & ~ Fx)

 ~(∃x)Lx

 *b. (∀x)(Sx ⊃ (Gx ∨ Bx))

 (∃x)(Sx & ~ Bx)

 (∃x)Gx

 c. (∃x)(Hx � (Rx ∨ Sx))

 (∃x)((Hx & Rx) ∨ (Hx & Sx))

 *d. (∃x)(∃y)((Rx & Sy) & Pxy)

 (∀x)(Rx ⊃ Tx)

 (∃x)(∃y)(Tx & Pxy)

ber38413_ch08_329-401.indd Page 368 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 368 12/4/12 12:10 PM F-400F-400

8.5 TRUTH-FUNCTIONAL EXPANSIONS 369

 8.5 TRUTH-FUNCTIONAL EXPANSIONS

In the preceding sections we constructed interpretations for sentences of PL to
establish various semantic results: A sentence is not quantifi cationally true, a set
of sentences is quantifi cationally consistent, and so on. When we give an inter-
pretation for a sentence or a set of sentences of PL, the UD we select may be very
large or even infi nite. However, when we ask whether certain sentences have
various semantic properties, we can often fi nd the answer by considering only
interpretations with relatively small UDs. Truth-functional expansions enable us
to reason about the truth-values of sentences on interpretations with small UDs.

The principles behind truth-functional expansions are simple. A uni-
versally quantifi ed sentence says something about each member of the UD.
If we have a fi nite UD and a set of constants such that each member of the
UD is designated by at least one of these constants, then we can reexpress a
universally quantifi ed sentence as an iterated conjunction of its substitution
instances formed from the constants (substitution instances were defi ned in
Section 7.2 of Chapter 7). As long as every member of the UD is designated
by at least one of the constants, the conjunction ends up saying the same thing
as the universally quantifi ed sentence—that every member of the UD satisfi es
some condition. An existentially quantifi ed sentence says that there is at least
one member of the UD of which such-and-such is true and can be reexpressed
as an iterated disjunction of its substitution instances: The sentence says that
such-and-such is true of this object or of that object or . . . As long as every
member of the UD is designated by at least one of the constants, the disjunc-
tion of substitution instances makes the same claim about the UD as did the
existentially quantifi ed sentence.

To construct a truth-functional expansion, we fi rst choose a set of indi-
vidual constants. If the sentence contains any constants, they must be included
in this set. To expand a universally quantifi ed sentence (∀x)P, we remove the
initial quantifi er from the sentence and replace the resulting open sentence
with the iterated conjunction

(. . . (P(a1/x) & P(a2/x)) & . . . & P(an/x))

where a1, . . . , an are the chosen constants and each P(ai/x) is a substitution
instance of (∀x)P.

We shall expand the sentence ‘(∀x)Nx’ for the set of constants {‘a’,
‘b’}. Removing the quantifi er gives us the open sentence ‘Nx’, and we replace
‘Nx’ with the conjunction ‘Na & Nb’. We can expand ‘(∀y)(My ⊃ Jyy)’ for
the same set of constants by fi rst dropping the quantifi er and then replacing
‘My ⊃ Jyy’ with a conjunction in which ‘a’ replaces the free variable ‘y’ in the
fi rst conjunct, and ‘b’ replaces that variable in the second conjunct. The truth-
functional expansion is

(Ma ⊃ Jaa) & (Mb ⊃ Jbb),

ber38413_ch08_329-401.indd Page 369 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 369 12/4/12 12:10 PM F-400F-400

370 PREDICATE LOGIC: SEMANTICS

and it has the same truth-value as the unexpanded sentence on every interpre-
tation in which each member of the UD is named by at least one of the two
constants. If we have an interpretation with a two-member UD, for example,
in which ‘a’ designates one member and ‘b’ designates the other, then ‘(Ma ⊃
Jaa) & (Mb ⊃ Jbb)’ makes the same claim about the UD as ‘(∀y)(My ⊃ Jyy)’—
namely, that each of the two members is such that if it is M then it stands in
the relation J to itself.

We have claimed that a truth-functional expansion has the same truth-
value as the unexpanded sentence on any interpretation on which each mem-
ber of the UD is named by at least one of the constants used in the expansion.
We note two points about this claim using the previous example to illustrate.
The fi rst is that the interpretations in question may assign the same object to
several of the constants as long as each object in the UD is named by at least
one of them. So, if we have an interpretation with a one-member UD, both ‘a’
and ‘b’ must refer to that one member. In this case every object in the UD is
named by at least one of the two constants. Our expanded sentence says twice
that the one member of the UD is such that if it is M then it stands in the rela-
tion J to itself, and this is equivalent to the universal claim that every member
of the UD satisfi es that condition.

The second point is that, if a UD for an interpretation has even one
member that is not designated by one of the two constants used in the truth-
functional expansion, then that expansion and the sentence being expanded
may not have the same truth-value. This is because in this case the truth-
functional expansion does not talk about every member of the UD, whereas a
universally quantifi ed sentence always does so.

Now we shall expand the sentence

(∀x)(Gac ∨ Fx)

We have stipulated that the set of constants we use for an expansion must
include all the individual constants that occur in the sentence being expanded.
So any set of constants for which we expand the sentence must include ‘a’ and
‘c’. We can expand the sentence for the set containing just those constants, in
which case removing the initial quantifi er and replacing ‘x’ with each constant
in turn results in the expansion

(Gac ∨ Fa) & (Gac ∨ Fc)

If we expand the sentence for the larger set {‘a’, ‘c’, ‘e’} we obtain

((Gac ∨ Fa) & (Gac ∨ Fc)) & (Gac ∨ Fe)

If the sentence we want to expand contains more than one universal
quantifi er, we start with the leftmost one and remove each in turn. To expand

(∀y)(Ly & (∀z)Bzy)

ber38413_ch08_329-401.indd Page 370 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 370 12/4/12 12:10 PM F-400F-400

8.5 TRUTH-FUNCTIONAL EXPANSIONS 371

for the set of constants {‘a’, ‘b’}, we fi rst eliminate the quantifi er ‘(∀y)’ and
expand the resulting open sentence, ‘Ly & (∀z)Bzy’, to obtain

[La & (∀z)Bza] & [Lb & (∀z)Bzb]

We now expand each of the universally quantifi ed sentences that are compo-
nents of ‘[La & (∀z)Bza] & [Lb & (∀z)Bzb]’ by eliminating each occurrence
of ‘(∀z)’ and expanding the resulting open sentences, to obtain fi rst

[La & (Baa & Bba)] & [Lb & (∀z)Bzb]

and then

[La & (Baa & Bba)] & [Lb & (Bab & Bbb)]

Here we replaced ‘(∀z)Bza’ with ‘(Baa & Bba)’ and ‘(∀z)Bzb’ with ‘(Bab &
Bbb)’. Note that when we expand a quantifi ed sentence that is a component
of another sentence—as with ‘(∀z)Bza’ and ‘(∀z)Bzb’—we replace that com-
ponent exactly where it occurred in the sentence being expanded.

We may expand existentially quantifi ed sentences in a similar way,
except in this case we construct iterated disjunctions rather than iterated con-
junctions. A sentence of the form (∃x)P expands to the disjunction

(. . . (P(a1/x) ∨ P(a2/x)) ∨ . . . ∨ P(an/x))

where a1, . . . , an are the constants in the chosen set and each P(ai/x) is a
substitution instance of (∃x)P. We construct an iterated disjunction because an
existential quantifi cation indicates that at least one member of the UD satisfi es
the specifi ed condition: This member satisfi es the condition, or that member
satisfi es the condition, and so on.

We can expand the sentence

(∃x)(Fx ⊃ Gx)

for the set of constants {‘a’, ‘b’, ‘c’} as

[(Fa ⊃ Ga) ∨ (Fb ⊃ Gb)] ∨ (Fc ⊃ Gc)

On any interpretation on which each of the members of the UD is named by
at least one of ‘a’, ‘b’, and ‘c’, the expanded sentence will have the same truth-
value as the existentially quantifi ed sentence.

We expand the sentence

(∃x)(∃w)Zwx

ber38413_ch08_329-401.indd Page 371 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 371 12/4/12 12:10 PM F-400F-400

372 PREDICATE LOGIC: SEMANTICS

for the set of constants {‘a’, ‘b’} as follows: First, we eliminate ‘(∃x)’ and replace
‘(∃w)Zwx’ with an iterated disjunction:

(∃w)Zwa ∨ (∃w)Zwb

Then we eliminate ‘(∃w)’ in each of its occurrences, fi rst to obtain

(Zaa ∨ Zba) ∨ (∃w)Zwb

and then to obtain

(Zaa ∨ Zba) ∨ (Zab ∨ Zbb)

To expand the sentence

(∃w)[Gw ⊃ ~ (Fw ∨ (∃z)Bz)]

for the set of constants {‘a’, ‘b’}, we fi rst eliminate ‘(∃w)’ to obtain

[Ga ⊃ ~ (Fa ∨ (∃z)Bz)] ∨ [Gb ⊃ ~ (Fb ∨ (∃z)Bz)]

and then eliminate both occurrences of ‘(∃z)’ to obtain

[Ga ⊃ ~ (Fa ∨ (Ba ∨ Bb))] ∨ [Gb ⊃ ~ (Fb ∨ (Ba ∨ Bb))]

The sentence

(∀x)(Fx ∨ (∃z)[Fz & ~ Izx])

can also be expanded by systematic elimination of its quantifi ers. We shall
expand it for the set of constants {‘b’, ‘f’}. First, the universal quantifi er is
eliminated to obtain the conjunction

[Fb ∨ (∃z)[Fz & ~ Izb]] & (Ff ∨ (∃z)[Fz & ~ Izf])

Next we eliminate the fi rst occurrence of ‘(∃z)’ to obtain

(Fb ∨ [(Fb & ~ Ibb) ∨ (Ff & ~ Ifb)] & (Ff ∨ (∃z)[Fz & ~ Izf])

and then we eliminate the second occurrence of ‘(∃z)’ to obtain

(Fb ∨ [(Fb & ~ Ibb) ∨ (Ff & ~ Ifb)]) &
(Ff ∨ [(Fb & ~ Ibf) ∨ (Ff & ~ Iff)])

When we expand a sentence, we may choose a set containing only one
constant for the expansion. In this case we simply remove all quantifi ers and
replace the free variables in the resulting open sentence with that constant.
‘(∀x)Fx’ is expanded for the set of constants {‘a’} as ‘Fa’, and ‘(∃x)Fx’ is also

ber38413_ch08_329-401.indd Page 372 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 372 12/4/12 12:10 PM F-400F-400

8.5 TRUTH-FUNCTIONAL EXPANSIONS 373

expanded as ‘Fa’. With the same set of constants, ‘(∃y)Gyy’ is expanded as ‘Gaa’
and ‘(∀x)(Fx ∨ (∃y)Gyy)’ is expanded as ‘(Fa ∨ Gaa)’.

As a fi nal example we expand the sentence

Dg ∨ (∀y)(∃x)Cyx

for the set of constants {‘a’, ‘g’} (we must include ‘g’ in the set because it
occurs in the sentence to be expanded). We fi rst replace ‘(∀y)(∃x)Cyx’ with
its expansion to obtain

Dg ∨ [(∃x)Cax & (∃x)Cgx]

Then we replace ‘(∃x)Cax’ with its expansion to obtain

Dg ∨ [(Caa ∨ Cag) & (∃x)Cgx]

Finally we replace ‘(∃x)Cgx’ with its expansion to obtain

Dg ∨ [(Caa ∨ Cag) & (Cga ∨ Cgg)]

When we have expanded a sentence of PL to eliminate every quantifi er,
the truth-functional expansion that results is always an atomic sentence or a
truth-functional compound of atomic sentences of PL. Because of this, we can
construct truth-tables for truth-functional expansions, and these truth-tables will
tell us something about the truth-conditions of the sentences that have been
expanded. For example, the truth-functional expansion of the sentence ‘(∀x)
(Fx & ~ Bx)’ for the set of constants {‘a’, ‘b’} is ‘(Fa & ~ Ba) & (Fb & ~ Bb)’.
Here is a truth-table for the expansion:

 ↓
Ba Bb Fa Fb (Fa & ~ Ba) & (Fb & ~ Bb)

T T T T T F F T F T F F T
T T T F T F F T F F F F T
T T F T F F F T F T F F T
T T F F F F F T F F F F T
T F T T T F F T F T T T F
T F T F T F F T F F F T F
T F F T F F F T F T T T F
T F F F F F F T F F F T F
F T T T T T T F F T F F T
F T T F T T T F F F F F T
F T F T F F T F F T F F T
F T F F F F T F F F F F T
F F T T T T T F T T T T F
F F T F T T T F F F F T F
F F F T F F T F F T T T F
F F F F F F T F F F F T F

ber38413_ch08_329-401.indd Page 373 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 373 12/4/12 12:10 PM F-400F-400

374 PREDICATE LOGIC: SEMANTICS

This truth-table tells us that the quantifi ed sentence is true on some interpre-
tations with one- or two-member UDs and false on some interpretations with
one- or two-member UDs. We shall now explain why.

If each object in a UD is designated by either ‘a’ or ‘b’, then each of
the combinations of truth-values to the left of the vertical line represents an
interpretation of ‘B’ and ‘F’. (This assumption means that we are restricting our
attention to UDs with at most two members because the number of constants
is not enough for naming more than two members.) For example, the fi rst row
represents interpretations with one- or two-member UDs in which all objects
are in the extension of ‘B’ and also are in the extension of ‘F’. If all objects in
the UD are designated by either ‘a’ or ‘b’, then the assignment of T to both
‘Ba’ and ‘Bb’ means that all objects are in the extension of ‘B’, and the assign-
ment of T to both ‘Fa’ and ‘Fb’ means that all objects are in the extension of
‘F’. The second row represents interpretations with two-member UDs in which
both objects are in the extension of ‘B’ (because both ‘Ba’ and ‘Bb’ are true),
one object is in the extension of ‘F’ (because ‘Fa’ is true), and one object is
not in the extension of ‘F’ (because ‘Fb’ is false). This row corresponds only
to two-member UDs, because ‘Fa’ and ‘Fb’ do not have the same truth-value;
we need at least two objects to make one of these true and the other false.

In fact, the sixteen rows between them represent all the combinations
of extensions that the two predicates may have for interpretations with one- or
two-member UDs. For example, we have the following possibilities for an inter-
pretation with a one-member UD {u}: u is in the extension of both ‘B’ and ‘F’
(row 1), u is in the extension of ‘B’ but not of ‘F’ (row 4), u is in the extension
of ‘F’ but not of ‘B’ (row 13), or u is not in the extension of either predicate
(row 16). For a two-member UD {u1, u2} we have the following possibilities:
Both u1 and u2 are in the extensions of both ‘B’ and ‘F’ (row 1), both u1 and
u2 are in the extension of ‘B’ but only one of u1 and u2 is in the extension of
‘F’ (rows 2 and 3), both u1 and u2 are in the extension of ‘B’ but neither is in
the extension of ‘F’ (row 4), and so on.

The truth-value assigned to the truth-functional expansion in each row
is the truth-value that ‘(∀x)(Fx & ~ Bx)’ receives for the interpretations of ‘B’
and ‘F’ represented by that row. The expansion has the truth-value F in the fi rst
row, from which we may conclude that, on every interpretation with a one- or
two-member UD in which every member u is such that u is in the extension of
‘B’ and also in the extension of ‘F’, ‘(∀x)(Fx & ~ Bx)’ is false. The expansion
also has the truth-value F in the second row, from which we may conclude
that, on every interpretation with a two-member UD {u1, u2} (recall that this
row cannot represent interpretations with one-member UDs) such that both
u1 and u2 are in the extension of ‘B’ but only one of these is in the extension
of ‘F’, the sentence ‘(∀x)(Fx & ~ Bx)’ is false.

The thirteenth row is the only one in which the expansion is true.
From this we may conclude that ‘(∀x)(Fx & ~ Bx)’ is true on every interpre-
tation with a one- or two-member UD in which the extension of ‘B’ is empty
and every member is in the extension of ‘F’ and that it is false on every other
interpretation with a one- or two-member UD.

ber38413_ch08_329-401.indd Page 374 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 374 12/4/12 12:10 PM F-400F-400

8.5 TRUTH-FUNCTIONAL EXPANSIONS 375

We can use the information in the thirteenth row to construct an inter-
pretation on which the unexpanded quantifi ed sentence is true. Because nei-
ther ‘a’ nor ‘b’ appears in the quantifi ed sentence, we need only specify a UD
(we will choose one with two members rather than one), an empty extension
for ‘B’ (because ‘Ba’ and ‘Bb’ are both false), and an extension for ‘F’ that
includes both members of the UD (because ‘Fa’ and ‘Fb’ are both true). We
will specify this interpretation purely extensionally:

 15. UD: The set {1, 2}
 B: ∅
 F: {�1�, �2�}.

Of course, it is also possible to specify an interpretation in the style of symboli-
zation keys, such as

 UD: The set {1, 2}
 Bx: x is a negative integer
 Fx: x is a positive integer

We specify interpretations purely extensionally in this section because it is
straightforward to do so, given the truth-tables for truth-functional expansions.
In fact, this can be made into a mechanical process if we agree that ‘a’ will
always designate 1, ‘b’ will always designate 2, and so on.

We can use the information in the fi rst row to construct an interpreta-
tion on which the sentence is false. We’ll use the same UD and set the exten-
sions of both predicates to include �1� and �2�—because the four atomic
sentences in the fi rst row are all true:

 16. UD: The set {1, 2}
 B: {�1�, �2�}
 F: {�1�, �2�}

Any row in the truth-table in which ‘Ba’ has the same truth-value as
‘Bb’ and ‘Fa’ has the same truth-value as ‘Fb’ can be used to construct an
interpretation with a one-member UD. For example, using the fi rst row, we
can construct an interpretation on which our quantifi ed sentence is false by
making sure that the 1-tuple of the UD’s single object is in the extension of
both ‘B’ and ‘F’:

 17. UD: The set {1}
 Bx: {�1�}
 Fx: {�1�}

A truth-functional expansion of the sentence ‘(∃x)(∀y)Nyx’ for the set
of constants {‘a’, ‘b’} is ‘(Naa & Nba) ∨ (Nab & Nbb)’. We may show that the

ber38413_ch08_329-401.indd Page 375 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 375 12/4/12 12:10 PM F-400F-400

376 PREDICATE LOGIC: SEMANTICS

sentence ‘(∃x)(∀y)Nyx’ is true on at least one interpretation with a two-member
UD by producing a shortened truth-table in which the expansion is true:

 ↓
Naa Nab Nba Nbb (Naa & Nba) ∨ (Nab & Nbb)

T T F T T F F T T T T

(The table in this case gives us information only about two-member UDs,
because if there were only one member in the UD then it would be named by
both ‘a’ and ‘b’, and hence the four atomic sentences would have to have the
same truth-value.) We do not have to give an actual interpretation on which the
sentence is true; the shortened truth-table suffi ces to show that there is such an
interpretation. It shows that the quantifi ed sentence is true on any interpreta-
tion with a two-member UD in which both members stand in the relation N to
themselves and one stands in the relation N to the other, but not vice versa.
And the following shortened truth-table shows that the quantifi ed sentence is
false on at least one interpretation with a one- or two-member UD:

 ↓
Naa Nab Nba Nbb (Naa & Nba) ∨ (Nab & Nbb)

F F F F F F F F F F F

(Because the four atomic sentences have the same truth-value in this table, the
row of assignments may represent an interpretation with a one-member UD.)
From these two shortened truth-tables we may conclude that ‘(∃x)(∀y)Nyx’ is
quantifi cationally indeterminate. The tables show that the sentence is true on
at least one interpretation and false on at least one interpretation.

We may use truth-functional expansions and truth-tables to demon-
strate that sentences and sets of sentences of PL have, or fail to have, some
other semantic properties as well. For example, to show that a sentence is not
quantifi cationally true, we must show that the sentence is false on at least one
interpretation. And we can show this by producing a shortened truth-table in
which a truth-functional expansion of the sentence is false. We will have to
choose a set of constants fi rst—ideally a small set, to save us work. An expan-
sion of the sentence ‘(Ga & (∃z)Bz) ⊃ (∀x)Bx’ for the set of constants {‘a’, ‘b’}
is ‘(Ga & (Ba ∨ Bb) ⊃ (Ba & Bb)’, and the expansion is false in the following
shortened truth-table:

 ↓
Ba Bb Ga (Ga & (Ba ∨ Bb)) ⊃ (Ba & Bb)

T F T T T T T F F T F F

The table shows that there is at least one interpretation on which the sentence
‘(Ga & (∃z)Bz) ⊃ (∀x)Bx’ is false. This sentence is therefore not quantifi ca-
tionally true.

ber38413_ch08_329-401.indd Page 376 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 376 12/4/12 12:10 PM F-400F-400

8.5 TRUTH-FUNCTIONAL EXPANSIONS 377

Note that we cannot in general use truth-functional expansions to show
that a sentence is quantifi cationally true. Even if we construct a full truth-table
for a truth-functional expansion and fi nd that the expansion is true in every
row of the truth-table, all that we may generally conclude is that the sentence
is true on every interpretation with a UD that is the same size as or smaller
than the number of constants in the set that was used for the expansion. (An
exception will be noted at the end of this section.)

The sentence ‘~ (~ Ga & (∃y)Gy)’ is not quantifi cationally false. The
truth-functional expansion of this sentence for the set of constants {‘a’}(‘a’ must
be in this set because it occurs in the sentence) is ‘~ (~ Ga & Ga)’, and this
expansion is true in the following shortened truth-table:

 ↓
Ga ~ (~ Ga & Ga)

T T F T F T

This shows that the sentence ‘~ (~ Ga & (∃y)Gy)’ is true on at least one interpre-
tation and hence that the sentence is not quantifi cationally false. As with quan-
tifi cational truth we cannot in general use truth-functional expansions to show
that a sentence is quantifi cationally false, for that would involve showing that the
sentence is false on every interpretation, not just those with a particular size UD.

The sentences

(∀x)(Fx ⊃ Ga)

and

(∀x)Fx ⊃ Ga

are not quantifi cationally equivalent. To show this, we can expand both sen-
tences for the same set of constants (which must include ‘a’) and produce a
shortened truth-table in which the expansions have different truth-values:

 ↓ ↓
Fa Fb Ga (Fa ⊃ Ga) & (Fb ⊃ Ga) (Fa & Fb) ⊃ Ga

T F F T F F F F T F T F F T F

This shows that there is at least one interpretation on which ‘(∀x)(Fx ⊃ Ga)’
is false and ‘(∀x)Fx ⊃ Ga’ is true.

The set of sentences

{(∀x)Gax, ~ Gba ∨ (∃x) ~ Gax}

is quantifi cationally consistent. The truth-functional expansions of these sen-
tences for the set {‘a’, ‘b’} are both true in the following shortened truth-table,

ber38413_ch08_329-401.indd Page 377 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 377 12/4/12 12:10 PM F-400F-400

378 PREDICATE LOGIC: SEMANTICS

and so we may conclude that there is at least one interpretation on which both
members of the set are true:

 ↓ ↓
Gaa Gab Gba Gaa & Gab ~ Gba ∨ (~ Gaa ∨ ~ Gab)

T T F T T T TF T FT F FT

The set of sentences

{~ (∀x)(Ga � Fx), ~ Fb}

does not quantifi cationally entail the sentence

(∀x) ~ Gx

The sentences have been expanded for the set of constants {‘a’, ‘b’} in the fol-
lowing shortened truth-table:

 ↓ ↓ ↓
Fa Fb Ga Gb ~ [(Ga � Fa) & (Gb � Fb)] ~ Fb ~ Ga & ~ Gb

F F F T T F T F F T F F TF TF F FT

The displayed row shows that there is at least one interpretation on which
the set members are both true and ‘(∀x) ~ Gx’ is false, so ‘(∀x) ~ Gx’ is not
quantifi cationally entailed by the set.

Finally we may use truth-functional expansions to show that some argu-
ments are not quantifi cationally valid. The premises and conclusion of the argument

(∃x)[(∃y)Fy ⊃ Fx]

(∃y) ~ Fy

~ (∃x)Fx

have been expanded for the set of constants {‘a’, ‘b’} in the following shortened
truth-table:

 ↓ ↓ ↓
Fa Fb [(Fa ∨ Fb) ⊃ Fa] ∨ [(Fa ∨ Fb) ⊃ Fb] ~ Fa ∨ ~ Fb ~ (Fa ∨ Fb)

T F T T F T T T T T F F F FT T TF F T T F

This shows that there is an interpretation on which the premises of the original
argument are true and the conclusion is false.

Note once again that truth-functional expansions cannot generally be
used to show that a set of sentences of PL is quantifi cationally inconsistent,
that a set of sentences does quantifi cationally entail some sentence, or that an
argument of PL is quantifi cationally valid. In each of these cases, we must prove

ber38413_ch08_329-401.indd Page 378 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 378 12/4/12 12:10 PM F-400F-400

8.5 TRUTH-FUNCTIONAL EXPANSIONS 379

something about every interpretation, not just those represented in the truth-
table for a particular set of expansions.

However, there is an exception to our claims about the limitations of
using truth-functional expansions to test for semantic properties. We noted at
the end of Section 8.2 that there is a decision procedure (based on a result by
Bernays and Schönfi nkel) for determining the quantifi cational status of sen-
tences of PL that contain no many-place predicates, that is, in which the predi-
cates are all one-place predicates. A decision procedure allows us to answer
correctly in a fi nite number of mechanical steps the question ‘Is this sentence
quantifi cationally true?’ and hence also questions like ‘Is this sentence quantifi -
cationally false?’ (it is if its negation is quantifi cationally true) and ‘Is this fi nite
set of sentences quantifi cationally consistent?’ (it is if the conjunction of the
sentences in the set is not quantifi cationally false). It allows us to answer these
questions correctly for sentences that do not contain many-place predicates.

Bernays and Schönfi nkel’s result is that a sentence that contains no
many-place predicates and that contains k distinct one-place predicates is quan-
tifi cationally true if and only if the sentence is true on every interpretation
with a UD containing exactly 2k members. This being the case, we can truth-
functionally expand the sentence for a set of at least 2k constants, produce a
truth-table for the expanded sentence, and determine whether it is quantifi -
cationally true by examining the truth-table. If the expanded sentence is true
in every row of the truth-table, we may conclude that the sentence is true on
every interpretation with a UD that contains exactly 2k members (as well as all
interpretations with smaller UDs). Given Bernays and Schönfi nkel’s result, we
may then conclude that the sentence is quantifi cationally true.

 8.5E EXERCISES

 1. Produce a truth-functional expansion of each of the sentences in Exercise 7 in
Section 8.1E for a set containing one constant.

 2. Produce a truth-functional expansion of each of the sentences in Exercise 8 in
Section 8.1E for a set containing two constants.

 3. Produce a truth-functional expansion of each of the following sentences for
the set {‘a’, ‘b’, ‘c’}.

 a. (∀w)(Gw ⊃ Nww)
 *b. (Na ∨ (∃z)Bz)
 c. (∃z)(Na � Bz)
 *d. (∀w)Bw ∨ ~ (∃w)Bw

 4. Construct truth-functional expansions of the sentence

‘((∃x)Fx & (∃y) ~ Fy) ⊃ (∀x) ~ Fx’

 for the sets {‘a’} and {‘a’, ‘b’}. Construct a truth-table for each expansion. What
information does the fi rst truth-table give you about this sentence? What infor-
mation does the second truth-table give you?

ber38413_ch08_329-401.indd Page 379 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 379 12/4/12 12:10 PM F-400F-400

380 PREDICATE LOGIC: SEMANTICS

 5. For each of the following sentences, construct a truth-functional expansion for
the set of constants {‘a’, ‘n’}. Show that the expansion is true on at least one
truth-value assignment. Then use the information in the truth-table to construct
an interpretation on which the original sentence is true. You may specify the
interpretation either purely extensionally or in the style of symbolization keys.

 a. (∀x)(Nxx ∨ (∃y)Nxy)
 *b. (∃x)Fx � (∀x)Fx
 c. (∀y)Syyn

 6. Show that each of the sentences in Exercise 1 in Section 8.2E is not quantifi ca-
tionally true by producing a shortened truth-table in which a truth-functional
expansion of the sentence is false.

 7. Show that each of the sentences in Exercise 2 in Section 8.2E is not quantifi ca-
tionally false by producing a shortened truth-table in which a truth-functional
expansion of the sentence is true.

 8. Show that each of the sentences in Exercise 3 in Section 8.2E is quantifi ca-
tionally indeterminate by producing a shortened truth-table in which a truth-
functional expansion of the sentence is true and a shortened truth-table in
which a truth-functional expansion of the sentence is false.

 *9. In this section it was claimed that in general a sentence of PL that contains
quantifi ers cannot be shown to be quantifi cationally true by producing truth-
tables for truth-functional expansions. Does the claim hold for sentences of PL
that do not contain quantifi ers, such as ‘Fa ⊃ (Gb ⊃ Fa)’? Explain.

 10. The truth-functional expansion of the sentence ‘(∃y)Gy & (∃y) ~ Gy’ for the
set {‘a’} is ‘Ga & ~ Ga’. The expanded sentence is quantifi cationally false.
Explain this and then explain why this does not show that the original sentence
‘(∃y)Gy & (∃y) ~ Gy’ is quantifi cationally false.

 11. Show that the sentences in each pair in Exercise 1 in Section 8.3E are not quan-
tifi cationally equivalent by producing a shortened truth-table in which a truth-
functional expansion of one sentence of the pair is true and a truth-functional
expansion of the other sentence (for the same set of constants) is false.

 12. Show that each set of sentences in Exercise 4 in Section 8.3E is quantifi cation-
ally consistent by producing a shortened truth-table in which a truth-functional
expansion of each sentence in the set (for the same set of constants) is true.

 *13. a. Is the set {Ba, Bb, Bc, Bd, Be, Bf, Bg, ~ (∀x)Bx} quantifi cationally consistent?
Explain.

 b. For the set in Exercise 13.a, what is the minimum size set of constants for
which the sentences in the set must be expanded in order to show that the
set is quantifi cationally consistent? Explain.

 c. Can all the sentences in the set in Exercise 13.a be true on an interpreta-
tion with a UD smaller than the set of constants indicated in the answer to
Exercise 13.b? Explain.

 14. Show that each argument in Exercise 2 in Section 8.4E is quantifi cationally
invalid by producing a shortened truth-table in which truth-functional expan-
sions of the premises are true and a truth-functional expansion of the conclu-
sion for the same set of constants is false.

ber38413_ch08_329-401.indd Page 380 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 380 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 381

 8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS

In PLE, interpretations for sentences containing the identity predicate but no
functors are the same as interpretations for PL, because the identity predicate,
‘�’, is not explicitly given an interpretation. This is because we always want its
extension to be the set of 2-tuples of members of the UD in which the fi rst
member is identical to the second, no matter what the UD is. Rather, we add
the following clause to our defi nition of satisfaction:

10. If P is an atomic formula of the form t1 � t2, then dI satisfi es P
on interpretation I if and only if denI,dI(t1) � denI,dI(t2).

This clause implicitly defi nes an extension for the identity predicate on each
interpretation: The extension includes �u, u� for each member u of the UD,
and that is all it includes.

Obviously, every atomic sentence of the form a � a, where a is an
arbitrary individual constant, is true on every interpretation. More generally,
every sentence of the form (∀x)x � x is true on every interpretation. In both
cases the reason is that the same constant/variable appears on both sides of
the identify predicate, so that the same member of the UD is denoted, as
required by the satisfaction clause for identity formulas. On the other hand,
the truth-value of an atomic sentence of the form a � b, where a and b are
different individual constants, depends on the interpretations of a and b.
Interpretation 18 makes the sentence ‘g � k’ true, while interpretation 19
makes the sentence false:

 18. UD: The set of positive integers
 g: 1
 k: 1

 19. UD: The set of positive integers
 g: 1
 k: 2

The sentence ‘(∀x)(∀y)(~ x � y ⊃ Gxy)’ is true on interpretation 20
and false on interpretation 21:

 20. UD: The set of positive integers
 Gxy: the sum of x and y is positive

 21. UD: The set of positive integers
 Gxy: x is greater than y

On interpretation 20 the sentence may be read as ‘The sum of any pair of non-
identical positive integers is a positive integer’—which is true. On interpreta-
tion 21 the sentence claims that for any pair of nonidentical positive integers

ber38413_ch08_329-401.indd Page 381 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 381 12/4/12 12:10 PM F-400F-400

382 PREDICATE LOGIC: SEMANTICS

the fi rst is greater than the second. This is false—1 and 2 are nonidentical
positive integers, for example, but 1 is not greater than 2.

The sentence ‘(∃x)(Fx & (∀y)(Fy ⊃ y � x))’ is false on interpretation 22:

 22. UD: Set of positive integers
 F: {�u�: u is odd}

On this interpretation, the sentence may be read as ‘Exactly one positive inte-
ger is odd’. We’ll show how the formal semantics works in this case. Let d22 be
an arbitrary variable assignment for this interpretation:

• d22 satisfi es ‘(∃x)(Fx & (∀y)(Fy ⊃ y � x))’ if and only if there is at
least one member u1 of the UD such that the variant d22[u1/x] satis-
fi es ‘Fx & (∀y)(Fy ⊃ y � x)’, and this will be the case if d22[u1/x]
satisfi es both ‘Fx’ and ‘(∀y)(Fy ⊃ y � x)’.

• If d22[u1/x] satisfi es ‘Fx’, then �u1� ∈ I22(F).
• But if �u1� ∈ I22(F), d22[u1/x] does not satisfy ‘(∀y)(Fy ⊃ y � x)’

because for every odd integer u2 that is distinct from u1, d22[u1/x,
u2/y] does not satisfy ‘Fy ⊃ y � x’. Although d22[u1/x, u2/y] satisfi es
the antecedent if u2 is odd, it does not satisfy the consequent if u2 is
not identical to u1.

We can show that various sentences and sets of sentences that contain
the identity predicate have, or fail to have, semantic properties much as we
did for PL. We shall give a few examples for the semantic properties of quan-
tifi cational truth and quantifi cational validity. We can show that the sentence

(∀x)(∀y)(~ x � y ∨ (Fx ⊃ Fy))

is quantifi cationally true by reasoning generally about interpretations. The sen-
tence is universally quantifi ed and is true on an interpretation if each pair x
and y of members of the UD is such that either the pair satisfi es ‘~ x � y’ or
it satisfi es ‘Fx ⊃ Fy’. So let us consider members x and y of an arbitrary UD. If
x and y are not the same member, then the fi rst disjunct ‘~ x � y’ is satisfi ed.
If, however, x and y are the same member of the UD (and hence do not satisfy
the fi rst disjunct), they satisfy the second disjunct. If x is in the extension of
‘F’, then so is y—because y is identical to x, and so x and y satisfy the condi-
tion ‘Fx ⊃ Fy’. Therefore the sentence ‘(∀x)(∀y)(~ x � y ∨ (Fx ⊃ Fy))’ must
be true on any interpretation; it is quantifi cationally true.

On the other hand, the sentence

(∀x)(∀y)(x � y ∨ (Fx ⊃ Fy))

is not quantifi cationally true. To show this, we construct an interpretation on
which the sentence is false. The sentence claims that every pair of members

ber38413_ch08_329-401.indd Page 382 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 382 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 383

of the UD x and y satisfi es ‘x � y ∨ (Fx ⊃ Fy)’—that is, either x and y are the
same member or if x is F then so is y. If we choose a two-member UD, then
a pair consisting of the two distinct members will not satisfy the condition
‘x � y’. If the fi rst member is F but the other is not, then this pair also will
not satisfy ‘Fx ⊃ Fy’. Here is our interpretation:

 23. UD: The set {1, 2}
 F: x is odd

The pair consisting of the numbers 1 and 2 does not satisfy ‘x � y ∨ (Fx ⊃ Fy)’.
The two numbers are not identical, and it is not true that if 1 is odd (which it
is) then 2 is odd (it is not).

The argument

(∀x)(Fx � Gx)

(∀x)(∀y)x � y

Ga

(∀x)Fx

is quantifi cationally valid. We can reason that any interpretation that makes the
three premises true also makes ‘(∀x)Fx’ true. If ‘(∀x)(Fx � Gx)’ is true, then
every member of the UD that is F is also G, and every member of the UD that
is G is also F. If ‘(∀x)(∀y)x � y’ is also true, then there is exactly one object
in the UD. The sentence says that, for any object x and any object y, x and y
are identical—and this cannot be the case if there is more than one member of
the UD. If ‘Ga’ is also true, then because there is exactly one object in the UD
this object must be designated by ‘a’ and must therefore be in the extension
of ‘G’. It follows, from the truth of the fi rst sentence, that this object is also in
the extension of ‘F’. Therefore it follows that ‘(∀x)Fx’ is true—every object in
our single-member UD is F.

On the other hand, the argument

(∀x)(∃y)x � y

a � b

is not quantifi cationally valid. The premise, it turns out, is quantifi cationally
true—every member of any UD is identical to something (namely, itself). But
the conclusion is false on any interpretation on which ‘a’ and ‘b’ designate
different objects, such as the following:

 24. UD: The set of positive integers
 a: 6
 b: 7

ber38413_ch08_329-401.indd Page 383 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 383 12/4/12 12:10 PM F-400F-400

384 PREDICATE LOGIC: SEMANTICS

It is true that every positive integer is identical to some positive integer, but it
is false that 6 is identical to 7.

Readers who have worked through the section on truth-functional
expansions may wonder whether sentences containing the identity predicate
may be expanded and truth-tables used to check for various semantic prop-
erties. The answer is yes, although we shall see that there is a complication.
Sentences that contain the identity predicate are expanded in the same way
as sentences without the identity predicate: Quantifi ers are eliminated in favor
of iterated conjunctions or disjunctions. The sentence ‘(∀x)(∃y)x � y’ can be
expanded for the set of constants {‘a’, ‘b’} fi rst to obtain

(∃y)a � y & (∃y)b � y

and then to obtain

(a � a ∨ a � b) & (b � a ∨ b � b)

But if we freely assign truth-values to the atomic components of this sentence,
we end up with this truth-table:

 ↓
a � a a � b b � a b � b (a � a ∨ a � b) & (b � a ∨ b � b)

T T T T T T T T T T T
T T T F T T T T T T F
T T F T T T T T F T T
T T F F T T T F F F F
T F T T T T F T T T T
T F T F T T F T T T F
T F F T T T F T F T T
T F F F T T F F F F F
F T T T F T T T T T T
F T T F F T T T T T F
F T F T F T T T F T T
F T F F F T T F F F F
F F T T F F F F T T T
F F T F F F F F T T F
F F F T F F F F F T T
F F F F F F F F F F F

 MISTAKE!

There is something wrong with this truth-table! The sentence ‘(∀x)(∃y)x � y’
is quantifi cationally true, and yet we have assigned its expansion the truth-value
F in seven rows. Let us look at the fi rst row where this happened: row 4. In
this row we have assigned T to ‘a � b’ and F to ‘b � a’, and that is a prob-
lem (There is another problem with this row, which we will get to below.) If
an interpretation makes ‘a � b’ true then it must make ‘b � a’ true as well;

ber38413_ch08_329-401.indd Page 384 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 384 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 385

a and b are the same object. So row 4 does not correspond to any interpreta-
tion at all. By the same reasoning we fi nd that none of rows 3–6 or 11–14 cor-
respond to interpretations, for each of these rows assigns different truth-values to
‘a � b’ and ‘b � a’. However, this still leaves us with problematic rows 8, 15, and
16—all of which make the expanded sentence false. The problem with each of
these rows is that the truth-value F has been assigned to one or both of ‘a � a’
and ‘b � b’—thus claiming that some object is not the same as itself (This is also a
problem in the row we fi rst examined, row 4.). Because every interpretation makes
every sentence of the form a � a true, rows 8, 15, and 16, as well as all other rows
that make one or both of ‘a � a’ and ‘b � b’ false, do not correspond to interpreta-
tions. In fact, we have just ruled out all rows in the truth-table except rows 1 and 7.
These are the only rows in which ‘a � a’ and ‘b � b’ are both true and in which
‘a � b’ and ‘b � a’ have the same truth-value—and, as we should have expected
for a quantifi cationally true sentence, the expanded sentence is true in both rows.

The rows of a truth-table that do not correspond to any interpretation
cannot be used to establish semantic properties of the sentence that has been
expanded. We therefore require that each row in the truth-table we construct for an
expansion of a sentence containing the identity predicate must meet two conditions:

1. Every sentence of the form a � a has the truth-value T.
2. If a sentence of the form a � b has the truth-value T, then for each

atomic sentence P that contains a, every atomic sentence P(b//a)
that results from replacing one or more occurrences of a in P with b
must have the same truth-value as P.

If conditions 1 and 2 are met, then if a sentence containing a � b has the truth-
value T in a row, b � a will also have the truth-value T. Condition 1 requires
that a � a have the truth-value T, and because b � a can be obtained from
a � a by replacing the fi rst occurrence of a with b, condition 2 requires that
b � a is true since a � b and a � a are. Condition 2 also rules out rows like
the one in the following shortened truth-table for the expansion

[(a � a ⊃ (Fa ⊃ Fa)) & (a � b ⊃ (Fa ⊃ Fb))] & [(b � a ⊃ (Fb ⊃ Fa))
& (b � b ⊃ (Fb ⊃ Fb))]

of the sentence ‘(∀x)(∀y)(x � y ⊃ (Fx ⊃ Fy))’ for the set of constants {‘a’, ‘b’}:

a � a a � b b � a b � b Fa Fb [(a � a ⊃ (Fa ⊃ Fa)) & (a � b ⊃ (Fa ⊃ Fb))]

 T T T T T F T T T T T F T F T F F

↓
& [(b � a ⊃ (Fb ⊃ Fa)) & (b � b ⊃ (Fb ⊃ Fb))]

F T T F T T T T T F T F

 MISTAKE!

ber38413_ch08_329-401.indd Page 385 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 385 12/4/12 12:10 PM F-400F-400

386 PREDICATE LOGIC: SEMANTICS

Once again we have expanded a quantifi cationally true sentence and produced
a row of a truth-table in which the truth-functional expansion is false. We have
ensured that both sentences ‘a � a’ and ‘b � b’ are true and that ‘a � b’ and
‘b � a’ have the same truth-value. The problem is that we have assigned ‘Fa’
and ‘Fb’ different truth-values, although ‘a � b’ is true. Condition 2 rules
out this combination: ‘Fb’ results from replacing ‘a’ in ‘Fa’ with ‘b,’ and so,
because ‘a � b’ is true, ‘Fb’ must have the same truth-value as ‘Fa’. Our sec-
ond condition refl ects the fact that when the identity predicate occurs in a
truth-functional expansion the atomic sentences that are components of the
expansion may not be truth-functionally independent. Once a sentence of the
form a � b, where a and b are different constants, has been made true, certain
other atomic sentences must agree in truth-value.

The following truth-table shows the only combinations of truth-values
for the atomic components of our sentence that correspond to interpretations
with one- or two-member UDs:

a � a a � b b � a b � b Fa Fb [(a � a ⊃ (Fa ⊃ Fa)) & (a � b ⊃ (Fa ⊃ Fb))]

 T T T T T T T T T T T T T T T T T
 T T T T F F T T F T F T T T F T F
 T F F T T T T T T T T T F T T T T
 T F F T T F T F T T T T F T T F F
 T F F T F T T T F T F T F T F T T
 T F F T F F T T F T F T F T F T F

↓
& [(b � a ⊃ (Fb ⊃ Fa)) & (b � b ⊃ (Fb ⊃ Fb))]

T T T T T T T T T T T T
T T T F T F T T T F T F
T F T T T T T T T T T T
T F T F T T T T T F T F
T F T T F F T T T T T T
T F T F T F T T T F T F

All other rows are excluded by one or both of our conditions. And again we fi nd
that the expanded sentence is true in all six rows—we have shown that there are
no interpretations with one- or two-member UDs on which the sentence is false.

Adhering to our two conditions, we now produce a shortened truth-
table that shows that the sentence

(∀z)[Fz & (∃y)z � y] ⊃ (∀x)Fx)

is not quantifi cationally true. The sentence claims that, for each member of
the UD, if it is F and is identical to something then everything is F. Certainly
the sentence will be true if the UD contains exactly one object—but for larger
UDs it will be true only if either no member is F or all members are. We shall

ber38413_ch08_329-401.indd Page 386 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 386 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 387

expand the sentence for the set of constants {‘a’, ‘b’} and produce a shortened
truth-table in which the expansion is false:

a � a a � b b � a b � b Fa Fb [(Fa & (a � a ∨ a � b)) ⊃ (Fa & Fb)]

 T F F T T F T T T T F F T F F

↓
& [(Fb & (b � a ∨ b � b)) ⊃ (Fa & Fb)]

F F F F T T T T F F

Condition 1 has been met—both ‘a � a’ and ‘b � b’ are true. Condition 2
has also been met, trivially. The two identity statements that are true are ‘a � a’
and ‘b � b’, and the result of substituting ‘a’ for ‘a’ in any sentence is just that
sentence itself and the same holds for ‘b’. Here is an interpretation that has
been constructed using the truth-values in the truth-table as a guide:

 25. UD: The set {2, 3}
 F: {<2>}

We have chosen a UD with two members because the identity statements ‘a � b’
and ‘b � a’ are false in the shortened table, and so ‘a’ and ‘b’ must designate
different objects. We have interpreted ‘F’ so that it is true of one member of
the UD, but not the other.

Finally we shall complete our semantics for sentences of PLE that con-
tain functors by amending our defi nition of an interpretation and of the deno-
tation of a term with respect to an interpretation I and variable assignment dI.
We fi rst defi ne precisely the concept of an n-place function on a UD: An n-place
function on a UD maps each n-tuple of members of the UD to a single member
of the UD (not necessarily the same one in each case). So, if the UD consists
of the integers 1 and 2, for example, there are four distinct 1-place functions:
the function that maps each of 1 and 2 to itself, the function that maps both
1 and 2 to 1, the function that maps both 1 and 2 to 2, and the function that
maps 1 to 2 and 2 to 1. We can represent each of these functions as a set of
ordered pairs, where for each member u of the UD there is exactly one ordered
pair with u as its fi rst member, and the second member of that ordered pair is
the value of the function for u. Here are the four sets of ordered pairs:

{�1, 1�, �2, 2�} (the function that maps each of 1 and 2 to itself)
{�1, 1�, �2, 1�} (the function that maps both 1 and 2 to 1)
{�1, 2�, �2, 2�} (the function that maps both 1 and 2 to 2)
{�1, 2�, �2, 1�} (the function that maps 1 to 2 and 2 to 1)

Similarly a 2-place function can be represented as a set of ordered triples,
where for each pair of members u1 and u2 of the UD there is one ordered

ber38413_ch08_329-401.indd Page 387 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 387 12/4/12 12:10 PM F-400F-400

388 PREDICATE LOGIC: SEMANTICS

triple with u1 and u2 as the fi rst two members, and the third member of that
ordered triple is the value of the function for u1 and u2. So the multiplication
function for the set of integers {0, 1} can be represented as the set {�0,0,0�,
�0,1,0�, �1,0,0�, �1,1,1�}. (Note that multiplication is not a function on
the set {1, 2} because we require that the value of the function for each pair
of members of the UD itself be a member of the UD, but 2 � 2 is not a
member of {1, 2}. On the other hand, multiplication is a function on the set
of positive integers.)

We may now amend our defi nition of an interpretation:

An interpretation for PLE consists in the specifi cation of a UD and the
assignment of a truth-value to each sentence letter of PLE, a member of
the UD to each individual constant of PLE, an n-place function on the
UD to each n-place functor of PLE, and a set of n-tuples of members
of the UD to each n-place predicate of PLE.

We extend the defi nition of the denotation of a term with respect to an interpretation
I and variable assignment dI as follows, to accommodate terms containing functors:

1. If t is a variable, then denI,dI(t) � d(t).
2. If t is an individual constant, then denI,dI(t) � I(t).
3. If t is a term f(t1, . . . , tn) where f is an n-place functor and

t1, . . . , tn are terms, then if �denI,dI(t1), . . . , denI,dI(tn), u� is a
member of I(f), denI,dI(t) � u.

Recall that for any members u1, . . . , un of the UD, there will be a unique
n-tuple �u1, . . . , un, u� that is a member of the function I(f), so clause 3
identifi es exactly one member of the UD as denI,dI(t).

Here is an interpretation for the sentence ‘(∀x)(Px ⊃ Hf(x))’:

 26. UD: The set of positive integers
 P: {�u�: u is even}
 H: {�u�: u is odd}
 f: {�u1, u2�: u2 is the successor of u1 (the number that results

from adding 1 to u1)}

On this interpretation the sentence ‘(∀x)(Px ⊃ Hf(x))’ may be read as ‘The
successor of any even positive integer is an odd positive integer’, which is true.
To see how satisfaction works here, consider an arbitrary variable assignment
d26 for this interpretation:

• d26 satisfi es ‘(∀x)(Px ⊃ Hf(x))’ if every variant d26[u1/x] satisfi es
‘Px ⊃ Hf(x)’.

• If u1 ∉ I26(P), then d26[u1/x] does not satisfy ‘Px’ and therefore
does satisfy ‘Px ⊃ Hf(x)’.

ber38413_ch08_329-401.indd Page 388 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 388 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 389

• If u1 ∈ I26(P), then d26[u1/x] satisfi es ‘Px’. But d26[u1/x] also satisfi es
‘Hf(x)’ because �denI,d26(f(x))�, which is u1 � 1, is odd if u1 is even.

We conclude that the sentence ‘(∀x)(Px ⊃ Hf(x))’ is true on interpreta-
tion 26.

Here is an interpretation for the sentence ‘(∀x)(∀y)f(x,y) � f(y,x)’:

 27. UD: The set of positive integers:
 f: {�u1, u2, u3�: u3 is the sum of u1 and u2}

On this interpretation the sentence may be read as ‘The sum of any two posi-
tive integers x and y is equal to the sum of y and x’, which is true. Consider
an arbitrary variable assignment d27 for this interpretation:

• d27 satisfi es ‘(∀x)(∀y)(f(x,y) � f(y,x))’ if every variant d27[u1/x,
u2/y] satisfi es ‘f(x,y) � f(y,x)’.

• Every variant d27[u1/x, u2/y] does satisfy ‘f(x,y) � f(y,x)’ because
denI,d27(f(x,y)) is u1 � u2 and denI,d27(f(y,x)) is u2 � u1, and these
sums are obviously equal.

The same sentence is false on the following interpretation:

 28. UD: The set of positive integers
 f(x,y): x raised to the power y

It is not true that, for any two positive integers x and y, x raised to the power
y equals y raised to the power x. For example, 2 cubed equals 8, but 3 squared
equals 9.

The sentence ‘(∀x)Dh(x,f(x))’ is true on interpretation 29 and false
on interpretation 30:

 29. UD: The set of positive integers
 D: {�u�: u is even}
 f: {�u1, u2�: u2 is u1 cubed}
 h: {�u1, u2, u3�: u3 is the sum of u1 and u2}

 30. UD: The set of positive integers
 D: {�u�: u is even}
 f: {�u1, u2�: u2 is u1 doubled}
 h: {�u1, u2, u3�: u3 is the sum of u1 and u2}

It is true that the sum of any positive integer and that same integer cubed is
even, for the cube of an even integer is even and the cube of an odd integer
is odd. But it is false that the sum of any positive integer and that same integer
doubled is even, for the result of doubling an odd integer is even, and so the
sum of an odd integer and its double is odd.

ber38413_ch08_329-401.indd Page 389 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 389 12/4/12 12:10 PM F-400F-400

390 PREDICATE LOGIC: SEMANTICS

When we produce an interpretation for sentences containing functors,
it is important that we really have interpreted the functors as functions. For
example, it may be tempting to come up with an interpretation with the set
of positive integers as the UD on which ‘f(x)’ means ‘the integer greater than
x’. But this is not a function, for there are (infi nitely!) many integers greater
than any positive integer. A one-place function cannot map a member of the
UD to more than one value. Similarly we cannot interpret ‘h(x,y)’ (with the
same UD) as ‘the integer that is a factor of both x and y’, because two positive
integers can have more than one factor in common.

It is also important, when we produce an interpretation for sentences
containing functors, that the interpretation assigns a function that meets the
following two conditions. First, an n-place function that is used to interpret an
n-place functor must be defi ned for every n-tuple of members of the UD. For
example, with the set of positive integers as the UD, we cannot interpret ‘f(x)’
to mean ‘the integer that is the square root of x’, since not every positive inte-
ger has an integral square root. Similarly we cannot interpret ‘h(x,y)’ to mean
‘the integer that is the result of dividing x by y’, since, for example, no integer
is the result of dividing 5 by 3.

Second, even when an n-place function is defi ned for every n-tuple of
members of the UD, we also require that the value of the function in each case
be a member of the UD. So, if our UD is the set of positive integers, we also
cannot interpret ‘h(x,y)’ to mean ‘the number that is the result of dividing x by
y’. Although the division function is defi ned for every pair of positive integers,
the resulting value is not in every case a positive integer. For example, the result
of dividing 5 by 3, namely, 5

3 , is not a positive integer. Nor can we interpret
‘h(x,y)’ to mean ‘x minus y’ if our UD is the set of positive integers, because, for
example, 2 minus 3 is not a positive integer. Similarly, with the UD of positive
integers, we cannot interpret ‘f(x)’ to mean ‘the predecessor of x’. Not every
positive integer has a positive integer as its predecessor, for the predecessor of
the positive integer 1 is 0.

We may show semantic results for sentences containing functors either
by producing interpretations that are suffi cient to prove the result or by arguing
generally that the sentences will have certain truth-values on every interpreta-
tion. For example, interpretations 27 and 28 establish that the sentence ‘(∀x)
(∀y)f(x,y) � f(y,x)’ is quantifi cationally indeterminate. On the other hand, the
sentence ‘(∀x)(∃y)y � f(x)’ is quantifi cationally true. The sentence is univer-
sally quantifi ed and is true on an interpretation if for each x there is at least
one y such that the pair x and y satisfi es ‘y � f(x)’. This must be the case for
any interpretation, since ‘f ’ must be interpreted as a function that maps each
member x of the UD to a member y of the UD.

The argument

(∀x) Pf(x)

Pf(f(a))

ber38413_ch08_329-401.indd Page 390 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 390 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 391

is quantifi cationally valid. We must show that any interpretation that makes the
premise true also makes the conclusion true. If ‘(∀x) Pf(x)’ is true, then every
member x of the UD is such that f(x) has the property P. Now, f(a) is a member
of the UD by our requirements for functor interpretations, so it follows from
the universally quantifi ed sentence that f(f(a)) must also have the property P,
making the conclusion true as well.

The similar argument

(∀x) Pf(f(x))

Pf(a)

is quantifi cationally invalid. Here is an interpretation on which the premise is
true and the conclusion false:

 31. UD: The set of positive integers
 P: {<u>: u is greater than or equal to 3}
 f: {u1, u2>: u2 is the successor of u1}
 a: 1

For any positive integer x the successor of the successor of x is greater than or
equal to 3, but the successor of 1 is 2, which is not greater than or equal to 3.

We may also expand sentences containing functors in order to use truth-
tables to check for various properties, although again there will be a complication.
We fi rst note that the rules for expanding sentences containing complex terms
are the same as the rules for expanding sentences without complex terms. For
example, the sentence ‘(∀x)(Px ⊃ Hf(x))’ is expanded for the set of constants
{‘a’} by eliminating the universal quantifi er and substituting ‘a’ for ‘x’ to obtain

Pa ⊃ Hf(a)

and expanding the same sentence for the set of constants {‘a’, ‘b’} results in
the conjunction

(Pa ⊃ Hf(a)) & (Pb ⊃ Hf(b))

To expand the sentence

(∀x)(∃y)y � g(x) ⊃ (∀x)(∃y)Pf(x,y)

for the set of constants {‘a’, ‘b’}, we expand the antecedent fi rst to obtain

(∃y)y � g(a) & (∃y)y � g(b)

and then to obtain

(a � g(a) ∨ b � g(a)) & (a � g(b) ∨ b � g(b))

ber38413_ch08_329-401.indd Page 391 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 391 12/4/12 12:10 PM F-400F-400

392 PREDICATE LOGIC: SEMANTICS

and we expand the consequent fi rst to obtain

(∃y)Pf(a,y) & (∃y)Pf(b,y)

and then to obtain

(Pf(a,a) ∨ Pf(a,b)) & (Pf(b,a) ∨ Pf(b,b))

resulting in the expansion

((a � g(a) ∨ b � g(a)) & (a � g(b) ∨ b � g(b))) ⊃
((Pf(a,a) ∨ Pf(a,b)) & (Pf(b,a) ∨ Pf(b,b)))

for the entire sentence.
Suppose now that we want to develop a truth-table for the expansion

‘Pa ⊃ Pf(a)’ of the sentence ‘(∀x)(Px ⊃ Pf(x))’ for the set of constants {‘a’}
and that, since ‘Pa’ and ‘Pf(a)’ are distinct sentences involving the distinct
individual terms ‘a’ and ‘f(a)’, we decide that we can assign T to the anteced-
ent and F to the consequent:

 ↓
Pa Pf(a) Pa ⊃ Pf(a)

T F T F F MISTAKE!

Something is wrong here—because the sentence ‘(∀x)(Px ⊃ Pf(x))’ cannot
be false on any interpretation with a one-member UD. If there is only one
member a of the UD, then the only candidate for the value of f(a) is that one
member—since we require that the value of a function applied to any member
of a UD must be a member of the UD.

Our method of using truth-functional expansions to determine possi-
ble truth-values assumes that every member of the UD is named by one of the
constants used in the expansion. For this reason we cannot assume that terms
containing functors might refer to individuals other than those referred to by
the constants used in the expansion. To the contrary, we must assume that
each term containing a functor refers to the same individual as at least one
constant. Thus in the above example we must assume that ‘a’ refers to the same
individual as ‘f(a)’, if the expansion is to tell us something about one-member
UDs. We will make this explicit in our truth-table: The truth-value assignment
must make the sentence ‘a � f(a)’ true.

 ↓ ↓
Pa Pf(a) Pa ⊃ Pf(a) a � f(a)

 T

And now our conditions 1 and 2 for truth-tables containing expansions of sen-
tences with the identity predicate must apply. In particular, condition 2 requires

ber38413_ch08_329-401.indd Page 392 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 392 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 393

that, since ‘a � f(a)’ is true, the sentences ‘Pa’ and ‘Pf(a)’ must have the same
truth-value. So the only shortened truth-tables we can obtain are

 ↓ ↓
a � f(a) Pa Pf(a) Pa ⊃ Pf(a) a � f(a)

 T T T T T T T

and

 ↓ ↓
a � f(a) Pa Pf(a) Pa ⊃ Pf(a) a � f(a)

T F F F T F T

The shortened truth-tables show that the sentence ‘(∀x)(Px ⊃ Pf(x))’ must be
true on any interpretation with a one-member UD.

Generalizing, when we construct a truth-table for the truth-functional
expansion of a sentence or set of sentences containing functors, the follow-
ing condition must be met in addition to those for sentences containing the
identity predicate:

3. For each n-place functor f occurring in one or more of the sentences
being expanded and each sequence of n constants a1, . . . , an from
the set of constants {b1, . . . , bm} for which the sentence(s) is (are)
being expanded, the sentence (. . . (f(a1, . . . , an) � b1 ∨ f(a1, . . . ,
an) � b2) ∨ . . . ∨ f(a1, . . . , an) � bm) must be true.

That is, the value that the function produces when applied to a1, . . . , an must
be named by one of the constants in the set of constants for which we are
producing an expansion.

Let us now construct a truth-table for the truth-functional expansion
of ‘(∀x)(Px ⊃ Pf(x))’ for the set of constants {‘a’, ‘b’}. We begin by adding two
sentences to the right of the vertical line in order to satisfy condition 3, and we
add the atomic components of those sentences to the left of the vertical line:

f(a) � a f(a) � b f(b) � a f(b) � b Pa Pb Pf(a) Pf(b)

 ↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 T T

Let us now assign truth-values to the four identity sentences:

f(a) � a f(a) � b f(b) � a f(b) � b Pa Pb Pf(a) Pf(b)

 T F F T

ber38413_ch08_329-401.indd Page 393 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 393 12/4/12 12:10 PM F-400F-400

394 PREDICATE LOGIC: SEMANTICS

 ↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 T T F F T T

By condition 2 for truth-tables for the expansions of sentences containing the
identity predicate, ‘Pa’ and ‘Pf(a)’ must have the same truth-value, because we
have made ‘f(a) � a’ true. And since we have made ‘f(b) � b’ true, both ‘Pb’
and ‘Pf(b)’ must have the same truth-value. Here, then, is one way of complet-
ing the assignment of values:

f(a) � a f(a) � b f(b) � a f(b) � b Pa Pb Pf(a) Pf(b)

 T F F T T F T F

 ↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 T T T T F T F T T F F T T

And here is another (there are two additional ways, which we won’t display):

f(a) � a f(a) � b f(b) � a f(b) � b Pa Pb Pf(a) Pf(b)

 T F F T F F F F

 ↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 F T F T F T F T T F F T T

Note that the expansion ‘(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b))’ had to come out true
in both cases, since we have decided that a and f(a) are the same member of
the UD and that b and f(b) are the same member of the UD.

Other ways of assigning truth-values to the identity sentences will make
the expansion false—for example,

f(a) � a f(a) � b f(b) � a f(b) � b Pa Pb Pf(a) Pf(b)

 F T T F T F F T

 ↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 T F F F F T T F T T T T F

We may also choose to make ‘f(a) � a’, ‘f(a) � b’, ‘f(b) � a’, and
‘f(b) � b’ all true. In this case we are required also to make the sentence
‘a � b’ true, because of the former two identities and condition 2; to make

ber38413_ch08_329-401.indd Page 394 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 394 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 395

‘f(a) � f(b)’ true, because of the latter two identities; and to make ‘f(b) � a’
true, by virtue of the truth of ‘f(b) � b’ and ‘a � b’. As a consequence, ‘Pa’,
‘Pb’, ‘Pf(a)’, and ‘Pf(b)’ must all have the same truth-value, so in this case there
are only two distinct shortened truth-tables:

f(a) � a f(a) � b f(b) � a f(b) � b Pa Pb Pf(a) Pf(b)

 T T T T T T T T

 ↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 T T T T T T T T T T T T T

and

f(a) � a f(a) � b f(b) � a f(b) � b Pa Pb Pf(a) Pf(b)

 T T T T F F F F

 ↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 F T F T F T F T T T T T T

The expanded sentence is true in both cases because the truth of ‘a � b’
means that our UD contains only one member, given the requirement that
every member of the UD be named by one of the constants.

As a second and fi nal example, we expand the sentence ‘(∀x)(∀y)
(Dg(f(x), h(y)) ⊃ Dx)’ for the set of constants {‘a’, ‘b’} to obtain

((Dg(f(a), h(a)) ⊃ Da) & (Dg(f(a), h(b)) ⊃ Da)) &
((Dg(f(b), h(a)) ⊃ Db) & (Dg(f(b), h(b)) ⊃ Db))

Condition 3 requires us to make all of the following sentences true:

f(a) � a ∨ f(a) � b
f(b) � a ∨ f(b) � b
h(a) � a ∨ h(a) � b
h(b) � a ∨ h(b) � b
g(a,a) � a ∨ g(a,a) � b
g(a,b) � a ∨ g(a,b) � b
g(b,a) � a ∨ g(b,a) � b
g(b,b) � a ∨ g(b,b) � b

ber38413_ch08_329-401.indd Page 395 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 395 12/4/12 12:10 PM F-400F-400

396 PREDICATE LOGIC: SEMANTICS

Let us suppose that we make all of these true by making the following identity
sentences true:

1. f(a) � a
2. f(b) � b
3. h(a) � b
4. h(b) � b
5. g(a,a) � a
6. g(b,a) � a
7. g(a,b) � b
8. g(b,b) � b

and the rest of the atomic identity statements false. By conditions 1 and 2 we
will then have the following true identities as well:

 9. g(f(a), h(a)) � g(a,b) from g(a,b) � g(a,b) and 1 and 3
 10. g(f(a), h(b)) � g(a,b) from g(a,b) � g(a,b) and 1 and 4
 11. g(f(b), h(a)) � g(b,b) from g(b,b) � g(b,b) and 2 and 3
 12. g(f(b), h(b)) � g(b,b) from g(b,b) � g(b,b) and 2 and 4
 13. g(f(a), h(a)) � g(f(a), h(b)) from 9 and 10
 14. g(f(b), h(a)) � g(f(b), h(b)) from 11 and 12

So ‘Dg(f(a), h(a))’ and ‘Dg(f(a), h(b))’ must have the same truth-value,
and ‘Dg(f(b), h(a))’ and ‘Dg(f(b), h(b))’ must have the same truth-value.
Here, then, is one shortened truth-table for the truth-functional expansion
refl ecting our choice of identities 1–8 and the consequences that follow by
condition 2:

f(a) � a f(a) � b f(b) � a f(b) � b h(a) � a h(a) � b h(b) � a h(b) � b

 T F F T F T F T

g(a,a) � a g(a,a) � b g(a,b) � a g(a,b) � b g(b,a) � a g(b,a) � b g(b,b) � a

 T F F T T F F

g(b,b) � b Da Db Dg(f(a), h(a)) Dg(f(a), h(b)) Dg(f(b), h(a)) Dg(f(b), h(b))

 T T F F F T T

 ↓
((Dg(f(a), h(a)) ⊃ Da) & (Dg(f(a), h(b)) ⊃ Da)) & ((Dg(f(b), h(a)) ⊃ Db) &

F T T T F T T F T F F F

ber38413_ch08_329-401.indd Page 396 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 396 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 397

 ↓ ↓
(Dg(f(b), h(b)) ⊃ Db)) f(a) � a ∨ f(a) � b f(b) � a ∨ f(b) � b

 T F F T T F F T T

 ↓ ↓ ↓
h(a) � a ∨ h(a) � b h(b) � a ∨ h(b) � b g(a,a) � a ∨ g(a,a) � b

 F T T F T T T T F

 ↓ ↓ ↓
g(a,b) � a ∨ g(a,b) � b g(b,a) � a ∨ g(b,a) � b g(b,b) � a ∨ g(b,b) � b

 F T T T T F F T T

This shortened truth-table, albeit not very short, shows that the sentence ‘(∀x)
(∀y)(Dg(f(x), h(y)) ⊃ Dx)’ is false on at least one interpretation with a one-
or two-member UD. There are other shortened truth-tables showing that the
sentence is true on at least one interpretation with a one- or two-member UD;
and producing one of those will suffi ce to establish that the sentence is truth-
functionally indeterminate.

8.6E EXERCISES

For these exercises, when you are asked to construct interpretations, you may
specify the interpretations of predicates either by showing the n-tuples that
comprise their extensions or in the manner of symbolization keys.

 1. Determine the truth-values of the following sentences on this interpretation:

 UD: The set of positive integers
 E: {<u>: u is even}
 G: {<u1, u2>: u1 is greater than u2}
 O: {<u>: u is odd}
 P: {u1, u2, u3>: u1 plus u2 equals u3}

 a. (∃x)(∀y)(x � y ⊃ Gxy)
 *b. (∀x)(∀y) ~ x � y
 c. (∀x)(∃y)(Oy ⊃ Gyx)
 *d. (∀x)(∀y)(∀z)[(Gxy & Gyz) ⊃ ~ x � z]
 e. (∃w)[Ew & (∀y)(Oy ⊃ ~ w � y)]
 *f. (∀y)(∀z)[(Oy & y � z) ⊃ ~ Ez]
 g. (∃z)(∃w)(z � w & Gzw)
 *h. (∀x)(∀y)(∃z)[(Pxyz & ~ x � z) & ~ y � z]
 i. (∀x)(∀y)(Pxyy ∨ ~ x � y)

 2. Show that each of the following sentences is not quantifi cationally true by
producing an interpretation on which it is false.

 a. (∃x)(∀y)x � y
 *b. (∀w)(w � b ⊃ Fw)

ber38413_ch08_329-401.indd Page 397 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 397 12/4/12 12:10 PM F-400F-400

398 PREDICATE LOGIC: SEMANTICS

 c. (∀x)(∀y)(∀z)[(x � y ∨ y � z) ∨ x � z]
 *d. (∃w)[Gw & (∀z)(~ Hzw ⊃ z � w)]
 e. (∃x)(∃y)(~ x � y ∨ Gxy)
 *f. (∀x)(∀y)(∃z)(x � y ⊃ ~ x � z)

 3. Each of the following sentences is quantifi cationally true. Explain why.
 a. (∀x)(∀y)(∀z)[(x � y & y � z) ⊃ x � z]
 *b. (∀x)(∀y)(∃z)(x � z ∨ y � z)
 c. (∀x)(∀y)[x � y ⊃ (Gxy � Gyx)]

 4. Show that the sentences in each of the following pairs are not quantifi cationally
equivalent by constructing an interpretation on which one sentence is true and
the other is false.

 a. (∀x)(∃y) x � y, (∀x)(∀y)x � y
 *b. (∀x)(∀y)[x � y ⊃ (Fx � Fy)], (∀x)(∀y)[(Fx � Fy) ⊃ x � y]
 c. (a � b ∨ a � c) ⊃ a � d, a � c ⊃ (a � b ∨ a � d)
 *d. (∃x)(∀y)(~ x � y ⊃ Gy), (∃x)(∀y)(Gy ⊃ ~ x � y)

 5. Show that each of the following sets of sentences is quantifi cationally consist-
ent by constructing an interpretation on which each sentence in the set is
true.

 a. {a � b, a � c, ~ a � d}
 *b. {(∀x)(∀y)x � y, (∃x)Fx, (∀y)Gy}
 c. {(∃x)(∃z) ~ x � z, (∀x)(∃z)(∃w)(x � z ∨ x � w)}
 *d. {(∀x)(Gx ⊃ (∀y)(~ y � x ⊃ Gy)), (∀x)(Hx ⊃ Gx), (∃z)Hz}

 6. Establish each of the following by producing an interpretation on which the
set members are true and the sentence after the double turnstile is false.

 a. {(∀x)(∀y)(∀z)[(x � y ∨ x � z) ∨ y � z]} (∀x)(∀y)(x � y)
 *b. {(∃w)(∃z) ~ w � z, (∃w)Hw} (∃w) ~ Hw
 c. {(∃w)(∀y)Gwy, (∃w)(∀y)(~ w � y ⊃ ~ Gwy)} (∃z) ~ Gzz
 *d. {(∀x)(∀y)[(Fx � Fy) � x � y], (∃z)Fz} (∃x)(∃y)[~ x � y & (Fx & ~ Fy)]

 7. Using the given symbolization key, symbolize each of the following arguments
in PLE. Then, for each symbolized argument, decide whether it is quantifi ca-
tionally valid and defend your answer.

 UD: The set of all people
 Fx: x is female
 Mx: x is male
 Lxy: x loves y
 Pxy: x is a parent of y

 a. Every male loves someone other than himself, and every male loves his chil-
dren. Therefore no male is his own parent.

 *b. Everyone loves her or his parents, and everyone has two parents. Therefore
everyone loves at least two people.

 c. A female who loves her children loves herself as well. Therefore every female
loves at least two people.

 *d. Everybody has exactly two parents. Therefore everybody has exactly four grand-
parents.

 e. Nobody has three parents. Everybody has more than one parent. Therefore
everybody has two parents.

ber38413_ch08_329-401.indd Page 398 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 398 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 399

 8. Use truth-functional expansions to establish each of the following claims. Be
sure that the truth-value assignments you produce meet the fi rst two conditions
discussed in this section.

 a. The sentence ‘(∃x)(∃y) ~ x � y’ is quantifi cationally indeterminate.
 *b. The sentence ‘(∀w)(Fw ⊃ (∃y) ~ y � w) & (∃w)Fw’ is quantifi cationally inde-

terminate.
 c. The sentences ‘(∀y)(∀z)[(Gyz ∨ Gzy) ∨ y � z]’ and ‘(∀y)(∃z)Gyz’ are not

quantifi cationally equivalent.
 *d. The set of sentences {(∀x)(∀y)(∀z)[(Gxy ∨ Gyz) ∨ x � z], (∀y)(∃z)Gyz} is

quantifi cationally consistent.
 e. The set of sentences {(∀y)y � y, (∃z)(∃w) ~ w � z} does not quantifi cationally

entail the sentence ‘(∃z)(∀w) ~ z � w’.
 *f. The argument

(∀y)(∀z)(Gyz ⊃ y � z)

(∀y)(∀z)(y � z ⊃ Gyz)

 is quantifi cationally invalid.

 9. Determine the truth-values of the following sentences on this interpretation:
 UD: The set of positive integers
 E: {<u>: u is even}
 G: {<u1, u2>: u1 is greater than u2}
 f: {u1, u2>: u2 is the successor of u1}
 g: {<u1, u2>: u2 is u1 squared}
 h: {<u1, u2, u3>: u3 is the sum of u1 and u2}

 a. (∀x)Gf(x)x
 *b. (∀x)Eg(x)
 c. (∀x)(∃y)y � h(x,x)
 *d. (∀x)(∀y)(y � h(x,x) ⊃ Ey)
 e. (∃x)(∃y)((Ex & ~ Ey) & Eh(x,y))
 *f. (∀x)(∀y)(∀z)(Eh(h(x,y), z) ⊃ ((Ex ∨ Ey) ∨ Ez))
 g. (∀x)(∃z)(Eh(g(x), z) ∨ Eh(x,g(z)))
 *h. (∀x)(∀y)Gh(f(x), f(y)), h(x,y)

 10. Show that each of the following sentences is not quantifi cationally true by
producing an interpretation on which it is false.

 a. (∀x)(Pf(x) ⊃ Px)
 *b. (∀x)(∀y)(x � g(y) ∨ y � g(x))
 c. (∃x)(∀y)x � g(y)
 *d. (∀x)(∀y)(∀z)((x � f(y) & y � f(z)) ⊃ x � f(z))
 e. (∀x) ~ x � f(x)
 *f. (∀x)(∀y)(Dh(x,y) ⊃ Dh(y,x))

 11. Each of the following sentences is quantifi cationally true. Explain why.
 a. (∀x)(∃y)y � f(f(x))
 *b. (∀x)(∀y)(∀z)((y � f(x) & z � f(x)) ⊃ y � z)
 c. ((∀x) Hxf(x) & (∀x)(∀y)(∀z)((Hxy & Hyz) ⊃ Hxz)) ⊃ (∀x)Hxf(f(x))

ber38413_ch08_329-401.indd Page 399 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 399 12/4/12 12:10 PM F-400F-400

400 PREDICATE LOGIC: SEMANTICS

 12. Show that the sentences in each of the following pairs are not quantifi cationally
equivalent by constructing an interpretation on which one sentence is true and
the other false.

 a. Labf(b), Laf(b)b
 *b. (∀x)B(h(x), x), (∀x)B(x,h(x))
 c. (∀x)(∃y)y � f(h(x)), (∃z)z � f(h(z))
 *d. (∃x)(∃y)(∃z)(x � f(y) & y � f(z)), (∀x)(∃y)(∃z)(x � f(y) & y � f(z))

 13. Show that each of the following sets of sentences is quantifi cationally con-
sistent by constructing an interpretation on which each sentence in the set
is true.

 a. {a � f(b), b � f(c), c � f(a)}
 *b. {(∀x)Lxf(x), (∃y) ~ Lf(y)y}
 c. {(∃x)(∀y)x � f(y), (∃x)(∀y) ~ x � f(y)}
 *d. {(∀x)(Gx ⊃ ~ Gh(x), (∃x)(~ Gx & ~ Gh(x)}

 14. For each of the following arguments, decide whether it is quantifi cationally
valid. If it is quantifi cationally valid, explain why. If it is not quantifi cationally
valid, construct an interpretation on which the premises are true and the con-
clusion false.

 a. (∀x)(Fx ∨ Fg(x))

 (∀x)(Fx ∨ Fg(g(x)))

 *b. (∀x)(Fx ∨ Fg(x))

 (∀x)(Fg(x) ∨ Fg(g(x)))

 c. (∀x)(∃y)(∃z)Lf(x)yz

 (∃x)(∀y)(∀z)Lxf(y)f(z)

 *d. (∀x)(Lxf(x) & ~ Lf(x)x)

 (∀x)(∀y)(y � f(x) ⊃ (Lxy ∨ Lyx))

 e. (∀x)(Bg(x) ⊃ (∀y) ~ Hyg(x))

 (a � g(b) & Hca) ⊃ ~ Ba

 15. Use truth-functional expansions to establish each of the following. Be sure that
the truth-value assignments you produce meet all three conditions discussed in
this section.

 a. The sentence ‘(∀x)(Fx ∨ Fg(x))’ is quantifi cationally indeterminate.
 *b. The sentences ‘(∃x)(∃y)Hg(x,y)x’ and ‘(∃x)(∃y)Hg(y,x)x’ are not quantifi ca-

tionally equivalent.
 c. The set of sentences {(∀x) ~ x � f(x), (∃x)x � f(f(x))} is quantifi cationally

consistent.
 *d. The argument

 a � f(b) & b � f(a)

 (∃x)(∃y) ~ x � y

 is quantifi cationally invalid.

ber38413_ch08_329-401.indd Page 400 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 400 12/4/12 12:10 PM F-400F-400

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 401

GLOSSARY

QUANTIFICATIONAL TRUTH: A sentence P of PL/PLE is quantifi cationally true if
and only if P is true on every interpretation.

QUANTIFICATIONAL FALSITY: A sentence P of PL/PLE is quantifi cationally false if
and only if P is false on every interpretation.

QUANTIFICATIONAL INDETERMINACY: A sentence P of PL/PLE is quantifi cation-
ally indeterminate if and only if P is neither quantifi cationally true nor quantifi ca-
tionally false.

QUANTIFICATIONAL EQUIVALENCE: Sentences P and Q of PL/PLE are quantifi ca-
tionally equivalent if and only if there is no interpretation on which P and Q have
different truth-values.

QUANTIFICATIONAL CONSISTENCY: A set of sentences of PL/PLE is quantifi cation-
ally consistent if and only if there is at least one interpretation on which all the
members of the set are true. A set of sentences of PL/PLE is quantifi cationally incon-
sistent if and only if the set is not quantifi cationally consistent.

QUANTIFICATIONAL ENTAILMENT: A set � of sentences of PL/PLE quantifi cation-
ally entails a sentence P of PL/PLE if and only if there is no interpretation on
which every member of � is true and P is false.

QUANTIFICATIONAL VALIDITY: An argument of PL/PLE is quantifi cationally valid if
and only if there is no interpretation on which all the premises are true and the
conclusion is false. An argument of PL/PLE is quantifi cationally invalid if and only
if the argument is not quantifi cationally valid.

ber38413_ch08_329-401.indd Page 401 12/4/12 12:10 PM ber38413_ch08_329-401.indd Page 401 12/4/12 12:10 PM F-400F-400

402 PREDICATE LOGIC: TRUTH-TREES

Chapter 9

Section 9.1 augments the set of tree rules presented in Chapter 4 to include
four rules for quantifi ed sentences and negations of quantifi ed sentences of
PL and discusses guidelines for constructing trees for sentences and sets of
sentences of PL. Section 9.2 redefi nes ‘completed open branch’ for truth-trees
for PL and discusses the use of the tree method to test sets of sentences of PL
for quantifi cational consistency, including how to recover interpretations from
completed open branches. Section 9.3 discusses using truth-trees to test sen-
tences and sets of sentences of PL for other quantifi cational properties. Section
9.4 revises one of the truth-tree rules for PL and presents a systematic method
for constructing truth-trees. Section 9.5 presents truth-tree rules for PLE, and
Section 9.6 fi ne-tunes the systematic method for constructing truth-trees, to
guide the construction of truth-trees for sentences and sets of sentences of PLE.

PREDICATE LOGIC:
TRUTH-TREES

 9.1 TRUTH-TREE RULES FOR PL

Truth-trees, as developed in Chapter 4, provide the basis for an effective
method of testing fi nite sets of sentences of SL for truth-functional consistency
and thus for all the properties of sentences and fi nite sets of sentences that can
be explicated in terms of truth-functional consistency. In this chapter we shall

ber38413_ch09_402-473.indd Page 402 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 402 12/4/12 2:33 PM F-400F-400

9.1 TRUTH-TREE RULES FOR PL 403

augment the truth-tree method to make it applicable to sets of sentences of
PL and of PLE. The result will be a method of testing fi nite sets of sentences
of PL and of PLE for quantifi cational consistency and thus for those proper-
ties of sentences and fi nite sets of sentences that can be explicated in terms of
quantifi cational consistency.

In addition to the decomposition rules for sentences of SL, which can
also be used for PL, we need rules for decomposing sentences of PL that have
any of the following four forms:

(∀x)P

(∃x)P

~ (∀x)P

~ (∃x)P

We begin with the rules for negations of quantifi ed sentences. Both are non-
branching rules:

 Negated Existential Negated Universal
 Decomposition (~ ∃D) Decomposition (~ ∀D)

 ~ (∃x)P� ~ (∀x)P�

 (∀x) ~ P (∃x) ~ P

In each case the sentence entered is equivalent to the sentence being decom-
posed. ‘It is not the case that something is such-and-such’ is equivalent to
‘Everything is such that it is not such-and-such’, and ‘It is not the case
that everything is such-and-such’ is equivalent to ‘Something is not such-
and-such’.

If a universally quantifi ed sentence (∀x)P is true on an interpretation,
then so is each substitution instance P(a/x) of that sentence. We therefore
want a rule that allows us to “decompose” a universally quantifi ed sentence to
its substitution instances. The rule is

Universal Decomposition (∀D)
 (∀x)P

 P(a/x)

where a is any individual constant

At any point in the construction of a tree, a universally quantifi ed sentence
(∀x)P may be decomposed by entering any substitution instance P(a/x) of
that sentence on one or more open branches passing through (∀x)P. Because a
universally quantifi ed sentence has an infi nite number of substitution instances,

ber38413_ch09_402-473.indd Page 403 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 403 12/4/12 2:33 PM F-400F-400

404 PREDICATE LOGIC: TRUTH-TREES

we can never “fi nish” decomposing such a sentence. Consequently universally
quantifi ed sentences are never checked off.

Universal Decomposition does not require that a selected substitution
instance be entered on every open branch passing through the universally quan-
tifi ed sentence being decomposed. A substitution instance is often useful on
one open branch passing through the sentence being decomposed but not on
another. And, because universally quantifi ed sentences are never checked off,
we can always later add more substitution instances of a universally quantifi ed
sentence to any open branch passing through that sentence.

Here is a tree for the set of sentences {(∀x)(Fxc ⊃ Gxb), Fac & ~ Gab)}:

1
2
3
4
5

6

 (∀x)(Fxc ⊃ Gxb)
 Fac & ∼ Gab�
 Fac
 ∼ Gab
 Fac ⊃ Gab�

SM
SM
2 &D
2 &D
1 ∀D

5 ⊃D∼ Fac
 �

Gab
 �

At line 5 we entered ‘Fac ⊃ Gab’ by Universal Decomposition. We could have
entered any substitution instance of ‘(∀x)(Fxc ⊃ Gxb)’, but only the one we
did enter will end up producing a closed tree. Recall that we do not check off
the universally quantifi ed sentence that is being decomposed.

The rule for decomposing existentially quantifi ed sentences is:

Existential Decomposition (∃D)
 (∃x)P�

 P(a/x)

where a is a constant foreign to the branch

A constant is foreign to a branch of a tree if and only if it does not occur in
any sentence on that branch. Unlike universally quantifi ed sentences, existen-
tially quantifi ed sentences are checked off when they are decomposed. This is
because we know that if an existentially quantifi ed sentence (∃x)P is true then
there is at least one thing that is of the sort specifi ed by P, but there need not
be more than one such thing. When we choose an individual constant for the
substitution instance P(a/x), the constant a that we choose must be foreign
to the branch to which we plan to add P(a/x) because otherwise it would
already have a role on that branch, and quite possibly a confl icting role.
For example, the set {(∃x)Bx, (∃x) ~ Bx} is quantifi cationally consistent and
should have only open truth-trees. However, if we were to drop the Existential

ber38413_ch09_402-473.indd Page 404 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 404 12/4/12 2:33 PM F-400F-400

9.1 TRUTH-TREE RULES FOR PL 405

Decomposition restriction that a be foreign to the branch on which the sub-
stitution instance is entered, we could produce a closed tree for this set:

1 (∃x) Bx SM
2 (∃x) ~ Bx SM
3 Ba 1 ∃D
4 ~ Ba 2 ∃D MISTAKE!
 �

Line 4 is a mistake because the individual constant ‘a’ used in Existential
Decomposition at line 4 was not foreign to the single branch of the tree prior
to line 4. A correct tree uses an instantiating constant on line 4 that is different
from that used on line 3:

1 (∃x) Bx SM
2 (∃x) ~ Bx SM
3 Ba 1 ∃D
4 ~ Bb 2 ∃D
 o

The single branch is completed and this shows that the set is indeed quan-
tifi cationally consistent.

The following tree contains three uses of Existential Decomposition:

1
2
3

4
5
6
7

(∀x)Fx ⊃ (∃x) ∼ Gx�
 (∃x) ∼ Fx�
 ∼ Fa

SM
SM
2 ∃D

1 ⊃D
4 ∼ ∀D
5 ∃D
4 ∃D

∼ (∀x)Fx�
(∃x) ∼ Fx�

∼ Fb
o

(∃x) ∼ Gx�

∼ Gb
o

At line 3 Existential Decomposition is used for the fi rst time. Since no constant
occurs on the single branch that constitutes the tree at that point, we used ‘a’
as the instantiating constant. The next use of Existential Decomposition is at
line 6 on the left-hand branch. At that point ‘a’ already occurs on the branch
(at line 3—remember that the sentences on lines 1–3 occur on both branches
of this tree). So we use a new instantiating constant, ‘b’. The fi nal use of Exis-
tential Decomposition is at line 7 on the right-hand branch. The constant ‘a’
cannot be used because it occurs on line 3. But ‘b’ can be used, for although
it already occurs on the left-hand branch, it does not occur before line 7 on
the right-hand branch.

The preceding tree has two open branches, each of which contains only
literals and decomposed nonliteral sentences. The complexities of predicate logic

ber38413_ch09_402-473.indd Page 405 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 405 12/4/12 2:33 PM F-400F-400

406 PREDICATE LOGIC: TRUTH-TREES

will force us to complicate the account of ‘completed open branch’ given in
Chapter 4. However, an open branch that contains only literals and decomposed
nonliterals that have been checked off will, as in Chapter 4, count as a completed
open branch. So both branches of the tree are completed open branches.

Moreover, a completed open branch guarantees that we can construct
an interpretation on which every member of the set being tested is true, that
is, a model for that set, so this tree demonstrates that the set {(∀x)Fx ⊃ (∃x)
~ Gx, (∃x) ~ Fx} is quantifi cationally consistent. We’ll show how interpretations
can be constructed from each of the two completed open branches of the tree.1
An interpretation that makes all of the literals on a completed open branch
true will make all of the other sentences on that branch, including the mem-
bers of the set being tested, true. Starting with the left branch, we see that the
branch contains two literals, ‘~ Fa’ and ‘~ Fb’. To make both of these true we
will construct an interpretation with a two-member UD, letting the constant ‘a’
denote one member and ‘b’ the other, and we will interpret the predicate ‘F’
so that neither of these members is in its extension:

 UD: The set {1, 2}
 a: 1
 b: 2
 F: ∅

Here we have shown the extension assigned to the predicate ‘F’ rather than
construct a reading for ‘F’. We shall continue this practice throughout this
chapter, as the UDs for our interpretations will all be fi nite, and indeed quite
small, and so there is no need to come up with a reading to specify the exten-
sion of a predicate. ‘~ Fa’ and ‘~ Fb’ are both true on any interpretation with
this UD that assigns these values to ‘a’, ‘b’, and ‘F’. The sentence ‘(∀x)Fx ⊃
(∃x) ~ Gx’ is true on any interpretation that assigns these values because the
antecedent is false (so it doesn’t matter how the predicate ‘G’ is interpreted).
The sentence ‘(∃x) ~ Fx’ is true because at least one member of the UD is
excluded (in fact, both are) from the extension of the predicate ‘F’.

Note that the truth-values of the sentences ‘(∀x)Fx ⊃ (∃x) ~ Gx’ and
‘(∃x) ~ Fx’ don’t depend on the assignments made to ‘a’ and ‘b’, since those
constants don’t appear in these sentences. So more generally we can say that
the set members will be true on any interpretation that includes the following
assignments:

 UD: The set {1, 2}
 F: ∅

Interestingly, in this case we do not need a two-member UD either. This is
because the literals on the complete open branch, ‘~ Fa’ and ‘~ Fb’, agree

1In Chapter 11 we will prove that such an interpretation can always be found corresponding to a completed open
branch of a tree for sentences of PL.

ber38413_ch09_402-473.indd Page 406 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 406 12/4/12 2:33 PM F-400F-400

9.1 TRUTH-TREE RULES FOR PL 407

in what they say about the individual denoted by ‘a’ and the individual
denoted by ‘b’—so the UD for an interpretation that makes the literals on
the open branch true need not contain more than one individual. But our
purpose in this chapter is to show how completed open branches can be
used as the basis for constructing models, rather than to explore the fi ner
points thereof, so while working with the language PL (rather than PLE)
our practice will be to present a UD with exactly as many members as there
are constants on the open branch, to assign distinct members of the UD
to those constants, and to interpret predicates so as to make the literals
occurring on the branch true.

The right-hand open branch of the previous tree contains two con-
stants as well, and the literals ‘~ Fa’ and ‘~ Gb’, so the members of the set
{(∀x)Fx ⊃ (∃x) ~ Gx, (∃x) ~ Fx} will both be true on any interpretation with a
two-member UD such that ‘a’ and ‘b’ denote distinct individuals and the two
literals are true. Any interpretation that includes the following assignments will
satisfy these criteria:

 UD: {1, 2}
 a: 1
 b: 2
 Fx: ∅
 Gx: ∅

The sentence ‘(∀x)Fx ⊃ (∃x) ~ Gx’ will be true because the antecedent is
false and the consequent is true, while ‘(∃x) ~ Fx’ will be true because at least
one member of the UD (in fact, both) is excluded from the extension of the
predicate ‘F’.

Except for Universal Decomposition, the truth-tree rules introduced in
this section are like the tree rules of Chapter 4 in that the results of applying one
of them must be entered on every open branch running through the sentence
being decomposed. Also as in Chapter 4, it is generally wise to apply decomposi-
tion rules that do not produce new branches before applying those that do. In
using Universal Decomposition it is a good idea to select substitution instances
in which the instantiating constant already occurs on the open branch in ques-
tion. It is also wise to try to use Existential Decomposition before using Universal
Decomposition, for the former rule but not the latter places a restriction on the
individual constant that can be used in the substitution instance that is added
to the tree. We illustrate these last two points by constructing a tree for {(∀x)
(∀y) ~ Mxy, (∃x)Mxb}:

1 (∀x)(∀y) ~ Mxy SM
2 (∃x)Mxb� SM
3 Mab 2 ∃D
4 (∀y) ~ May 1 ∀D
5 ~ Mab 4 ∀D
 �

ber38413_ch09_402-473.indd Page 407 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 407 12/4/12 2:33 PM F-400F-400

408 PREDICATE LOGIC: TRUTH-TREES

Note that we used Existential Decomposition before Universal Decomposition.
At line 4 we entered ‘(∀y) ~ May’ rather than, say, ‘(∀y) ~ Mgy’, because ‘a’
occurs earlier on the tree on line 3. And although ‘b’ also occurs on line 3
we entered ‘(∀y) ~ May’ rather than ‘(∀y) ~ Mby’ because the former but not
the latter will, when appropriately decomposed, produce the negation of the
sentence on line 3.

Using Universal Decomposition before Existential Decomposition—
that is, decomposing the sentence on line 1 before the sentence on line 2—
will also produce a closed tree, but a tree that is more complex:

1 (∀x)(∀y) ~ Mxy SM
2 (∃x)Mxb� SM
3 (∀y) ~ Mby 1 ∀D
4 ~ Mbb 3 ∀D
5 Mab 2 ∃D
6 (∀y) ~ May 1 ∀D
7 ~ Mab 6 ∀D
 �

In this tree we had to enter ‘Mab’, rather than ‘Mbb’, at line 5 because Exis-
tential Decomposition requires that the instantiating constant be foreign to
the branch. At line 5, the constant ‘b’ was not foreign to the branch. But now,
having entered ‘Mab’ at line 5, we were able to close the tree only by reapply-
ing Universal Decomposition to the sentence on line 1. Lines 3 and 4 of the
tree are thus superfl uous.

In Chapter 4 we developed four guidelines for keeping truth-trees for
sets of sentences of SL as concise as possible. Those guidelines are also appli-
cable here. We repeat them, along with the two new guidelines just discussed
(suitably rearranged):

Guidelines for Constructing Truth-Trees

1. Stop when a tree yields the answer to the question being asked.
2. Give priority to decomposing sentences whose decomposition does not

require branching.
3. Give priority to decomposing sentences whose decompositions result in

the closing of one or more branches.
4. Give priority to decomposing existentially quantifi ed sentences over

 universally quantifi ed sentences.
5. When applying Universal Decomposition, try to use a substitution in-

stance in which the instantiating constant already occurs on the branch
to which the substitution instance will be added.

6. When guidelines 1–6 are not applicable, decompose the more complex
sentences fi rst.

ber38413_ch09_402-473.indd Page 408 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 408 12/4/12 2:33 PM F-400F-400

9.1 TRUTH-TREE RULES FOR PL 409

Guideline 1 should be used with care when dealing with universally
quantifi ed sentences. Consider the following tree in which Universal Decom-
position is used before Conditional Decomposition:

 1 (∀x)(Fxa ⊃ Fax) SM
 2 (∀y)(Hy ⊃ Fya) SM
 3 (∃x)(Hx & ~ Fax) SM
 4 Hb & ~ Fab� 3 ∃D
 5 Hb 4 &D
 6 ~ Fab 4 &D
 7 Faa ⊃ Faa 1 ∀D
 8 Fba ⊃ Fab� 1 ∀D
 9 Ha ⊃ Faa 2 ∀D
10 Hb ⊃ Fba� 2 ∀D

11 ~ Hb Fba 10 ⊃D
 �

12 ~ Fba Fab 8 ⊃D
 � �

At line 7 we used Universal Decomposition and continued using it until each
universally quantifi ed sentence (there are two) was decomposed to every
substitution instance that could be formed from a constant already on the
branch. The idea is that these are the substitution instances that may be use-
ful later on. As it turns out, lines 7 and 9 are unnecessary, but this was not
completely obvious at the point where we had a choice between applying
Universal Decomposition and Material Conditional Decomposition. On the
other hand, we might have noticed that ‘Hb’ and ‘~Fab’ already occurred on
lines 5 and 6, and we might therefore have decided to fi rst instantiate the
universally quantifi ed sentences on lines 1 and 2 with the constant ‘b’—to
see whether these instantiations might produce sentences that can be decom-
posed to close some branches.

Generally, it is a good policy to stick with guideline 1, but with the caveat
that, when a shorter route to a closed tree is apparent, it should be pursued.2

 9.IE EXERCISES

 1. Construct truth-trees for the following sets of sentences. For each, note whether
the tree you construct has a completed open branch or is closed (by the
accounts of ‘completed open branch’ and ‘closed tree’ given in Chapter 4).

 a. {(∃x)Fx, (∃x) ~ Fx}
 *b. {(∃x)Fx, (∀x) ~ Fx}

2A further caveat will be required when we introduce systematic trees in Section 9.4, for the routine for con-
structing such trees requires abandoning guideline 1 altogether as it applies to universally quantifi ed sentences.

ber38413_ch09_402-473.indd Page 409 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 409 12/4/12 2:33 PM F-400F-400

410 PREDICATE LOGIC: TRUTH-TREES

 c. {(∃x)(Fx & ~ Gx), (∀x)(Fx ⊃ Gx)}
 *d. {(∃x)(Fx & ~ Gx), (∀x)Fx ⊃ (∀x)Gx}
 e. {~ (∀x)(Fx ⊃ Gx), ~ (∃x)Fx, ~ (∃x)Gx}
 *f. {~ (∀x)(Fx & Gx), (∃y)(Fy & Gy)}
 g. {(∃x)Fx, (∃y)Gy, (∃z)(Fz & Gz)}
 *h. {(∀x)(Fx ⊃ Gx), (∀x)(Gx ⊃ Hx), (∃x)(Fx & ~ Hx)}
 i. {(∀x)(∀y)(Fxy ⊃ Fyx), (∃x)(∃y)(Fxy & ~ Fyx)}
 *j. {(∀x)(∃y)Lxy, Lta & ~ Lat, ~ (∃y)Lay}
 k. {(∃x)Fx ⊃ (∀x)Fx, ~ (∀x)[Fx ⊃ (∀y)Fy]}
 *l. {(∀x)(Fx ⊃ Gx), ~ (∀x) ~ Fx, (∀x) ~ Gx}
 m. {(∀x)[Fx ⊃ (∃y)Gyx], ~ (∀x) ~ Fx, (∀x)(∀y) ~ Gxy}
 *n. {(∃x)Gx ⊃ (∀x)Gx, (∃z)Gz & (∃y) ~ Gy}
 o. {(∃x)Lxx, ~ (∃x)(∃y)(Lxy & Lyx)}
 *p. {(∃y)(Fy ∨ Gy), ~ (∀y)Fy & ~ (∀y)Gy, ~ (∀x)(Fx & Gx)}
 q. {(∃x)(Fx ∨ Gx), (∀x)(Fx ⊃ ~ Gx), (∀x)(Gx ⊃ ~ Fx), ~ (∃x)(~ Fx ∨ ~ Gx)}

 9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY

In Chapter 4 we defi ned a completed open branch to be an open branch on which
every sentence either is a literal or has been decomposed, so that no new
sentence can be added to the branch. We will have to revise this defi nition
for trees for sets of sentences of PL. Consider the following tree for the set
{(∃y)Gy ⊃ (∀x)Fxb, (∃z) ~ Fzb}:

1 (∃y)Gy ⊃ (∀x)Fxb)� SM
2 (∃z) ~ Fzb� SM
3 ~ Fab 2 ∃D

4 ~ (∃y)Gy� (∀x)Fxb 1 ⊃D
5 Fab 4 ∀D
 �
6 (∀y) ~ Gy 4 ~ ∃D
7 ~ Ga 6 ∀D
8 ~ Gb 6 ∀D
 o

This tree has one closed branch and one open branch. Further sentences
could be added to the open branch, for it contains the universally quantifi ed
sentence ‘(∀y) ~ Gy’, and there is no limit to the number of times a uni-
versally quantifi ed sentence can be decomposed—such sentences are never
checked off. In this tree we added substitution instances of ‘(∀y) ~ Gy’ on

ber38413_ch09_402-473.indd Page 410 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 410 12/4/12 2:33 PM F-400F-400

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY 411

lines 7 and 8, using individual constants that already appeared on the branch.
While further substitution instances can be added, it is clear that, no matter
how many substitution instances we add, the branch will remain open. The
truth-values of substitution instances formed from individual constants that
do not already occur on the open branch will not have any bearing on the
truth-values of literals that already occur on the branch, so there is no point
in entering ‘~ Gh’, for example. The leftmost branch extending through line
8 is suffi cient for concluding that the set being tested is quantifi cationally
consistent—we can use the literals ‘~ Fab’, ‘~ Ga’, and ‘~ Gb’ that occur on
this branch to construct an interpretation on which all of the set members
are true. They’ll be true on any interpretation that includes the following
assignments:

 UD: The set {1, 2}
 a: 1
 b: 2
 F: {<2,1>}
 G: ∅

‘(∃y)Gy ⊃ (∀x)Fxb’ will be true because the antecedent is false—the extension
of ‘G’ is empty—while ‘(∃z) ~ Fzb’ will be true because <1, 2>, for example, is
not in the extension of ‘F’.

We want open branches such as the left branch on the preceding
tree—open branches to which no additional useful sentences can be added—
to count as completed open branches. We therefore modify our defi nition of
a completed open branch as follows:

A branch of a truth-tree for a set of sentences of PL is a completed open
branch if and only if it is a fi nite open branch (that is, an open branch
with a fi nite number of sentences) and each sentence occurring on the
branch is one of the following:

1. A literal (an atomic sentence or the negation of an atomic sentence)
2. A nonliteral sentence that is not a universally quantifi ed sentence

and is decomposed
3. A universally quantifi ed sentence (∀x)P such that at least one

substitution instance occurs on the branch, and for each constant
a occurring on the branch, the substitution instance P(a/x) also
occurs on the branch.

By this revised account the leftmost branch of the preceding tree is a completed
open branch.

ber38413_ch09_402-473.indd Page 411 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 411 12/4/12 2:33 PM F-400F-400

412 PREDICATE LOGIC: TRUTH-TREES

Here is another tree that contains a completed open branch:

1
2
3
4
5
6
7
8

9

10

(∀x)(Gx ⊃ Hxx)
∼ (∀y)Hyy�

(∃z)Gz�
(∃y) ∼ Hyy�

∼ Haa
 Gb

Ga ⊃ Haa�
Gb ⊃ Hbb�

SM
SM
SM
2 ∼ ∀D
4 ∃D
3 ∃D
1 ∀D
1 ∀D

8 ⊃D

7 ⊃D

∼ Gb
×

Hbb

∼ Ga
o

Haa
×

The open branch is completed because each compound sentence that is
not a universal quantifi cation has been checked off, and the single uni-
versally quantifi ed sentence has been decomposed using each of the two
constants on the branch, at lines 7 and 8. The branch contains suffi cient
information for constructing a model of the set being tested. To make the
literals on the completed open branch true, we need to interpret the predi-
cates ‘G’ and ‘H’ in such a way that ‘Gb’ and ‘Hbb’ are true (since ‘Gb’
and ‘Hbb’ occur on the open branch) and ‘Ga’ and ‘Haa’ are false (since
‘~ Ga’ and ‘~ Haa’ occur on the open branch). The following assignments
will do the trick:

 UD: {1, 2}
 a: 1
 b: 2
 G: {<2>}
 H: {<2, 2>}

Any interpretation that includes these assignments will make the three sen-
tences in the set {(∀x)(Gx ⊃ Hxx), ~ (∀y)Hyy, (∃z)Gz} true, and this establishes
that the set is quantifi cationally consistent. An interpretation on which all the
members of the set being tested are true can always be constructed from a
completed open branch (we shall prove this in Chapter 11), so we shall take
the presence of a completed open branch as a guarantee that the set being
tested is quantifi cationally consistent.

To see why we require that a completed open branch on which a uni-
versally quantifi ed sentence occurs must contain at least one substitution instance

ber38413_ch09_402-473.indd Page 412 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 412 12/4/12 2:33 PM F-400F-400

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY 413

of that sentence, consider the unit set {(∀x)(Fx & ~ Fx)}. The sole member of
this set is quantifi cationally false. We therefore want every tree for the unit set
of this sentence to close. One tree is as follows:

1 (∀x)(Fx & ~ Fx) SM
2 Fa & ~ Fa 1 ∀D
3 Fa 2 &D
4 ~ Fa 2 &D
 �

If we did not require that a completed open branch contain at least one sub-
stitution instance of every universally quantifi ed sentence occurring on that
branch, we would have a completed open branch at line 1. A completed open
branch is supposed to signal a consistent set, but the set {(∀x)(Fx & ~ Fx)}
is not consistent. Given the requirement that a completed open branch must
have at least one substitution instance of each universally quantifi ed sentence
occurring on that branch, we entered such an instance on line 2 and this led
to a closed tree. Note that the tree would close no matter what substitution
instance of ‘(∀x)(Fx & ~ Fx)’ is entered at line 2.

We summarize here the important properties of truth-trees for sets
of sentences of PL. With the exception of the concept of a completed open
branch, these defi nitions strictly parallel those given in Chapter 4:

Closed branch: A branch on which contradictory
literals occur.

Open branch: A branch that is not closed.
Completed open branch: A fi nite open branch on which each

sentence is one of the following:

1. A literal (an atomic sentence or the negation of an atomic sentence)
2. A compound sentence that is not a universally quantifi ed sentence

and is decomposed
3. A universally quantifi ed sentence (∀x)P such that at least one substi-

tution instance occurs on the branch, and for each constant a occur-
ring on the branch, the substitution instance P(a/x) also occurs on
the branch.

Closed truth-tree: A truth-tree each of whose branches
is closed.

Open truth-tree: A truth-tree that is not closed.
Completed truth-tree: A truth-tree each of whose branches

is either closed or a completed
open branch.

ber38413_ch09_402-473.indd Page 413 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 413 12/4/12 2:33 PM F-400F-400

414 PREDICATE LOGIC: TRUTH-TREES

As noted, we will prove the following claims in Chapter 11:

A fi nite set � of sentences of PL is quantifi cationally inconsistent if and only if
� has a closed truth-tree.

A fi nite set � of sentences of PL is quantifi cationally consistent if and only if
� does not have a closed truth-tree.

If we can construct a closed tree for a fi nite set of sentences, then we can
conclude that that set is quantifi cationally inconsistent. If we can construct a
tree with a completed open branch for a fi nite set of sentences of PL, we may
conclude that the set is quantifi cationally consistent.3 However, in PL, unlike
SL, not all consistent fi nite sets have trees with completed open branches: some
such sets have trees all of whose open branches are infi nite (we require a com-
pleted open branch to be fi nite).4 That is why our second box, characterizing
consistency, does so in negative terms: a fi nite set is quantifi cationally consistent
if and only if it does not have a closed truth-tree (rather than if and only if it
has a tree with a completed open branch).

There is another importance difference between quantifi cational and
sentential truth-trees. In the sentential case, we can say that if all of the mem-
bers of the set we are testing are true on some truth-value assignment, then all
of the sentences on at least one completed open branch must be true on that
assignment. So, for example, the following tree for the set {A ⊃ B, B ⊃ A, ~ A}
has exactly one completed open branch:

1 A ⊃ B� SM
2 B ⊃ A� SM
3 ~ A SM

4 ~ B A 2 ⊃D
 �
5 ~ A B 1 ⊃D
 o �

If all of the sentences in the set are true on some truth-value assignment, then
the fi nal two sentences on the single open branch, ‘~ B’ and ‘~ A’, must also

3As we noted in Chapter 4, truth-trees can only be used to test fi nite sets of sentences. In Chapter 11 we shall
prove that an infi nite set of sentences of PL is quantifi cationally consistent if and only if every fi nite subset of
that set is quantifi cationally consistent. Therefore, we can also say that an infi nite set � of sentences of PL is
quantifi cationally inconsistent if and only if at least one fi nite subset of � has a closed truth-tree and that an
infi nite set � of sentences of PL is quantifi cationally consistent if and only if no fi nite subset of � has a closed
truth-tree.
4We discuss such trees in detail in Section 9.5.

ber38413_ch09_402-473.indd Page 414 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 414 12/4/12 2:33 PM F-400F-400

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY 415

be true on that assignment. A similar claim does not hold for quantifi cational
trees. Consider the following simple tree for the set {(∃x)Fx}:

1 (∃x)Fx� SM
2 Fa 1 ∃D
 o

The tree for this set has only one completed open branch, and from this open
branch we can conclude that there is a model for the set, for example, any
interpretation that includes the following assignments:

 UD: {1}
 a: 1
 F: {<1>}

for such an interpretation will make the single literal on the branch true. But
unlike the situation for SL, the truth of ‘(∃x)Fx’ does not require the truth of
‘Fa’. For example, ‘(∃x)Fx’ is also true on any interpretation that includes the
following assignments:

 UD: {1, 2}
 a: 2
 Fx: {<1>}

‘Fa’ is false on such an interpretation. The completed open branch shows that
the set {(∃x)Fx} is consistent not because the truth of ‘(∃x)Fx’ requires the
truth of ‘Fa’ but rather because the truth of ‘Fa’ is suffi cient to guarantee the
truth of ‘(∃x)Fx’—as illustrated by the fi rst of these interpretations.

Although the truth of ‘(∃x)Fx’ does not require the truth of ‘Fa’, it is
the case that if ‘(∃x)Fx’ is true on some interpretation, then there must be an
intrepretation on which ‘Fa’ is true. If there is an interpretion on which some-
thing is F then we can construct an interpretation in which ‘a’ designates that
thing (leaving the interpretation of ‘F’ unchanged) so that ‘Fa’ will be true. It is
for this reason that the following tree establishes the quantifi cational inconsist-
ency of {(∃x)(Fx & ~ Fx), even though the truth of an existentially quantifi ed for-
mula does not require the truth of any particular one of its substitution instances:

1 (∃x)(Fx & ~ Fx)� SM
2 Fa & ~ Fa� 1 ∃D
3 Fa 2 &D
4 ~ Fa 2 &D
 �

If there is indeed something that both is and is not F, then there is an interpreta-
tion that assigns that thing to ‘a’ and ‘Fa & ~ Fa’ will be true on that interpretation.
Because the single branch of this tree is closed, we may conclude that there is no
interpretation on which ‘(∃x)(Fx & ~ Fx)’ is true.

ber38413_ch09_402-473.indd Page 415 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 415 12/4/12 2:33 PM F-400F-400

416 PREDICATE LOGIC: TRUTH-TREES

 9.2E EXERCISES

 1. Use the truth-tree method to test the following sets of sentences for quantifi ca-
tional consistency. State your result, and specify what it is about the tree that
establishes this result. In addition, if your tree establishes consistency, show
the relevant part of an interpretation that will make all of the literals on one
completed open branch true.

 a. {(∀x)Fx ∨ (∃y)Gy, (∃x)(Fx & Gb)}
 *b. {(∀x)Fx ∨ (∃y)Gy, (∃x)(~ Fx & Gx)}
 c. {(∀x)(Fx ⊃ Gxa), (∃x)Fx, (∀y) ~ Gya}
 *d. {(∀x)(Fx ⊃ Gxa), (∃x)Fx}
 e. {(∀x)(Fx ⊃ Gxa), (∃x)Fx, (∀y)Gya}
 *f. {(∀x)(Fx ⊃ Gxa), (∃x)Fx, (∀x)(∀y)Gxy}
 g. {(∀x)(Fx ∨ Gx), ~ (∃y)(Fy ∨ Gy)}
 *h. {(∀x)(Fx ∨ Gx), ~ (∃y)(Fy ∨ Gy), Fa & ~ Gb}
 i. {(∀z)Hz, (∃x)Hx ⊃ (∀y)Fy}
 *j. {(∀z) ~ Hzb, (∃y)Fy ⊃ (∃x)Hxc}
 k. {(∀x)(∀y)Lxy, (∃z) ~ Lza ⊃ (∀z) ~ Lza}
 *l. {(∀x)(∀y)Lxy, (∃z) ~ Lza ⊃ (∀z) ~ Lzb}
 m. {(∀x)(Rx ≡ ~ Hxa), ~ (∀y) ~ Hby, Ra}
 *n. {(∀x)Fxa ≡ ~ (∀x)Gxb, (∃x)(Fxa & ~ Gxb)}

 9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES

To facilitate the use of truth-trees to test sentences and sets of sentences for
properties other than consistency, we fi rst specify those other properties in
terms of open and closed truth-trees.

A sentence P of PL is quantifi cationally true if and only if {~ P} has a closed
truth-tree.

A sentence P of PL is quantifi cationally false if and only if {P} has a closed
truth-tree.

A sentence P of PL is quantifi cationally indeterminate if and only if neither {P}
nor {~ P} has a closed truth-tree.

ber38413_ch09_402-473.indd Page 416 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 416 12/4/12 2:33 PM F-400F-400

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 417

Quantifi cational equivalence, quantifi cational entailment, and quantifi cational
validity are specifi ed analogously:

Sentences P and Q of PL are quantifi cationally equivalent if and only if
{~ (P ≡ Q)} has a closed truth-tree.

A fi nite set � of sentences of PL quantifi cationally entails a sentence P of PL
if and only if � ∪ {~ P} has a closed truth-tree.

An argument of PL with a fi nite set of premises is quantifi cationally valid
if and only if the set consisting of the premises and the negation of the
conclusion has a closed truth-tree.

Consider the sentence ‘(∀x)(Fx & (∃y) ~ Fy)’, which says ‘Each thing
is F and at least one thing is not F’, a claim for which we should not hold out
much hope. To verify that this sentence is quantifi cationally false, we construct
a tree for the unit set of this sentence, and indeed this tree closes:

1 (∀x)(Fx & (∃y) ~ Fy) SM
2 Fa & (∃y) ~ Fy� 1 ∀D
3 Fa 2 &D
4 (∃y) ~ Fy� 2 &D
5 ~ Fb 4 ∃D
6 Fb & (∃y) ~ Fy� 1 ∀D
7 Fb 6 &D
8 (∃y) ~ Fy 6 &D
 �

Since the tree closes, we know that the set being tested is quantifi cationally
inconsistent. Therefore there is no interpretation on which the single sentence
in that set, ‘(∀x)(Fx & (∃y) ~ Fy)’, is true. Hence the sentence is indeed quanti-
fi cationally false. Note that we applied Universal Decomposition to the sentence
on line 1 twice—once to obtain the sentence on line 2 and once to obtain the
sentence on line 6. This was necessary because, by the time we reached line
5, we had introduced a new constant with which the universally quantifi ed
sentence on line 1 had not yet been decomposed.

Now consider the sentence ‘(∃x) ~ Fx ⊃ ~ (∀x)Fx’, which says ‘If there
is something that is not F, then not everything is F’ and is obviously quantifi -
cationally true. To verify this, we construct a tree for the unit set of its nega-
tion, {~ [(∃x) ~ Fx ⊃ ~ (∀x)Fx]} (note that in forming the negation of this

ber38413_ch09_402-473.indd Page 417 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 417 12/4/12 2:33 PM F-400F-400

418 PREDICATE LOGIC: TRUTH-TREES

 truth-functionally compound sentence we were careful to reinstate the outer
brackets that had been omitted):

1 ~ [(∃x) ~ Fx ⊃ ~ (∀x)Fx]� SM
2 (∃x) ~ Fx� 1 ~ ⊃D
3 ~ ~ (∀x)Fx� 1 ~ ⊃D
4 (∀x)Fx 3 ~ ~ D
5 ~ Fa 2 ∃D
6 Fa 4 ∀D
 �

This tree is closed, so the set being tested is quantifi cationally inconsistent and
we may conclude that ‘(∃x) ~ Fx ⊃ ~ (∀x)Fx’ is quantifi cationally true.

Of course, we do not always have a clear intuition about a sentence’s
quantifi cational status. Consider, for example, the sentence ‘(∃x)(Fx ⊃ (∀y)
Fy)’, which may appear on fi rst encounter to be quantifi cationally indetermi-
nate. It is if and only if both the tree for ‘(∃x)(Fx ⊃ (∀y)Fy)’ and the tree for
its negation have at least one completed open branch. We begin with a tree
for the unit set of the sentence, to determine whether the sentence is quanti-
fi cationally false:

1 (∃x)(Fx ⊃ (∀y)Fy)� SM
2 Fa ⊃ (∀y)Fy� 1 ∃D

3 ~ Fa (∀y)Fy 2 ⊃D
4 o Fa 3 ∀D
 o

As expected, the tree is open, so the sentence is not quantifi cationally false.
We next construct a tree for the unit set of the negation of the sentence, to
determine whether the sentence is quantifi cationally true:

 1 ~ (∃x)(Fx ⊃ (∀y)Fy)� SM
 2 (∀x) ~ (Fx ⊃ (∀y)Fy) 1 ~ ∃D
 3 ~ (Fa ⊃ (∀y)Fy)� 2 ∀D
 4 Fa 3 ~ ⊃D
 5 ~ (∀y)Fy� 3 ~ ⊃D
 6 (∃y) ~ Fy� 5 ~ ∀D
 7 ~ Fb 6 ∃D
 8 ~ (Fb ⊃ (∀y)Fy)� 2 ∀D
 9 Fb 8 ~ ⊃D
10 ~ (∀y)Fy 8 ~ ⊃D
 �

ber38413_ch09_402-473.indd Page 418 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 418 12/4/12 2:33 PM F-400F-400

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 419

Perhaps surprisingly, this tree is closed. So the sentence ‘(∃x)(Fx ⊃ (∀y)Fy)’ is
in fact quantifi cationally true.

Insuffi cient attention to the scope of quantifi ers might lead one to
think that the sentences ‘(∃x)(Fx & Gx)’ and ‘(∃x)Fx & (∃x)Gx’ are quantifi -
cationally equivalent and hence that

(∃x)(Fx & Gx) ≡ ((∃x)Fx & (∃x)Gx)

is quantifi cationally true. To test this supposition, we construct a tree for the
negation of the biconditional:

1

2
3
4
5
6

7
8
9

10
11
12
13
14
15
16

17

 18

SM

1 ∼ �D
1 ∼ �D
2 ∃D
4 &D
4 &D

3 ∼ &D
7 ∼ ∃D
8 ∀D
3 &D
3 &D
2 ∼ ∃D
10 ∃D
11 ∃D
12 ∀D
12 ∀D

15 ∼ &D

16 ∼ &D

∼ ((∃x)(Fx & Gx) � ((∃x)Fx & (∃x)Gx))�

(∃x)(Fx & Gx)�
∼ ((∃x)Fx & (∃x)Gx)�

Fa & Ga�
Fa
Ga

∼ (∃x)Fx�
(∀x) ∼ Fx

∼ Fa
�

∼ (∃x)Gx�
(∀x) ∼ Gx

∼ Ga
� (∃x)Fx�

(∃x)Gx�
(∀x) ∼ (Fx & Gx)

Fa
Gb

∼ (Fa & Ga)�
∼ (Fb & Gb)�

∼ (∃x)(Fx & Gx)�
(∃x)Fx & (∃x)Gx�

∼ Fa
�

∼ Fb
o

∼ Gb
�

∼ Ga

The tree has a completed open branch, so the sentences ‘(∃x)(Fx & Gx)’ and
‘(∃x)Fx & (∃x)Gx’ are not quantifi cationally equivalent. If we are interested
in using the tree method to establish that the biconditional ‘(∃x)(Fx & Gx) ≡

ber38413_ch09_402-473.indd Page 419 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 419 12/4/12 2:33 PM F-400F-400

420 PREDICATE LOGIC: TRUTH-TREES

((∃x)Fx & (∃x)Gx)’ is quantifi cationally indeterminate (and not quantifi cation-
ally false), we must construct a tree for this biconditional:

1

2
3
4
5

6
7
8

9
10
11
12
13
14
15
16

SM

1 �D
1 �D
2 ∼ ∃D
4 ∀D

3 ∼ &D
6 ∼ ∃D
7 ∀D

5 ∼ &D
3 &D
3 &D
2 ∃D
12 &D
12 &D
10 ∃D
11 ∃D

(∃x)(Fx & Gx) � ((∃x)Fx & (∃x)Gx)�

(∃x)(Fx & Gx)�
(∃x)Fx & (∃x)Gx�

(∃x)Fx�
(∃x)Gx�

Fa & Ga�
Fa
Ga
Fb
Gc
o

∼ (∃x)(Fx & Gx)�
∼ ((∃x)Fx & (∃x)Gx)�

(∀x) ∼ (Fx & Gx)
∼ (Fa & Ga)�

∼ (∃x)Fx�
(∀x) ∼ Fx

∼ Fa

∼ Fa
o

∼ Ga
o

∼ (∃x)Gx�
(∀x) ∼ Gx

∼ Ga

∼ Fa
o

∼ Ga
o

It is surely not surprising that this tree has at least one completed open branch,
establishing that the biconditional is not quantifi cationally false and is there-
fore quantifi cationally indeterminate, given the previous tree, which also had
a completed open branch.

The sentences ‘(∀x)(Fx ⊃ (∃y)Gya)’ and ‘(∃x)Fx ⊃ (∃y)Gya’ are quan-
tifi cationally equivalent, as the following closed tree for the negation of their

ber38413_ch09_402-473.indd Page 420 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 420 12/4/12 2:33 PM F-400F-400

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 421

corresponding material biconditional establishes:

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16

17
18
19
20
21

SM

1 ∼ �D
1 ∼ �D
3 ∼ ⊃D
3 ∼ ⊃D
5 ∼ ∃D
4 ∃D
2 ∀D

8 ⊃D
9 ∃D
6 ∀D
2 ∼ ∀D
12 ∃D
13 ∼ ⊃D
13 ∼ ⊃D
15 ∼ ∃D

3 ⊃D
17 ∼ ∃D
18 ∀D
17 ∃D
16 ∀D

∼ [(∀x)(Fx ⊃ (∃y)Gya) � ((∃x)Fx ⊃ (∃y)Gya)]�

(∀x)(Fx ⊃ (∃y)Gya)
∼ ((∃x)Fx ⊃ (∃y)Gya)�

(∃x)Fx�
∼ (∃y)Gya�
(∀y) ∼ Gya

Fb
Fb ⊃ (∃y)Gya�

∼ Fb
�

(∃x) ∼ (Fx ⊃ (∃y)Gya)�
∼ (Fb ⊃ (∃y)Gya)�

Fb
∼ (∃y)Gya�
(∀y) ∼ Gya

∼ (∀x)(Fx ⊃ (∃y)Gya)�
(∃x)Fx ⊃ (∃y)Gya�

(∃y)Gya�
Gca

∼ Gca
�

∼ (∃x)Fx�
(∀x) ∼ Fx

∼ Fb
 �

(∃y)Gya�

Gca
∼ Gca

�

To use the tree method to test for quantifi cational validity, we construct
a tree for the premises and the negation of the conclusion of the argument in
question. A tree for the argument

(∀w) ~ Gww
~ (∀x)Hx ⊃ (∃y)Gya
(∃z)(Hz & ~ Gzz)

ber38413_ch09_402-473.indd Page 421 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 421 12/4/12 2:33 PM F-400F-400

422 PREDICATE LOGIC: TRUTH-TREES

follows:

1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16

(∀w) ∼ Gww
∼ (∀x)Hx ⊃ (∃y)Gya�
∼ (∃z)(Hz & ∼ Gzz)�
(∀z) ∼ (Hz & ∼ Gzz)

SM
SM
SM
3 ∼ ∃D

2 ⊃D
5 ∃D
5 ∼ ∼ D
1 ∀D
4 ∀D

9 ∼ &D
7 ∀D
10 ∼ ∼ D
1 ∀D
4 ∀D

14 ∼ &D
15 ∼ ∼ D

 ∼ ∼ (∀x)Hx� (∃y)Gya�
Gba

∼ Ha
Ha
�

(∀x)Hx
∼ Gaa

∼ (Ha & ∼ Gaa)�
∼ Gaa

∼ (Ha & ∼ Gaa)�

∼ ∼ Gaa�

∼ ∼ Gbb
 Gbb

 �

Gaa
�

Gaa
�

∼ Ha

∼ Hb
o

∼ ∼ Gaa

∼ Gbb
∼ (Hb & ∼ Gbb)�

The tree has a completed open branch, so the argument is quantifi cationally
invalid.

As with truth-trees for sentential logic, the procedure for testing alleged
entailments parallels that for testing for validity. To test the entailment claim:

{(∀x)(Hx ≡ ~ Ix), ~ (∃x) ~ Ix} (∀x) ~ Hx

we construct a truth-tree to determine whether the set

{(∀x)(Hx ≡ ~ Ix), ~ (∃x) ~ Ix, ~ (∀x) ~ Hx}

ber38413_ch09_402-473.indd Page 422 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 422 12/4/12 2:33 PM F-400F-400

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 423

is quantifi cationally consistent:

1
2
3
4
5
6
7
8

9
10
11
12

SM
SM
SM
2 ∼ ∃D
3 ∼ ∀D
5 ∃D
6 ∼ ∼ D
1 ∀D

8 �D
8 �D
4 ∀D
11 ∼ ∼ D

 (∀x)(Hx � ∼ Ix)
∼ (∃x) ∼ Ix�

∼ (∀x) ∼ Hx�
 (∀x) ∼ ∼ Ix

(∃x) ∼ ∼ Hx�
∼ ∼ Ha�

Ha
Ha � ∼ Ia�

 Ha
 ∼ Ia
∼ ∼ Ia�
 Ia
 �

 ∼ Ha
∼ ∼ Ia
 �

The tree is closed, and so we may conclude that the entailment does hold.

 9.3E EXERCISES

Construct truth-trees as necessary to provide the requested information. In
each case state your result, and specify what it is about your tree that estab-
lishes this result.

 1. Which of the following sentences are quantifi cationally true?
 a. (∃x)Fx ∨ ~ (∃x)Fx
 *b. (∃x)Fx ∨ (∃x) ~ Fx
 c. (∀x)Fx ∨ (∀x) ~ Fx
 *d. (∀x)Fx ∨ ~ (∀x)Fx
 e. (∀x)Fx ∨ (∃x) ~ Fx
 *f. (∀x)(Fx ∨ Gx) ⊃ [(∃x)Fx ∨ (∃x)Gx]
 g. (∀x)(Fx ∨ Gx) ⊃ [(∃x) ~ Fx ⊃ (∃x)Gx]
 *h. (∀x)(Fx ∨ Gx) ⊃ [(∃x)Fx ∨ (∀x)Gx]
 i. [(∀x)Fx ∨ (∀x)Gx] ⊃ (∀x)(Fx ∨ Gx)
 *j. (∀x)(Fx ∨ Gx) ⊃ [(∀x)Fx ∨ (∀x)Gx]
 k. (∃x)(Fx & Gx) ⊃ [(∃x)Fx & (∃x)Gx]
 *l. [(∃x)Fx & (∃x)Gx] ⊃ (∃x)(Fx & Gx)
 m. ~ (∃x)Fx ∨ (∀x) ~ Fx
 *n. (∀x)[Fx ⊃ (Gx & Hx)] ⊃ (∀x)[(Fx & Gx) ⊃ Hx]
 o. (∀x)[(Fx & Gx) ⊃ Hx] ⊃ (∀x)[Fx ⊃ (Gx & Hx)]

ber38413_ch09_402-473.indd Page 423 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 423 12/4/12 2:33 PM F-400F-400

424 PREDICATE LOGIC: TRUTH-TREES

 *p. (∀x)(Fx & ~ Gx) ∨ (∃x)(~ Fx ∨ Gx)
 q. (∀x)(Fx ⊃ Gx) ⊃ (∀x)(Fx ⊃ (∀y)Gy)
 *r. (∀x)(∀y)Gxy ⊃ (∀x)Gxx
 s. (∀x)Gxx ⊃ (∀x)(∀y)Gxy
 *t. (∀x)Fxx ⊃ (∀x)(∃y)Fxy
 u. (∃x)(∀y)Gxy ⊃ (∀x)(∃y)Gyx
 *v. (∃x)(∃y)(Lxy ≡ Lyx)
 w. ((∃x)Lxx ⊃ (∀y)Lyy) ⊃ (Laa ⊃ Lgg)

 2. Which of the following sentences are quantifi cationally false?
 a. (∀x)Fx & (∃x) ~ Fx
 *b. (∀x)Fx & ~ (∃x)Fx
 c. (∃x)Fx & (∃x) ~ Fx
 *d. (∃x)Fx & ~ (∀x)Fx
 e. (∀x)(Fx ⊃ (∀y) ~ Fy)
 *f. (∀x)(Fx ⊃ ~ Fx)
 g. (∀x)(Fx ≡ ~ Fx)
 *h. (∃x)Fx ⊃ (∀x) ~ Fx
 i. (∃x)(∃y)(Fxy & ~ Fyx)
 *j. (∃x)Fx & ~ (∃y)Fy
 k. (∀x)(∀y)(Fxy ⊃ ~ Fyx)
 *l. (∀x)(Gx ≡ ~ Fx) & ~ (∀x) ~ (Gx ≡ Fx)
 m. (∃x)(∀y)Gxy & ~ (∀y)(∃x)Gxy

 3. What is the quantifi cational status (quantifi cationally true, quantifi cationally
false, or quantifi cationally indeterminate) of each of the following sentences?

 a. (∃x)Fxx ⊃ (∃x)(∃y)Fxy
 *b. (∃x)(∃y)Fxy ⊃ (∃x)Fxx
 c. (∃x)(∀y)Lxy ⊃ (∃x)Lxx
 *d. (∀x)(Fx ⊃ (∃y)Gyx) ⊃ ((∃x)Fx ⊃ (∃x)(∃y)Gxy)
 e. (∀x)(Fx ⊃ (∃y)Gya) ⊃ (Fb ⊃ (∃y)Gya)
 *f. ((∃x)Lxx ⊃ (∀y)Lyy) ⊃ (Laa ⊃ Lgg)
 g. (∀x)(Fx ⊃ (∀y)Gxy) ⊃ (∃x)(Fx ⊃ ~ (∀y)Gxy)

 4. Which of the following pairs of sentences are quantifi cationally equivalent?
 a. (∀x)Mxx ~ (∃x) ~ Mxx
 *b. (∃x)(Fx ⊃ Ga) (∃x)Fx ⊃ Ga
 c. (∀x)(Fa ⊃ Gx) Fa ⊃ (∀x)Gx
 *d. Ls ≡ (∀x)Lx (∃x)Lx
 e. (∃x)Fx ⊃ Ga (∃x)(Fx ⊃ Ga)
 *f. (∀x)(Fx ∨ Gx) (∀x)Fx ∨ (∀x)Gx
 g. (∀x)Fx ⊃ Ga (∃x)(Fx ⊃ Ga)
 *h. (∃x)(Ax & Bx) (∃x)Ax & (∃x)Bx
 i. (∀x)(∀y)(Fx ⊃ Gy) (∀x)(Fx ⊃ (∀y)Gy)
 *j. (∀x)(Fx ≡ ~ Gx) (∀x) ~ (Fx ≡ Gx)
 k. (∀x)(Fx ≡ Gx) Fa ≡ (∀x)Gx
 *l. (∀x)(Fx ∨ (∃y)Gy) (∀x)(∃y)(Fx ∨ Gy)
 m. (∀x)(Fx ⊃ (∀y)Gy) (∀x)(∀y)(Fx ⊃ Gy)

ber38413_ch09_402-473.indd Page 424 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 424 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 425

 a. (∀x)(Fx ⊃ Gx)

 Ga

 Fa

 *b. (∀x)(Tx ⊃ Lx)

 ~ Lb

 ~ Tb

 c. (∀x)(Kx ⊃ Lx)

 (∀x)(Lx ⊃ Mx)

 (∀x)(Kx ⊃ Mx)

 *d. (∀x)(Fx ⊃ Gx)

 (∀x)(Hx ⊃ Gx)

 (∀x)((Fx ∨ Hx) ⊃ Gx)

 e. (∀x)(Fx ⊃ Gx) ⊃ (∃x)Nx

 (∀x)(Nx ⊃ Gx)

 (∀x)(~ Fx ∨ Gx)

 *f. (~ (∃y)Fy ⊃ (∃y)Fy) ∨ ~ Fa

 (∃z)Fz

 g. (∀x)(~ Ax ⊃ Kx)

 (∃y) ~ Ky

 (∃w)(Aw ∨ ~ Lwf)

 *h. (∀y)(Hy & (Jyy & My))

 (∃x)Jxb & (∀x)Mx

 i. (∀x)(∀y)Cxy

 (Caa & Cab) & (Cba & Cbb)

 *j. (∃x)(Fx & Gx)

 (∃x)(Fx & Hx)

 (∃x)(Gx & Hx)

 k. (∀x)(Fx ⊃ Gx)

 ~ (∃x)Fx

 ~ (∃x)Gx

 *l. (∃z)Bzz

 (∀x)(Sx ⊃ Bxx)

 ~ Sg

 m. (∃x)Cx ⊃ Ch

 (∃x)Cx ≡ Ch

 *n. Fa ∨ (∃y)Gya

 Fb ∨ (∃y) ~ Gyb

 (∃y)Gya

 5. Which of the following arguments are quantifi cationally valid?

 6. Which of the following alleged entailments hold?
 a. {(∀x) ~ Jx, (∃y)(Hby ∨ Ryy) ⊃ (∃x)Jx} (∀y) ~ (Hby ∨ Ryy)
 *b. {(∀x)(∀y)(Mxy ⊃ Nxy)} (∀x)(∀y)(Mxy ⊃ (Nxy & Nyx))
 c. {(∀y)((Hy & Fy) ⊃ Gy), (∀z)Fz & ~ (∀x)Kxb} (∀x)(Hx ⊃ Gx)
 *d. {(∀x)(Fx ⊃ Gx), (∀x)(Hx ⊃ Gx)} (∀x)(Fx ∨ Hx)
 e. {(∀z)(Lz ≡ Hz), (∀x) ~ (Hx ∨ ~ Bx)} ~ Lb

 9.4 FINE-TUNING THE TREE METHOD FOR PL

In Chapter 8 we noted that there is no decision procedure for deciding, for
each sentence of PL, whether that sentence is quantifi cationally true, quantifi ca-
tionally false, or quantifi cationally indeterminate. That is, there is no mechani-
cal test procedure that always yields, in a fi nite number of steps, a “yes” or “no”
answer to the question ‘Is this sentence of PL quantifi cationally true, and if not
is it quantifi cationally false, and if not is it quantifi cationally indeterminate?’

ber38413_ch09_402-473.indd Page 425 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 425 12/4/12 2:33 PM F-400F-400

426 PREDICATE LOGIC: TRUTH-TREES

Nor is there such a decision procedure for equivalence, consistency, validity, or
entailment: the system PL is undecidable. In the current context this means that
we cannot produce a mechanical method for constructing trees that will always
provide correct “yes” or “no” answers in a fi nite number of steps. The problem
here is that not every fi nite set of sentences of PL has a fi nite truth-tree, where
we defi ne a fi nite truth-tree to be a truth-tree that either is closed or has a
completed open branch. It is an unavoidable result that not every fi nite set of
sentences of PL/PLE has a fi nite tree. There are, however, two ways in which
the tree method we have developed for PL can be signifi cantly improved, and
our task in this section is to do so.

First, we would like our set of rules to be capable of producing a fi nite
tree for any fi nite set that has a fi nite model, that is, any set for which there is
an interpretation with a fi nite UD on which all of the members of the set are
true. Our present tree rules do not ensure that there is a fi nite tree for every
such set. Consider, for example, the start of a tree for {(∀y)(∃z)Fyz}:

1 (∀y)(∃z)Fyz SM
2 (∃z)Faz� 1 ∀D
3 Fab 2 ∃D
4 (∃z)Fbz� 1 ∀D
5 Fbc 4 ∃D
6 (∃z)Fcz� 1 ∀D
7 Fcd 6 ∃D
 •
 •
 •

The dots here indicate that the tree will continue indefi nitely. There is no hope
of closing the one open branch on this tree. At every other step after the fi rst, a
new atomic sentence is added to the open branch, using Existential Decomposi-
tion, and since every atomic sentence is quantifi cationally consistent with every
other atomic sentence, continuing to add more atomic sentences will never
close the tree. But this branch also can never become a completed open branch.
Every time Universal Decomposition is applied to the sentence on line 1, a new
existentially quantifi ed sentence is added to the branch. And decomposing that
sentence adds a new individual constant to the branch, necessitating a further
application of Universal Decomposition to ‘(∀y)(∃z)Fyz’, resuming the cycle.
We call an open branch that cannot be completed—one that never closes and
will never, in a fi nite number of steps, become a completed open branch—a
nonterminating branch.

Assuming we retain the requirement that every universally quantifi ed
sentence on a completed open branch must be decomposed using every con-
stant on that branch, the only way to avoid the inevitability of a nonterminating
branch in the preceding tree is to revise our Existential Decomposition rule.
That rule currently stipulates that a sentence (∃x)P must be decomposed to a
substitution instance P(a/x) in which a is foreign to the branch in question. Let

ber38413_ch09_402-473.indd Page 426 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 426 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 427

us recall the reason for this restriction: it is that using a constant that already
occurs on the branch would be to make the unwarranted assumption that the
thing that is of the sort P is also of the sort specifi ed by the formulas in which
it occurs elsewhere on the branch. The following tree illustrates this:

1 (∃x)Fx� SM
2 (∃x) ~ Fx� SM
3 Fa 1 ∃D
4 ~ Fa 2 ∃D MISTAKE!
 �

There is no interpretation on which something is F and that very same thing
is not F, but in using ‘b’ at line 4 as well as line 3 we are, in effect, looking
for such an interpretation. Yet the set {(∃x)Fx, (∃x) ~ Fx} is consistent, as the
following correct tree verifi es:

1 (∃x)Fx� SM
2 (∃x) ~ Fx� SM
3 Fa 1 ∃D
4 ~ Fb 2 ∃D
 o

However, as the example in the previous paragraph shows, the requirement
that a new constant be used to instantiate an existentially quantifi ed sentence
sometimes leads to nonterminating branches.

Fortunately, there is another way to think about decomposing an exis-
tentially quantifi ed sentence (∃x)P. Rather than avoid altogether the use of
constants that already occur on the branch that contains (∃x)P, we shall intro-
duce a second, branching, Existential Decomposition rule. The branching will
allow us to consider substitution instances formed from constants already on
the branch as well as a substitution instance formed from a new constant. We
will call the new rule ‘Existential Decomposition-2’:

 Existential Decomposition-2 (∃D2)

P(a1�x) P(am�x) P(am�1�x)

(∃x)P�

. . .

 where a1, . . . , am are the constants that already occur on the branch
on which Existential Decomposition-2 is being applied and am�1 is a
constant that is foreign to that branch.5

5This Existential Decomposition rule is due to George Boolos, “Trees and Finite Satisfi ability: Proof of a Conjec-
ture of Burgess,” Notre Dame Journal of Formal Logic, 25(3)(1984), 193–197.

ber38413_ch09_402-473.indd Page 427 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 427 12/4/12 2:33 PM F-400F-400

428 PREDICATE LOGIC: TRUTH-TREES

This rule requires that when we decompose an existentially quantifi ed sentence
(∃x)P we must branch out to the relevant substitution instances. If a1 through am
are the constants that occur on the branch that contains the sentence (∃x)P that is
being decomposed, then substitution instances formed from those constants are to
be entered, each on a distinct branch, and P(am�1/x), where am�1 is any constant
foreign to the branch in question, is to be added on a further branch. Thus Exis-
tential Decomposition-2 produces a varying number of new branches, depending
on how many constants already occur on the branch to which it is applied.

Here is a tree for the set {(∃x)Fx, (∃x) ~ Fx} in which Existential
Decomposition-2 is used:

1 (∃x)Fx� SM
2 (∃x) ~ Fx� SM
3 Fa 1 ∃D2

4 ~ Fa ~ Fb 2 ∃D2
 � o

When we fi rst used Existential Decomposition-2, on line 3, there were no con-
stants already occurring on the open branch containing ‘(∃x)Fx’. In this case
the rule requires adding only one substitution instance, formed from any con-
stant. That is, if no constants previously occur on a branch, Existential Decompo-
sition and Existential Decomposition-2 produce the same result. The second use
of Existential Decompostion-2 required branching to two substitution instances
of ‘(∃x) ~ Fx’. On the left branch we formed a substitution instance using the
constant ‘a’ that already occurred on the single branch, and on the right branch
we formed a substitution instance using a new constant, ‘b’. The idea behind
branching to these two possibilities is that the individual by virtue of which ‘(∃x)
~ Fx’ is true might be the individual that we have already chosen to designate
with the constant ‘a’, or it might be another individual. To allow for the latter
possibility we form a substitution instance with a new constant. The left-hand
branch closes because the individual by virtue of which ‘(∃x) ~ Fx’ is true cannot
be the individual denoted by ‘a’; there is no interpretation on which ‘Fa’ and
‘~ Fa’ are both true. But the open right-hand branch is complete. This branch
contains the literals ‘Fa’ and ‘Fb’ and shows that there is an interpretation on
which ‘Fa’ and ‘~ Fb’, and consequently both ‘(∃x)Fx’ and ‘(∃x) ~ Fx’, are true.
Any interpretation that includes the following assignments will do:

 UD: the set {1, 2}
 a: 1
 b: 2
 F: {<1>}

So far it may look like Existential Decomposition-2 makes for more
work than is necessary, since using the earlier rule Existential Decomposition

ber38413_ch09_402-473.indd Page 428 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 428 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 429

resulted in a completed open four-line tree for the set {(∃x)Fx, (∃x) ~ Fx} with-
out any branching. But it allows us to produce closed truth-trees in cases where
Existential Decomposition cannot produce closed trees. Consider again the set
{(∀y)(∃z)Fyz}. We saw that with the rule Existential Decomposition we could
only produce a tree with a nonterminating branch for this set, even though
the set is quantifi cationally consistent and has a fi nite model. Using Existential
Decomposition-2 we can produce a truth-tree with a completed open branch:

1 (∀y)(∃z)Fyz SM
2 (∃z)Faz� 1 ∀D

3 Faa Fab 2 ∃D2
 o

At line 3 we branched to two substitution instances of the existentially
quantifi ed sentence on line 2. The instantiating constant in the substitu-
tion instance on the left-hand branch is ‘a’, which occurred earlier on
that branch. We chose ‘b’ as the instantiating constant in the substitution
instance on the right-hand branch because it is foreign to the branch so far.
The sentence on line 2 says that the individual designated by ‘a’ bears the
relation F to something. The branching indicates that that something might
be the very same individual (this is the left-hand branch) or it might be a
different individual (this is the right-hand branch). If both branches close,
we will know neither is the case. But if one of these branches becomes a
completed open branch, we will know that there is a model—indeed, a fi nite
model—for the set being tested. Here the left-hand branch is completed
and contains the single literal ‘Faa’. So there is a fi nite model for the set
being tested. Any interpretation that includes the following assignments will
be such a model:

 UD: {1}
 F: {<1, 1>}

The right-hand branch is open but is not a completed open branch because
the universally quantifi ed sentence on line 1 has not been decomposed to a
substitution instance formed from ‘b’.

Note that if we were to continue the right-hand branch by instantiat-
ing the universal quantifi cation on line 1 with ‘b’ we would need to branch
to three substitution instances when decomposing the existentially quantifi ed
sentence ‘(∃z)Fbz’, namely the substitution instances ‘Fba’ and ‘Fbb’ (because
‘a’ and ‘b’ already occur on that branch), and a substitution instance with a
new constant such as ‘Fbc’. The fi rst two of these branches will also be com-
pleted open branches, while the third will require us to once again decompose
the universal quantifi cation on line 1 using the new constant ‘c’. It should be

ber38413_ch09_402-473.indd Page 429 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 429 12/4/12 2:33 PM F-400F-400

430 PREDICATE LOGIC: TRUTH-TREES

clear that we will never be able to complete the tree. But we don’t need to,
because the new rule Existential-Decomposition-2 produced a completed open
branch at line 3, showing that the set is quantifi cationally consistent. Using
Existential Decomposition-2 rather than Existential Decomposition ensures
that the interplay between universal and existential quantifi ers will not pro-
duce trees with only nonterminating open branches for sets that do have fi nite
models. In fact, we shall prove in Chapter 11 that using the rule ∃D2 in place of
∃D, every fi nite set of sentences of PL with a fi nite model will have a fi nite tree with a
completed open branch.

Here is a tree using Existential Decomposition-2 for the set {(∀x)(Fx ⊃
(∃y)Gyx), (∀x)Fx}:

1 (∀x)(Fx ⊃ (∃y)Gyx) SM
2 (∀x)Fx SM
3 Fa 2 ∀D
4 Fa ⊃ (∃y)Gya� 1 ∀D

5 ~ Fa (∃y)Gya� 4 ⊃D
 �

6 Gaa Gba 5 ∃D2
 o

This tree has one completed open branch. The two universally quantifi ed sen-
tences on the branch have been decomposed to the single constant ‘a’ that
occurs on the branch. Every other sentence on the branch is either a literal
or has been decomposed, so we may conclude that the set is quantifi cationally
consistent. Had we used Existential Decomposition at line 6, the tree would
have had only two branches at that point:

1 (∀x)(Fx ⊃ (∃y)Gyx) SM
2 (∀x)Fx SM
3 Fa 2 ∀D
4 Fa ⊃ (∃y)Gya� 1 ∀D

5 ~ Fa (∃y)Gya� 4 ⊃D
 �
6 Gba 5 ∃D

ber38413_ch09_402-473.indd Page 430 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 430 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 431

Of course, the left branch still closes, but repeated uses of ∃D on the right
branch will only go on to produce more closed branches and a single nonter-
minating branch.

The following tree shows that the set {~ [(∀x)(∃y)Fxy ≡ (∀x)Fxa]} is
quantifi cationally consistent:

1

2
3
4
5

6
7
8
9

10
11

12

13
14

15

SM

1 ∼ �D
1 ∼ �D
2 ∼ ∀D
3 ∀D

4 ∃D2
6 ∼ ∃D
7 ∀D
3 ∀D
3 ∼ ∀D
2 ∀D

10 ∃D2

11 ∃D2
2 ∀D

14 ∃D2

∼ [(∀x)(∃y)Fxy � (∀x)Fxa]�

(∀x)(∃y)Fxy
∼ (∀x)Fxa�

∼ (∀x)(∃y)Fxy�
(∀x)Fxa

(∃x) ∼ (∃y)Fxy�
 Faa

∼ (∃y)Fay�
(∀y) ∼ Fay

∼ Faa
�

∼ (∃y)Fby�
(∀y) ∼ Fby

∼ Fba
 Fba
 �(∃x) ∼ Fxa�

(∃y)Fay�

∼ Faa

Faa
�

Faa
(∃y)Fby

Fab
(∃y)Fby�

Fbb
o

FbcFba
o

Fab
(∃y)Fby

Fac
(∃y)Fby

∼ Fba

Note that using Existential Decomposition-2 at line 13 resulted in adding two
new branches to the existing leftmost branch (one with the constant ‘a’ that
already occurred on the leftmost branch and one with the constant ‘b’ that was
foreign to that branch), and adding three new branches to the other existing
open branch ending at line 12 (two with the constants ‘a’ and ‘b’ that already
occurred on that branch and one with the constant ‘c’ that was foreign to
that branch). At line 15, Existential Decomposition-2 produced three branches
from the leftmost open branch of line 14: two substitution instances use the
constants ‘a’ and ‘b’ that already occur there, and a third uses the constant

ber38413_ch09_402-473.indd Page 431 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 431 12/4/12 2:33 PM F-400F-400

432 PREDICATE LOGIC: TRUTH-TREES

‘c’ that was foreign to that branch. Although the tree is not complete, it has
two completed open branches, the one ending in ‘Fba’ and the one ending in
‘Fbb’. The branch ending in ‘Fbc’ is not complete, as ‘(∀x)(∃y)Fxy’ has not
been decomposed using the constant ‘c’. The branches to line 14 that end
in undecomposed existentially quantifi ed sentences are also, for that reason,
not complete.

We turn now to the second improvement in our tree method for PL.
We would like to be assured that when a set does have a fi nite tree we will
eventually fi nd it. The tree rules we have presented do not themselves guaran-
tee this. For example, they allow the construction of trees such as the following
one for the set {∀x)Fx, (∀x) ~ Fx}:

1 (∀x)Fx SM
2 (∀x) ~ Fx SM
3 Fa 1 ∀D
4 Fb 1 ∀D
5 Fc 1 ∀D
6 Fd 1 ∀D
 •
 •
 •

Continuing in this way—adding substitution instances that result from applying
∀D to the sentence on line 1—does not involve misusing any tree rule but will
never produce either a closed tree or a completed open branch. Yet a closed
tree for the set can be produced in just four lines:

1 (∀x)Fx SM
2 (∀x) ~ Fx SM
3 Fa 1 ∀D
4 ~ Fa 2 ∀D
 �

What we need is a procedure for applying the decomposition rules that is guar-
anteed to yield a fi nite tree where one exists, not only in this case but also in
much more complicated ones. For example, earlier we produced a tree with a
completed open branch for the set {~ [(∀x)(∃y)Fxy ≡ (∀x)Fxa]}, showing that

ber38413_ch09_402-473.indd Page 432 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 432 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 433

it is quantifi cationally consistent. But we could just as well have begun the tree
for this set as follows:

1

2
3
4
5

6
7
8
9

10
11

12

13
14

15
16

17
18

SM

1 ∼ �D
1 ∼ �D
2 ∼ ∀D
3 ∀D

4 ∃D2
6 ∼ ∃D
7 ∀D
3 ∀D

3 ∼ ∀D
2 ∀D

10 ∃D2

11 ∃D2
2 ∀D

14 ∃D2
2 ∀D

16 ∃D2
2 ∀D

∼ [(∀x)(∃y)Fxy � (∀x)Fxa]�

(∀x)(∃y)Fxy
∼ (∀x)Fxa�

∼ (∀x)(∃y)Fxy�
(∀x)Fxa

(∃x) ∼ (∃y)Fxy�
 Faa

∼ (∃y)Fay�
(∀y) ∼ Fay

∼ Faa
�

∼ (∃y)Fby�
(∀y) ∼ Fby

∼ Fba
 Fba
 �

(∃x) ∼ Fxa�
(∃y)Fay�

∼ Faa

Faa
�

FaaFab Fab Fac
(∃y)Fcy�

∼ Fba

Fca FccFcb Fcd
(∃y)Fdy�

Fda Fdc FddFdb Fde
(∃y)Fey

In this case, after line 13 we have repeatedly added a substitution instance of
the universal quantifi cation on line 2 to the rightmost open branch, using the
new constant just introduced by ∃D2, then applied ∃D2 again, generating a
new instantiating constant on the rightmost branch, and so on. Clearly we can

ber38413_ch09_402-473.indd Page 433 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 433 12/4/12 2:33 PM F-400F-400

434 PREDICATE LOGIC: TRUTH-TREES

continue this process forever. So unless care is taken we can work continuously
on a branch that won’t terminate while ignoring a branch that, if continued,
will become a completed open branch.

To guarantee that a fi nite branch will be found if it exists, we intro-
duce a procedure for constructing trees for PL that pursues all possibilities in
a systematic fashion, such that a completed open branch will be found if one
exists and also such that a tree that can be closed will in fact close:

The System for PL

List the members of the set to be tested.

Exit Conditions: Stop if

a. the tree closes, or
b. an open branch becomes a completed open branch.

Construction Procedures:
Stage 1: Decompose all truth-functionally compound and existentially quan-

tifi ed sentences and each resulting sentence that is itself either a
truth-functional compound or an existentially quantifi ed sentence.

Stage 2: For each universally quantifi ed sentence (∀x)P on the tree, enter
P(a/x) on every open branch passing through (∀x)P for every
constant a on the branch. On each open branch passing through
(∀x)P on which no constant occurs, enter P(a/x).

Repeat this process until every universally quantifi ed sentence
on the tree, including those added as a result of this process, has
been so decomposed.

Return to Stage 1.

We call trees that have been constructed in accordance with the Sys-
tem ‘systematic trees’. In all systematic trees, Existential Decomposition-2 is used
rather than Existential Decomposition. To construct a systematic tree, proceed
through the tree construction stages in the order specifi ed, being sure to exhaust
the work that must be done at each stage before proceeding to the next stage.
Stage 1 is complete if the only sentences on the tree that are not checked off are
either literals or universally quantifi ed sentences. Stage 2 is complete only when
every universally quantifi ed sentence on the tree has been decomposed in the
required manner, including both those that were on the tree when we passed
from Stage 1 to Stage 2 and those that are entered as a result of work at Stage 2.
The fi rst tree that we began to construct for the set {(∀x)Fx, (∀x) ~ Fx} was not
a systematic tree because it violated Stage 2. In that tree the universally quantifi ed
sentence on line 1 was decomposed at line 4 with the new constant ‘b’, violating

ber38413_ch09_402-473.indd Page 434 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 434 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 435

the requirement that all universally quantifi ed sentences must be decomposed
using constants already on the branch, and only those (except when there is no
constant on a branch; in this case a substitution instance with the constant ‘a’ must
be added.). However, following The System produces a closed tree for this set:

1 (∀x)Fx SM
2 (∀x) ~ Fx SM
3 Fa 1 ∀D
4 ~ Fa 2 ∀D
 �

At line 4 we decomposed the universally quantifi ed sentence from line 2 with
the constant ‘a’ that already occurred on the branch. Doing so not only com-
pleted Stage 2 but also terminated construction because an Exit Condition was
met: the tree closed.

Although our fi rst tree for the set {~ [(∀x)(∃y)Fxy ≡ (∀x)Fxa]} included
a completed open branch, that tree is not a systematic tree. It fi rst violates the
method set out in The System at line 5, where it decomposes a universally
quantifi ed sentence before all truth-functionally compound and existentially
quantifi ed sentences have been decomposed. These latter include the negated
universally quantifi ed sentence on line 3 and the existentially quantifi ed sen-
tence on line 4. Here is a systematic tree for the same set:

1

2
3
4
5

6
7
8
9

10
11
12

13

14

SM

1 ∼ �D
1 ∼ �D
2 ∼ ∀D
3 ∼ ∀D

5 ∃D2

4 ∃D2
6 ∼ ∃D
2 ∀D
2 ∀D
8 ∀D
3 ∀D

9 ∃D2

10 ∃D2

∼ [(∀x)(∃y)Fxy � (∀x)Fxa]�

(∀x)(∃y)Fxy
∼ (∀x)Fxa�

(∃x) ∼ Fxa�

∼ Faa

FaaFaa
�

Fab

Fba
�

Fbb
o

Fbc Fba
�

Fbb Fbc

Fab Fac

(∃y)Fay� (∃y)Fay�
(∃y)Fby�

∼ Fba

∼ (∀x)(∃y)Fxy�
(∀x)Fxa

(∃x) ∼ (∃y)Fxy�

∼ (∃y)Fay�
(∀y) ∼ Fay

∼ Faa
 Faa
 �

∼ (∃y)Fby�
(∀y) ∼ Fby

∼ Fba
 Fba
 �

Fba
�

Fbc FbdFbb

At line 8 all of the truth-functionally compound and existentially quantifi ed
sentences occurring on lines 1–8 have been decomposed, so Stage 1 has been

ber38413_ch09_402-473.indd Page 435 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 435 12/4/12 2:33 PM F-400F-400

436 PREDICATE LOGIC: TRUTH-TREES

 completed and Stage 2 commences. Stage 2 continues through line 12, at which
point all universally quantifi ed sentences have been decomposed using all of the
relevant constants, so we return to Stage 1 to continue at line 13. Stage 1 produces
a completed open branch on line 14, so the procedure terminates. Note that the
second branch from the left at line 13, on which ‘Fab’ occurs, is not a completed
open branch. The universally quantifi ed sentence occurring on the left-hand
branch at line 2 has not been decomposed to ‘b’. Interestingly, this tree is one
line shorter than our earlier tree with a completed open branch for the same set.
Unfortunately, as we shall shortly see, systematic trees are not always so economical.

Systematic trees differ from nonsystematic trees in three important
respects. First, in systematic trees Existential Decomposition-2 is always used
to decompose existentially quantifi ed sentences. In nonsystematic trees either
Existential Decomposition or Existential Decomposition-2 (or both) may be
used. Second, The System does not allow work on one branch to be continued
to the point of excluding all work on another open branch. Third, it does not
allow us to ignore constants already occurring on a tree when we apply Uni-
versal Decomposition in Stage 2, so that if a substitution instance using such a
constant can close a branch, we will be sure that the branch does close.

The advantage of constructing systematic trees is that doing so will
always lead, in a fi nite number of steps, to a completed open branch when
one exists, and, also in a fi nite number of steps, to a closed tree when one
exists. The disadvantage is that systematic trees can frequently be much larger
than are nonsystematic trees. For example, here is a systematic tree for the set
{(∀x)Fx, ~ Fa, (∃x)(∃y)(∃z)Hxyz}:

1
2
3

(∀x)Fx
∼Fa

(∃x)(∃y)(∃z)Hxyz�

SM
SM
SM

(∃y)(∃z)Hayz�

(∃z)Haaz�

Haab
Fa
�

Haba
Fa
�

Habb
Fa
�

Habc
Fa
�

Hbaa
Fa
�

Haaa
Fa
�

Hbac
Fa
�

Hbba
Fa
�

Hbbb
Fa
�

Hbbc
Fa
�

Hbca
Fa
�

Hbcb
Fa
�

Hbcc
Fa
�

Hbcd
Fa
�

Hbab
Fa
�

(∃z)Habz� (∃z)Hbaz�

(∃y)(∃z)Hbyz� 3 ∃D2

4 ∃D2

5 ∃D2
1 ∀D

(∃z)Hbbz� (∃z)Hbcz�

4

5

6
7

Obviously, we could have produced a closed tree in four lines, by entering ‘Fa’
(obtained by decomposing the sentence on line 1) at line 4. But the result would
not be a systematic tree. The System requires us fi rst to decompose the sentence
on line 3, then those on line 4, and then those on line 5, before decomposing
the universally quantifi ed sentence from line 1. So we do not claim that The
System always produces the smallest trees possible, and wherever we see a more
economical way to produce either a closed tree or a completed open branch
we should do so. What The System does guarantee is that if there is a tree with
a completed open branch, The System will generate such a tree, and if there
is a closed tree, The System will generate a closed tree. Because The System is

ber38413_ch09_402-473.indd Page 436 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 436 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 437

reliable in this sense, it should be used when one does not see how to close a
branch or produce a completed open branch without using The System.

It is important to bear in mind that The System will not always result
either in a closed tree or in a tree with a completed open branch. Consider, for
example, the set {(∀x)(∃y)Fxy, ~ (∃x)Fxx, (∀x)(∀y)(∀z)[(Fxy & Fyz ⊃ Fxz]}.
This set is consistent, but every model for the set (every interpretation on which
all of the set members are true) has an infi nite UD. The System will always
produce a completed open branch for a fi nite set that has a fi nite model, but it
will not do so in the case of consistent sets that have only infi nite models—for
the very good reason that there are no trees with completed open branches
for such sets. Here is the start of a systematic tree for this set:

 1 (∀x)(∃y)Fxy SM
 2 ∼ (∃x)Fxx� SM
 3 (∀x)(∀y)(∀z)[(Fxy & Fyz) ⊃ Fxz] SM
 4 (∀x) ∼ Fxx 2 ∼ ∃D
 5 (∃y)Fay� 1 ∀D
 6 (∀y)(∀z)[(Fay & Fyz) ⊃ Faz] 3 ∀D
 7 ∼ Faa 4 ∀D
 8 (∀z)[(Faa & Faz) ⊃ Faz] 6 ∀D
 9 (Faa & Faa) ⊃ Faa� 8 ∀D

10 ∼ (Faa & Faa)� Faa 9 ⊃D
 �

11 Faa Fab 5 ∃D2
 �

12 ∼ Faa ∼ Faa 10 ∼ &D

13 (∃y)Fby� (∃y)Fby� 1 ∀D
14 (∀y)(∀z)[(Fby & Fyz) ⊃ Fbz] (∀y)(∀z)[(Fby & Fyz) ⊃ Fbz] 3 ∀D
15 ∼ Fbb ∼ Fbb 4 ∀D
16 (∀z)[(Fab & Fbz) ⊃ Faz] (∀z)[(Fab & Fbz) ⊃ Faz] 6 ∀D
17 [(Faa & Fab) ⊃ Fab] [(Faa & Fab) ⊃ Fab] 8 ∀D
18 (∀z)[(Fba & Faz) ⊃ Fbz] (∀z)[(Fba & Faz) ⊃ Fbz] 14 ∀D
19 (∀z)[(Fbb & Fbz) ⊃ Fbz] (∀z)[(Fbb & Fbz) ⊃ Fbz] 14 ∀D
20 [(Fab & Fba) ⊃ Faa]� [(Fab & Fba) ⊃ Faa]� 16 ∀D
21 [(Fab & Fbb) ⊃ Fab] [(Fab & Fbb) ⊃ Fab] 16 ∀D
22 [(Fba & Faa) ⊃ Fba] [(Fba & Faa) ⊃ Fba] 18 ∀D
23 [(Fba & Fab) ⊃ Fbb] [(Fba & Fab) ⊃ Fbb] 18 ∀D
24 [(Fbb & Fba) ⊃ Fba] [(Fbb & Fba) ⊃ Fba] 19 ∀D
25 [(Fbb & Fbb) ⊃ Fbb] [(Fbb & Fbb) ⊃ Fbb] 19 ∀D

26 Fba Fbb Fbc Fba Fbb Fbc 13 ∃D2
 � �

27 ∼ (Fab & Fba)� Faa ∼ (Fab & Fba)� Faa ∼ (Fab & Fba)� Faa ∼ (Fab & Fba)� Faa 20 ⊃D
 � � � �

28 ∼ Fab ∼ Fba ∼ Fab ∼ Fba ∼ Fab ∼ Fba ∼ Fab ∼ Fba 27 ∼ &D
 � � � � � �

ber38413_ch09_402-473.indd Page 437 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 437 12/4/12 2:33 PM F-400F-400

438 PREDICATE LOGIC: TRUTH-TREES

After listing the set members, we move to Stage 1.

• Once ‘~ (∃x)Fxx’ has been decomposed to ‘(∀x) ~ Fxx’, every
 truth-functional compound (the sentence on line 2) and every
 existentially quantifi ed sentence on the tree (there are none) has
been decomposed.

• Proceeding to Stage 2 we decompose each universally quantifi ed
 sentence on the tree to a substitution instance formed from ‘a’
 taking us through line 9.

• Returning to Stage 1, there are two sentences to be decomposed: the
existentially quantifi ed sentence on line 5 and the truth-functional
compound on line 9. We choose to decompose the latter fi rst, as
it yields one closed branch (the right branch), at line 10. Next we
decompose the existentially quantifi ed sentence from line 5. This
yields one closed branch and one open branch. At this point we
still have one undecomposed truth-functional compound, on line
10. Decomposing this sentence yields two open branches. As it hap-
pens these are identical—exactly the same sentences occur on each
branch—but The System requires us to pursue both branches.

• Now we proceed to Stage 2, adding lines 13–25: although all the
 universally quantifi ed sentences on the tree have already been
decomposed to substitution instances formed from ‘a’, they must
now also all be decomposed to substitution instances formed from
‘b’ since ‘Fab’ occurs on both branches.

• Back to Stage 1 at line 26, we decompose the existentially quanti-
fi ed sentences from line 13 fi rst, splitting each of the existing two
branches into three branches. Two of these branches close. At line
27 we branch again when we decompose the material conditional
occurring on line 20. Four of the eight resulting branches close.
Decomposing ‘~ (Fab & Fba)’, which occurs four times on line 27,
results in eight branches, six of which close.

Were we to continue, we would next decompose the remaining truth-functional
compounds. Some, but not all branches, would close. Eventually we would
return to Stage 1 and decompose all universally quantifi ed sentences to substi-
tution instances formed from ‘c’, since that now appears on the open branches
(at line 26). This would produce a new existentially quantifi ed sentence that
would eventually be decomposed to substitution instances formed from ‘a’,
‘b’, ‘c’, and ‘d’, respectively. This cycle will repeat forever, always closing all
branches except for the one that includes a new instantiating constant as a
result of applying ∃D2.

We have not proved that this tree will never close and will never have a
completed open branch, but this is the case (the only way to demonstrate this
is to show, independently of the tree method, that our set is quantifi cationally
consistent, that it has only infi nite models, and that no set with only infi nite

ber38413_ch09_402-473.indd Page 438 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 438 12/4/12 2:33 PM F-400F-400

9.4 FINE-TUNING THE TREE METHOD FOR PL 439

models has a fi nite tree). Here the point is that the tree method cannot be
used to show that sets such as this one are quantifi cationally consistent. We
abandon the tree; we do not complete it. However, having used The System,
we can be sure that we have not, as far as we have gone, missed a completed
open branch or a chance to close the tree.

While instructions for identifying (without fail) a systematic tree that
is caught in an endless cycle of decompositions and is such that it has only
nonterminating branches would be desirable, there can be no such instruc-
tions because there is no decision procedure for quantifi cational consistency.
We can only say that, if one has cycled through the stages of The System
several times and there appears to be a pattern that will continually keep at
least one branch open, one should consider the possibility that the set has
only infi nite models and consider abandoning the tree. Abandoning a tree
constitutes a failure to fi nd an answer to the question being asked. Having
abandoned a tree, we can of course try to directly establish the consistency of
the set in question by trying to fi nd an interpretation on which all the mem-
bers of the set are true.

 9.4E EXERCISES

 1. Construct systematic trees to determine, for each of the following sets, whether
that set is quantifi cationally consistent. State your result. If you abandon a tree,
explain why.

 a. {(∀x)Jx, (∀x)(Jx ≡ (∃y)(Gyx ∨ Ky))}
 *b. {(∀x)(Fx ⊃ Cx), ~ (∀x)(Fx & Cx)}
 c. {(∃x)Fx, (∃x) ~ Fx}
 *d. {~ (∀x) ~ Hx, (∀x)(Hx ⊃ Kx), ~ (∃x)(Kx & Hx)}
 e. {(∃x)Fx & (∃x) ~ Fx, (∃x)Fx ⊃ (∀x) ~ Fx}
 *f. {(∃x)Fx & (∃x) ~ Fx, (∀x)Fx ⊃ (∀x) ~ Fx}
 g. {(∀x)(∃y)Fxy, (∃y)(∀x) ~ Fyx}
 *h. {(∀x)(~ Gx ⊃ Fx), (∃x)(Fx & ~ Gx), Fa ⊃ ~ Ga}
 i. {(∃x)Hx, ~ (∀x)Hx, (∀x)(Hx ⊃ Kx), (∃x)(Kx & Hx)}
 *j. {(∃x)(∀y)Lxy, (∃x)(∀y) ~ Lxy}
 k. {(∀x)(∃y)Lxy, (∀x)(∃y) ~ Lxy}
 *l. {(∀x) ~ (∃y)Lxy, (∀w)(∀y)(Swy ∨ ~ Lwy), ~ (∃x) ~ (∃z)Sxz}
 m. {(∀x)(∃y)Fxy, (∃x)(∃y) ~ Fxy}
 *n. {(∀x)(∀y)(∀z)((Hxy & Hyz) ⊃ Hxz), (∀x)(∀y)(Hxy ⊃ Hyx), (∃x) ~ Hxx}
 o. {~ (∀x)(Kx ⊃ (∀y)(Ky ∨ Lxy)), (∀y)(Ky ⊃ (∀x)(Rx ⊃ Lyx)), (∀x)Rx}

 2. Construct systematic trees to determine, for each of the following sentences,
whether that sentence is quantifi cationally true, quantifi cationally false, or
quantifi cationally indeterminate. In each case state your result. If you abandon
a tree, explain why.

 a. (∀x)(Fax ⊃ (∃y)Fya)
 *b. (∃x) ~ Fx ⊃ (Fa ⊃ ~ Fb)
 c. (∀x)[Fx ⊃ (∀y)(Hy ⊃ Fy)]
 *d. (∃y)(∀x)Fxy ⊃ (∀x)(∃y)Fxy

ber38413_ch09_402-473.indd Page 439 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 439 12/4/12 2:33 PM F-400F-400

440 PREDICATE LOGIC: TRUTH-TREES

 e. (∃x)(Fx ∨ ~ Fx) ≡ ((∃x)Fx ∨ (∃x) ~ Fx)
 *f. (∀x)(Fx ≡ [(∃y)Gyx ⊃ H]) ⊃ (∀x)[Fx ⊃ (∃y)(Gyx ⊃ H)]
 g. (∀x)(Fx ⊃ [(∃y)Gyx ⊃ H]) ⊃ (∀x)[Fx ⊃ (∃y)(Gyx ⊃ H)]

 3. Construct systematic trees to determine which of the following arguments are
quantifi cationally valid. In each case state your result. If you abandon a tree,
explain why.

 a. Fa

 (∀x)(Fx ⊃ Cx)

 (∀x)(Fx & Cx)

 *b. (∀x)(Jx ∨ Ixb) ∨ (∀x)(∃y)(Hxy ⊃ Mx)

 Iab

 c. Fa

 (∀x)(Fx ⊃ Cx)

 (∃x)(Fx & Cx)

 *d. ∼ (∀y)Kyy ∨ (∀x)Hxx

 (∃x)(∼ Hxx ⊃ ∼ Kxx)

 e. (∀x)(∀y)(∀z)[(Lxy & Lyz) ⊃ Lxz]

 (∀x)(∀y)(Lxy ⊃ Lyx)

 (∀x)Lxx

 *f. (∀x)(∀y)(Fx ∨ Gxy)

 (∃x)Fx

 (∃x)(∃y)Gxy

 g. (∃x)[(Lx ∨ Sx) ∨ Kx]

 (∀y) ∼ (Ly ∨ Ky)

 (∃x)Sx

 *h. (∃x)((Lx ∨ Sx) ∨ Kx)

 (∀y) ∼ (Ly ∨ Ky)

 (∀x)Sx

 i. (∀x)(Hx ⊃ Kcx)

 (∀x)(Lx ⊃ ∼ Kcx)

 Ld

 (∃y) ∼ Hy

 4. Construct systematic trees to determine which of the following pairs of sen-
tences are quantifi cationally equivalent. In each case state your result. If you
abandon a tree, explain why.

 a. (∀x)(∀y) ~ Sxy ~ (∃x)(∃y)Sxy
 *b. (∀x)(∃y)Lxy (∃y)(∀x)Lyx
 c. (∃x)(Ax ⊃ B) (∀x)Ax ⊃ B
 *d. (∀x)(Ax ⊃ B) (∀x)Ax ⊃ B
 e. (∀x)(Ax ⊃ B) (∃x)Ax ⊃ B
 *f. (∃x)(Ax ⊃ B) (∃x)Ax ⊃ B
 g. (∃x)(∃y)Hxy (∃y)(∃x)Hxy

 5. Construct systematic trees to determine which of the following alleged entail-
ments hold. In each case state your result. If you abandon a tree, explain why.

 a. {(∀x)(Fax ⊃ Fxa)} |= Fab ∨ Fba
 *b. {(∀x)(∀y)(Fx ∨ Gxy), (∃x)Fx} |= (∃x)(∃y)Gxy
 c. {~ Fa, (∀x)(Fa ⊃ (∃y)Gxy)} |= ~ (∃y)Gay
 *d. {(∃x)(∀y)Gxy} |= (∀y)(∃x)Gxy

ber38413_ch09_402-473.indd Page 440 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 440 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 441

 e. {(∃x)Gx, (∀x)(Gx ⊃ Dxx)} |= (∃x)(Gx & (∀y)Dxy)
 *f. {(∀y)(∃x)Gxy} |= (∃x)(∀y)Gxy

 *6. Show that if the members of a set � of sentences of PL contain only ‘~’ and
universal and existential quantifi ers as logical operators, then � has no tree
with more than one branch if the rule ∃D is used but may have a tree with
more than one branch if ∃D2 is used.

 7. Show that no closed truth-tree can have an infi nite branch.

 *8. Could we replace Universal Decomposition and Existential Decomposition with
the following two rules? Explain.

(∀x)P� (∃x)P�
~ (∃x) ~ P ~ (∀x) ~ P

 9. Let P(a/x) be a substitution instance of some sentence (∃x)P such that {P(a/x)}
has a closed tree. Does it follow that {(∃x)P} has a closed tree? Explain.

 *10. Let (∀x)P be a sentence such that, for every substitution instance P(a/x),
{P(a/x)} has a closed tree. Does it follow that a systematic tree for {(∀x)P} will
close? Explain.

 11. What would have to be done to make The System a mechanical procedure?

 *12. Suppose a tree for a set � of sentences of PL is abandoned without either clos-
ing or having a completed open branch. Suppose also that we fi nd a model
on which all the members of � are true. Suppose the model is an infi nite
model. Does it follow that all the open branches on the abandoned tree are
nonterminating branches? Suppose the model is fi nite. Does anything follow
regarding the abandoned tree?

 9.5 TRUTH-TREES FOR PLE

To apply the tree method to sentences of the language PLE, we will modify
the tree system developed in Sections 9.1–9.3 to accommodate the additional
features of PLE: the identity predicate and complex terms. We shall introduce
one new decomposition rule (Identity Decomposition), modify the defi nitions
of a closed branch and of a completed open branch, and revise the Universal
Decomposition rule to accommodate complex terms.6

We begin with the modifi cation to Universal Decomposition, which is
straightforward. The set {(∀x) ~ Bx, Bf(c)}, which contains a closed complex
term, ‘f(c)’, is clearly quantifi cationally inconsistent and so we want it to have
a closed truth-tree. To this end, we need to allow Universal Decomposition to

6It is also possible to use the rule Existential Decomposition-2, developed in Section 9.4, for trees for PLE. We
shall in fact do so in Section 9.6. But because Existential Decomposition is simpler in many cases (and because
some readers may have chosen to skip 9.4), we revert to this rule for the purposes of this section.

ber38413_ch09_402-473.indd Page 441 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 441 12/4/12 2:33 PM F-400F-400

442 PREDICATE LOGIC: TRUTH-TREES

yield substitution instances formed from any closed term, not just constants.
For example, we want Universal Decomposition to license step 3 in the follow-
ing tree:

1 (∀x) ~ Bx SM
2 Bf(c) SM
3 ~ Bf(c) 1 ∀D
 �

We therefore revise Universal Decomposition as follows:

Universal Decomposition (∀D)
 (∀x)P

 P(t/x)

where t is a closed term

This change allows the use of Universal Decomposition at line 3 of the pre-
vious tree, closing the tree and thus establishing that the set being tested is
quantifi cationally inconsistent. We must also amend our defi nition of a com-
pleted open branch so as to require every universally quantifi ed sentence to
be decomposed to every substitution instance that can be formed from a closed
individual term (individual constant or closed complex term) occurring on the
branch in question.

We hasten to add that the rule Existential Decomposition remains the
same for PLE; when we decompose an existentially quantifi ed sentence (∃x)P
we will always use an individual constant a that is foreign to the branch on
which the substitution instance P(a/x) will be entered, just as we did for PL. We
will not use complex terms in these instantiations, because a complex term such
as ‘h(a)’ carries information about the individual it denotes, namely, that the
individual is related to some individual (that denoted by ‘a’) by the function h.

Here is the decomposition rule for identity sentences:

Identity Decomposition (�D)
 t1 � t2

 P

 P(t1//t2)

where t1 and t2 are closed individual terms and P is a literal contain-
ing t2

This rule is to be understood as follows: If a branch contains both a
sentence of the form t1 � t2 (where t1 and t2 are closed individual terms) and a
literal P containing the term t2, P(t1//t2)—which is like P except that it contains

ber38413_ch09_402-473.indd Page 442 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 442 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 443

t1 in at least one place where P contains t2, may be entered on that branch. The
rationale behind this rule is that if t1 and t2 designate one and the same thing
then whatever is true of the individual designated by t1 must thereby be true
of the individual designated by t2. Note that the identity sentence t1 � t2 is not
checked off because it can be decomposed again and again.

Identity Decomposition is used at line 7 in the following tree:

1 (∀x)(Fx ⊃ Gx) SM
2 Fc SM
3 ~ Gd SM
4 c � d SM
5 Fc ⊃ Gc� 1 ∀D

6 ~ Fc Gc 5 ⊃D
7 � ~ Gc 3, 4 �D
 �

Here t1 � t2 is ‘c � d’, P is ‘~ Gd’, and P(t1//t2) is ‘~ Gc’, the sentence entered
on line 7, which is the result of substituting ‘c’ for ‘d’ in ‘~ Gd’. Note that the
justifi cation column for line 7 contains two line numbers, because Identity
Decomposition licenses the entry of a sentence on a branch based on the pres-
ence of two other sentences.

Now that we have added a rule for Identity Decomposition we will
need to modify the defi nition of a closed branch for PLE. To see why, consider
the sentence ‘(∃y) ~ y � y’. This sentence says ‘There is something that is not
identical with itself’ and is clearly quantifi cationally false. So we want the tree
for the unit set of this sentence to close:

1 (∃y) ~ y � y� SM
2 ~ a � a 1 ∃D

The one branch on this tree does not contain a pair of contradictory literals.
So it is not, by our present account, a closed branch. But obviously, there can
be no interpretation on which a sentence of the form ~ t � t is true; this is a
consequence of the fi xed interpretation of the identity predicate. So we modify
our defi nition of a closed branch for PLE as follows:

Closed branch: A branch on which contradictory literals occur or on
which a sentence of the form ~ t � t occurs

By this revised account the single branch of the above tree is closed, so the
tree itself is closed and we may conclude that the sentence ‘(∃y) ~ y � y’ is
indeed quantifi cationally false.

ber38413_ch09_402-473.indd Page 443 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 443 12/4/12 2:33 PM F-400F-400

444 PREDICATE LOGIC: TRUTH-TREES

We noted earlier that we must amend our defi nition of a completed
open branch so as to require every universally quantifi ed sentence to be
decomposed to every substitution instance that can be formed from a closed
individual term (individual constant or closed complex term) occurring on the
branch in question. But we also need to modify our defi nition of complete
open branches in another way. To see why, consider the following tree for the
set {Fa ∨ Ga, a � b, ~ Fb}, which is quantifi cationally consistent.

1
2
3

4

SM
SM
SM

1 ∨D

Fa ∨ Ga�
a � b
∼ Fb

Fa Ga

If we simply adopt the defi nition of completed open branches that we gave for
trees for sentences of PL, both of the open branches on this tree will count
as complete: on each branch every sentence is either a literal, or a sentence
that is decomposed. But this result is not welcome, even though the set we
are testing is quantifi cationally consistent, for the three literals ‘a � b’, ‘~ Fb’,
and ‘Fa’ on the left branch cannot all be true on a single interpretation.
This branch should not count as a completed open branch from which an
interpretation can be constructed. If we apply Identity Decomposition to the
sentences on lines 3 and 4 we will add ‘~ Fa’ to both branches, causing the
left branch to close. So we want to be certain that Identity Decomposition is
applied exhaustively. We therefore modify our account of completed open
branches for trees for PLE by qualifying the fi rst and third clauses and add-
ing a fourth:

A branch of a truth-tree for a set of sentences of PLE is a completed open
branch if and only if it is a fi nite open branch (that is, an open branch
with a fi nite number of sentences) and each sentence occurring on that
branch is either

 1. A literal that is not an identity sentence
 2. A compound sentence that is not a universally quantifi ed sentence

and is decomposed
 3. A universally quantifi ed sentence (∀x)P such that at least one

substitution instance occurs on the branch, and for each closed
 individual term t occurring on the branch, the substitution instance
P(t/x) also occurs on the branch

 4. A sentence of the form t1 � t2, where t1 and t2 are closed terms,
such that for every literal P on that branch containing t2, the
branch contains every sentence P(t1//t2) that can be obtained
from P by Identity Decomposition.

ber38413_ch09_402-473.indd Page 444 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 444 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 445

Clause 4 requires that we continue work on our last tree, using Identity Decom-
position to add ‘~ Fa’ to both branches:

1
2
3

4
5

SM
SM
SM

1 ∨D
2, 3 �D

Fa ∨ Ga�
a � b
∼ Fb

Fa
∼ Fa

�

Ga
∼ Fa

Here the left-hand branch has closed. The right-hand branch may appear
to be a completed open branch, but it is not. This is because we must, by
clause 4, replace ‘b’ with ‘a’ in every literal that occurs on the right branch,
and ‘a � b’ is itself such a literal. Replacing ‘b’ with ‘a’ in this literal pro-
duces ‘a � a’. This fi nal application of Identity Decomposition yields the
following completed tree, a tree with one closed branch and one completed
open branch:

1
2
3

 4
5
6

SM
SM
SM

1 ∨D
2, 3 �D
2, 2 �D

Fa ∨ Ga�
a � b
∼ Fb

Fa
∼ Fa

�

Ga
∼ Fa

a � a
o

Adding a sentence of the form t � t will never, of course, bring about the
closure of a branch, for if the negation of that sentence, ~ t � t were already
on a branch, or were later added to a branch, the presence of that sentence
by itself would close all the branches on which it occurs. For this reason we
shall informally allow the omission of applications of Identity Decomposition
that result in adding sentences of the form t � t to a branch. However, we
will have to drop this informal practice when we develop systematic trees for
PLE in Section 9.6, for the metatheory of Chapter 11 assumes that Identity
Decomposition is rigorously applied in all such trees.

As we did for PL, we can use the literals on a completed open branch
as a guide for constructing an interpretation on which all of the members of
the set for which the tree was constructed are true. The open branch on the
preceding tree has fi ve literals: ‘a � b’, ‘~ Fb’, ‘Ga’, ‘~ Fa’, and ‘a � a’. The
last will be true on any interpretation, so it will not play a role in construct-
ing a model for the set members. On the other hand, the identity ‘a � b’
tells us that ‘a’ and ‘b’ must designate the same individual. That suggests

ber38413_ch09_402-473.indd Page 445 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 445 12/4/12 2:33 PM F-400F-400

446 PREDICATE LOGIC: TRUTH-TREES

that we try using a single-member UD, letting the constants ‘a’ and ‘b’ both
designate that single member. To make the other tree literals true we need
to intepret the predicate ‘G’ so that the single member is in its extension,
and ‘F’ so that its extension excludes that single member:

 UD: {1}
 a: 1
 b: 1
 F: ∅
 G: {<1>}

Any such interpretation is a model for the set {Fa ∨ Ga, a � b, ~ Fb}. Because
PLE includes identity sentences such as ‘a � b’, when we construct interpreta-
tions of sets of sentences of PLE (rather than of PL) from completed open
branches we must sometimes assign the same member of the UD to distinct
constants.

Given our expanded set of rules and revised defi nitions of closed and
completed open branches, the explications developed in Sections 9.2 and 9.3
of semantic properties in terms of open and closed trees also hold for PLE. We
therefore adopt them for PLE without repeating them here.

The set {a � b, (∀x)(Fbx & ~ Fxa)} is quantifi cationally inconsistent:

1 a � b SM
2 (∀x)(Fbx & ~ Fax) SM
3 Fbb & ~ Fab� 2 ∀D
4 Fbb 3 &D
5 ~ Fab 3 &D
6 Fab 1, 4 �D
 �

What is interesting here is the use of Identity Decomposition at line 6. We gen-
erated ‘Fab’ from ‘a � b’ and ‘Fbb’ by replacing only the fi rst occurrence of
‘b’ in the latter with ‘a’. (Recall that when generating P(t1//t2) from P, given
t1 � t2, it is not required that every occurrence of t2 in P be replaced with t1 but
only that at least one occurrence be so replaced.) We could also have closed
the tree by using Identity Decomposition to enter ‘Faa’ line 6 (replacing both
occurrences of ‘b’ in ‘Fbb’ with ‘a’) and then adding ‘~ Faa’ as a new line 7
(replacing ‘b’ in ‘~ Fab’ with ‘a’).

ber38413_ch09_402-473.indd Page 446 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 446 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 447

Consider now the quantifi cationally consistent set {c � b, (∀x)
(Fxc ⊃ ~ Gxb), (∀x)Gxc}. Here is a tree for this set:

1
2
3
4
5
6
7

8
9

10
11

c � b
(∀x)(Fxc ⊃ ∼ Gxb)

(∀x)Gxc
Gcc
Gbc

Fcc ⊃ ∼ Gcb�
Fbc ⊃ ∼ Gbb�

SM
SM
SM
3 ∀D
3 ∀D
2 ∀D
2 ∀D

6 ⊃D
1, 8 �D

7 ⊃D
1, 10 �D

∼ Fcc

∼ Fbc
ο

∼ Gcb
∼ Gcc

�

∼ Gbb
∼ Gbc

 �

The left-hand branch of this tree is a completed open branch and hence estab-
lishes that the set is quantifi cationally consistent. The left-hand branch contains
every required sentence that can be generated from the identity on line 1 and
a literal containing ‘b’ (excepting the sentence ‘c � c’). We could generate
‘Gcc’ by applying Identity Decomposition to the sentences at lines 1 and 5,
but it already occurs on line 4 so there is no need to do so. Similarly we could
generate ‘~ Fcc’ from lines 1 and 10, but it already occurs at line 8. Given the
literals ‘c � b’, ‘Gcc’, ‘Gbc’, ‘~ Fcc’, and ‘~ Fbc’, we know that any interpreta-
tion that includes the following assignments will be a model for the set {c � b,
(∀x)(Fxc ⊃ ~ Gxb), (∀x)Gxc}:

 UD: {1}
 b: 1
 c: 1
 F: ∅
 G: {<1, 1>}

Note that while Identity Decomposition allows, given an identity sentence
t1 � t2, the generation of literals in which one or more occurrences of t2 in
an existing literal have been replaced with t1, it does not license the genera-
tion of literals in which one or more occurrences of t1 have been replaced

ber38413_ch09_402-473.indd Page 447 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 447 12/4/12 2:33 PM F-400F-400

448 PREDICATE LOGIC: TRUTH-TREES

with t2. We could rewrite Identity Decomposition so as to allow this, but it
is not necessary to do so. That is, if a set is inconsistent it will have a closed
tree given the rules as presently written. Rewriting Identity Decomposition
in the suggested way would allow adding more literals to many trees, but for
no useful purpose.

As explained in Chapter 7, identity is a refl exive, symmetric, and tran-
sitive relation. Accordingly, we expect the following sentences of PLE, which
assert, respectively, the refl exivity, symmetry, and transitivity of identity, to be
quantifi cationally true:

(∀x)x � x
(∀x)(∀y)(x � y ⊃ y � x)
(∀x)(∀y)(∀z)[(x � y & y � z) ⊃ x � z]

The truth-tree method will indeed produce closed trees for the negations
of these sentences. Here is the relevant tree for the claim that identity is
refl exive:

1 ~ (∀x)x � x� SM
2 (∃x) ~ x � x� 1 ~ ∀D
3 ~ a � a 2 ∃D
 �

It should be noted that, when we earlier modifi ed the defi nition of a closed
branch so as to count every branch containing a sentence of the form ‘~ t1 � t1’
as a closed branch, we were, in effect, presupposing the refl exivity of identity.
The present result is therefore neither a surprising one nor an independent
proof of the refl exivity of identity. The relevant tree for the claim that identity
is symmeric is

1 ~ (∀x)(∀y)(x � y ⊃ y � x)� SM
2 (∃x) ~ (∀y)(x � y ⊃ y � x)� 1 ~ ∀D
3 ~ (∀y)(a � y ⊃ y � a)� 2 ∃D
4 (∃y) ~ (a � y ⊃ y � a)� 3 ~ ∀D
5 ~ (a � b ⊃ b � a)� 4 ∃D
6 a � b 5 ~ ⊃D
7 ~ b � a 5 ~ ⊃D
8 ~ a � a 6, 7 �D
 �

ber38413_ch09_402-473.indd Page 448 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 448 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 449

Finally, we consider transitivity. The relevant tree is

 1 ~ (∀x)(∀y)(∀z)[(x � y & y � z) ⊃ x � z]� SM
 2 (∃x) ~ (∀y)(∀z)[(x � y & y � z) ⊃ x � z]� 1 ~ ∀D
 3 ~ (∀y)(∀z)[(a � y & y � z) ⊃ a � z]� 2 ∃D
 4 (∃y) ~ (∀z)[(a � y & y � z) ⊃ a � z]� 3 ~ ∀D
 5 ~ (∀z)[(a � b & b � z) ⊃ a � z]� 4 ∃D
 6 (∃z) ~ [(a � b & b � z) ⊃ a � z]� 5 ~ ∀D
 7 ~ [(a � b & b � c) ⊃ a � c]� 6 ∃D
 8 (a � b & b � c)� 7 ~ ⊃D
 9 ~ a � c 7 ~ ⊃D
10 a � b 8 &D
11 b � c 8 &D
12 a � c 10, 11 �D
 �

Here we closed the tree by applying Identity Decomposition to lines 10 and 11,
taking ‘a � b’ as t1 � t2 and ‘b � c’ as P, producing ‘a � c’ as P(t1//t2). At
this point the one branch of the tree contains a pair of contradictory literals,
‘a � c’ and ‘~ a � c’, and is therefore closed.

Consider now the sentence ‘(∀x)(∀y)[(Fxx & ~ Fyy) ⊃ ~ x � y]’. We
expect this sentence to be quantifi cationally true (if x but not y bears a relation
F to itself, then x and y are not identical). The following truth-tree confi rms
this expectation:

 1 ~ (∀x)(∀y)[(Fxx & ~ Fyy) ⊃ ~ x � y]� SM
 2 (∃x) ~ (∀y)[(Fxx & ~ Fyy) ⊃ ~ x � y]� 1 ~ ∀D
 3 ~ (∀y)[(Faa & ~ Fyy) ⊃ ~ a � y]� 2 ∃D
 4 (∃y) ~ [(Faa & ~ Fyy) ⊃ ~ a � y]� 3 ~ ∀D
 5 ~ [(Faa & ~ Fbb) ⊃ ~ a � b]� 4 ∃D
 6 Faa & ~ Fbb� 5 ~ ⊃D
 7 ~ ~ a � b� 5 ~ ⊃D
 8 a � b 7 ~ ~ D
 9 Faa 6 &D
10 ~ Fbb 6 &D
11 ~ Faa 8, 10 �D

 �

At line 11 we replaced both occurrences of ‘b’ in ‘~ Fbb’ with ‘a’ to generate
‘~ Faa’. Replacing just one occurrence, while allowed, would not have produced
a closed tree.

ber38413_ch09_402-473.indd Page 449 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 449 12/4/12 2:33 PM F-400F-400

450 PREDICATE LOGIC: TRUTH-TREES

We now test the argument

(∃x)Gxa & ~ (∃x)Gax
(∀x)(Gxb ⊃ x � b)

~ a � b

for quantifi cational validity by constructing a tree for the premises and the
negation of the conclusion:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18

SM
SM
SM
3 ∼ ∼ D
1 &D
1 &D
6 ∼ ∃D
5 ∃D
2 ∀D
2 ∀D
2 ∀D
7 ∀D
7 ∀D
7 ∀D

11 ⊃D
4, 15 �D
4, 15 �D
8, 17 �D

(∃x)Gxa & ∼ (∃x)Gax�
(∀x)(Gxb ⊃ x � b)

∼ ∼ a � b�
a � b

(∃x)Gxa�
∼ (∃x)Gax�
(∀x) ∼ Gax

Gca
Gab ⊃ a � b
Gbb ⊃ b � b

Gcb ⊃ c � b�
∼ Gaa
∼ Gab
∼ Gac

∼ Gcb
∼ Gca

 �

c � b

a � c
Gaa
�

This tree is closed. Therefore the argument is quantifi cationally valid. The
secret to keeping this tree reasonably concise—for it could have grown quite
large—came from carefully studying the sentences on lines 9–11 to determine
which should be decomposed fi rst.

• Line 11 yields ‘~ Gcb’ on the left branch when decomposed, and
replacing ‘b’ with ‘a’ in ‘~ Gcb’ by virtue of the identity on line 4
then yields ‘~ Gca’ at line 16, closing the left branch.

• At line 15 the right branch is still open and contains the identity ‘c
� b’ in addition to ‘a � b’. From these identities and the other lit-
erals on the branch (‘Gca’, ‘~ Gaa’, ‘~ Gab’, and ‘~ Gac’) a host of
sentences can be obtained by using Identity Decomposition, replac-
ing ‘b’ with either ‘a’ or ‘c’. Careful study reveals that any of ‘Gac’,
‘Gab’, ‘Gaa’, or ‘~ Gca’ would close the branch. But none of these

ber38413_ch09_402-473.indd Page 450 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 450 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 451

can be directly obtained from the existing literals by Identity Decom-
position using the two identities ‘a � b’ and ‘c � b’.

• However, we were able to obtain the additional identity ‘a � c’ on
line 17 by applying Identity Decomposition to the two identities
themselves, replacing ‘b’ with ‘c’ in ‘a � b’ (as licensed by ‘c � b’).
This identity allowed us to obtain ‘Gaa’ on line 18, which closed the
branch and the tree.

In the remainder of this section, we shall work through examples
involving functors and identity. Consider fi rst the sentence ‘~ (∃x)x � g(a)’.
This sentence is fairly obviously quantifi cationally false, for it says that there
is nothing that is identical to g(a); but, of course, we know that something is
identical to g(a), namely, g(a) itself. Here is the start of a tree:

1 ~ (∃x)x � g(a)� SM
2 (∀x) ~ x � g(a) 1 ~ ∃D
3 ~ a � g(a) 2 ∀D

As of line 3 this tree has one open branch. It might seem that this branch is a
completed open branch, and hence that our intuitions about the sentence we
are testing must have been misguided. But the branch is not completed, for
in addition to ‘a’, there is a closed individual term on the branch, ‘g(a)’, and
the universally quantifi ed sentence on line 2 has not been decomposed to a
substitution instance formed from this latter term. Adding this decomposition
results in the following closed tree:

1 ~ (∃x)x � g(a)� SM
2 (∀x) ~ x � g(a) 1 ~ ∃D
3 ~ a � g(a) 2 ∀D
4 ~ g(a) � g(a) 2 ∀D
 �

It is now apparent that line 3 was unnecessary—the branch would close without
that step.

Consider next the sentence ‘(∀x)f(x) � x’. This sentence is clearly not
quantifi cationally true—because a one-place function does not always return its
argument as its value. For example, the successor function returns x � 1 for
any value x, not x itself. The following tree establishes that this sentence is not
quantifi cationally true:

1 ~ (∀x)f(x) � x� SM
2 (∃x) ~ f(x) � x� 1 ~ ∀D
3 ~ f(a) � a 2 ∃D
 o

ber38413_ch09_402-473.indd Page 451 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 451 12/4/12 2:33 PM F-400F-400

452 PREDICATE LOGIC: TRUTH-TREES

The single branch on this tree is a completed open branch. The sentences on
lines 1 and 2 have been checked off, and the sentence on line 3 is a literal
that is not an identity sentence. The sentence ‘(∀x)f(x) � x’ is therefore not
quantifi cationally true.7 Moreover, we can use the literals on the branch as a
guide to constructing a model for ‘~ (∀x)f(x) � x’ (which will be an interpre-
tation on which the unnegated sentence is false). There is one literal on the
single open branch: ‘~ f(a) � a’. Because ‘f(a)’ and ‘a’ must denote distinct
individuals for this literal to be true, we choose a two-member UD, let ‘a’
designate one member, and interpret ‘f’ so that ‘f(a)’ designates the other.
Any interpretation that includes the following assignments will be a model for
‘~ (∀x)f(x) � x’:

 UD: {1, 2}
 a: 2
 f: {<1, 2>, <2, 1>}

The sentence ‘(∀x)(∀y)f(x,y) � f(y,x)’ is also not quantifi cationally
true, as the following tree shows:

1 ~ (∀x)(∀y)f(x,y) � f(y,x)� SM
2 (∃x) ~ (∀y)f(x,y) � f(y,x)� 1 ~ ∀D
3 ~ (∀y)f(a,y) � f(y,a)� 2 ∃D
4 (∃y) ~ f(a,y) � f(y,a)� 3 ~ ∃D
5 ~ f(a,b) � f(b,a) 4 ∃D
 o

The completed open branch contains the literal ‘~ f(a,b) � f(b,a)’, so any
interpretation that makes this literal true will also make the sentence ‘~ (∀x)
(∀y)f(x,y) � f(y,x)’ true. To fi nd such an interpretation we’ll choose a two-
member UD and interpret ‘f ’ so that ‘f(a,b)’ and ‘f(b,a)’ do not denote the
same member. Any interpretation that includes the following assignments
will be a model for the sentence ‘~ (∀x)(∀y)f(x,y) � f(y,x)’ and hence an
interpretation on which the unnegated sentence ‘(∀x)(∀y)f(x,y) � f(y,x)’
is false:

 UD: {1,2}
 a: 1
 b: 2
 f: {<1, 1, 1>, <1, 2, 1>, <2, 2, 2>, <2, 1, 2>}

7We shall produce a tree in Section 9.6 that shows that this sentence is not quantifi cationally false.

ber38413_ch09_402-473.indd Page 452 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 452 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 453

Next consider the sentence ‘(∀x)[Ex ⊃ (∃y)(Oy & y � f(x))]’. We can
use the truth-tree method to show that this sentence is not quantifi cationally true:

1
2
3
4
5
6
7
8

9

10

SM
1 ∼ ∀D
2 ∃D
3 ∼ ⊃D
3 ∼ ⊃D
5 ∼ ∃D
6 ∀D
6 ∀D

8 ∼ &D

7 ∼ &D

∼ (∀x)[Ex ⊃ (∃y)(Oy & y � f(x))]�
(∃x) ∼ [Ex ⊃ (∃y)(Oy & y � f(x))]�

∼ [Ea ⊃ (∃y)(Oy & y � f(a))]�
Ea

∼ (∃y)(Oy & y � f(a))�
(∀y) ∼ (Oy & y � f(a))

∼ (Oa & a � f(a))�
∼ (Of(a) & f(a) � f(a))�

∼ Of(a) ∼ f (a) � f(a)
�

∼ Oa
o

∼ a � f(a)
o

This tree has two completed open branches. The tree contains no (nonnegated)
identity sentences, and every sentence on each of these branches either is a
literal, or has been checked off, or is a universally quantifi ed sentence. There
is only one of the latter, at line 6, and it has been decomposed to every closed
term on the relevant branch (each branch contains only the closed terms ‘a’
and ‘f(a)’). Because this tree has at least one completed open branch, the
sentence ‘(∀x)[Ex ⊃ (∃y)(Oy & y � f(x))]’ is not quantifi cationally true. From
the three literals ‘Ea’, ‘~ Of(a)’, and ‘~ Oa’ on the left open branch we know
that ‘~ (∀x)[Ex ⊃ (∃y)(Oy & y � f(x))]’ will be true on any interpretation that
includes the following assignments:

 UD: The set {1}
 a: 1
 f : {<1, 1>}
 E: {<1>}
 O: ∅

From the three literals ‘Ea’, ‘~ Of (a)’, and ‘~ a � f(a)’ on the right open
branch we also know that ‘~ (∀x)[Ex ⊃ (∃y)(Oy & y � f(x))]’ will be true on
any interpretation that includes the following assignments:

 UD: The set {1, 2}
 a: 1
 f : {<1, 2>, <2, 2>}
 E: {<1>}
 O: ∅

ber38413_ch09_402-473.indd Page 453 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 453 12/4/12 2:33 PM F-400F-400

454 PREDICATE LOGIC: TRUTH-TREES

By defi nition a one-place function returns exactly one value for each
argument. So the following sentence is quantifi cationally true:

(∀x)(∃y)[y � f(x) & (∀z)(z � f(x) ⊃ z � y)]

Here is a tree that establishes this:

1
2
3
4
5

6
7
8
9

10

SM
1 ∼ ∀D
2 ∃D
3 ∼ ∃D
4 ∀D

5 ∼ &D
6 ∼ ∀D
7 ∃D
8 ∼ ⊃D
8 ∼ ⊃D

 ∼ (∀x)(∃y)[y � f(x) & (∀z)(z � f(x) ⊃ z � y)]�
(∃x) ∼ (∃y)[y � f(x) & (∀z)(z � f(x) ⊃ z � y)]�

∼ (∃y)[y � f(a) & (∀z)(z � f(a) ⊃ z � y)]�
 (∀y) ∼ [y = f(a) & (∀z)(z � f(a) ⊃ z � y)]

∼ [f(a) � f(a) & (∀z)(z � f(a) ⊃ z � f(a))]�

∼ f(a) � f(a)
�

∼ (∀z)(z � f(a) ⊃ z � f(a))�
(∃z) ∼ (z � f(a) ⊃ z � f(a))�

∼ (b � f(a) ⊃ b � f(a))�
b � f(a)

∼ b � f(a)
�

Note that at line 5 we chose to replace ‘y’ with ‘f(a)’ rather than with ‘a’. Both
are individual terms already occurring on the branch, but using the former
generates a closed branch on the left at line 6 and, a few steps later, a closed
branch on the right.

Finally, the following argument is quantifi cationally invalid:

(∀y)y � f(y) ⊃ (∀x)(∃y)y � f(x)

(∀y)y � f(y)

1
2
3
4

5
6
7

SM
SM
2 ∼ ∀D
3 ∃D

1 ⊃D
5 ∼ ∀D
6 ∃D

 (∀y)y � f(y) ⊃ (∀x)(∃y)y � f(x)�
∼ (∀y)y � f(y)�
(∃y) ∼ y � f(y)�

 ∼ a � f(a)

∼ (∀y)y � f(y)�
(∃y) ∼ y � f(y)�

∼ b � f(b)
o

(∀x)(∃y)y � f(x)

The completed open branch establishes that the argument is quantifi cationally
invalid. Note that every sentence on that branch either is checked off (lines 1,
2, 3, 5, and 6), or is a negated identity sentence (thus a literal that is not itself
an identity sentence). It is worth noting that the right branch of this tree is
the beginning of an infi nite branch because of the interplay of the existential
quantifi er within the scope of the universal quantifi er of the sentence on line 5

ber38413_ch09_402-473.indd Page 454 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 454 12/4/12 2:33 PM F-400F-400

9.5 TRUTH-TREES FOR PLE 455

of that branch. From the completed open branch, however, which contains
the literals ‘~ a � f(a)’ and ‘~ b � f(b)’, we know that any interpretation that
includes the following assignments is a model for the set {(∀y) y � f(y) ⊃ (∀x)
(∃y) y � f(x), ~ (∀y) y � f(y)}:

 UD: The set {1, 2}
 a: 1
 b: 2
 f : {<1, 2>, <2, 1>}

 9.5E EXERCISES

Construct truth-trees as necessary to provide the requested information. In
each case state your result, and specify what it is about your tree that estab-
lishes this result.

 1. Determine, for each of the following sets, whether the set is quantifi cationally
consistent. In addition, if your tree establishes consistency, show the relevant
part of an interpretation that will make all of the literals on one completed
branch, and therefore all of the members of the set being tested, true. (Be
sure to list the literals that you are using in this case.)

 a. {(∀x)Fxx, (∃x)(∃y) ~ Fxy, (∀x)x � a}
 *b. {(∀x)(Fxc ⊃ x � a), ~ c � a, (∃x)Fxc}
 c. {(∀x)(x � a ⊃ Gxb), ~ (∃x)Gxx, a � b}
 *d. {(∃x)(∃y) ~ x � y, (∀x)(Gxx ⊃ x � b), Gaa}
 e. {(∀x)((Fx & ~ Gx) ⊃ ~ x � a), Fa & ~ Ga}
 *f. {(∃y)(∀x)Fxy, ~ (∀x)(∀y)x � y, Fab & ~ Fba}
 g. {(∀x)(x � a ⊃ Gxf(b)), ~ (∃x)Gxf(x), f(a) � f(b)}
 *h. {(∀x)(Gxx ⊃ x � f(x,b)), Gaa, (∀x) ~ f(a,x) � a}
 i. {(∃x) ~ x � g(x), (∀x)(∀y)x � g(y)}
 *j. {(∃x)(∃y)f(x,y) � f(y,x), (∀x) [f(x,a) � f(a,x) ⊃ ~ a � x]}
 k. {(∀x)[Hx ⊃ (∀y)Txy], (∃x)Hf(x), ~ (∃x)Txx}
 *l. {Hf(a,b), (∀x)(Hx ⊃ ~ Gx), (∃y)Gy}
 m. {(∃x)Fx ⊃ (∃x)(∃y)f(y) � x, (∃x)Fx}
 *n. {~(∃x)[x � f(s) & (∀y)(y � f(s) ⊃ y � x)]}

 2. Determine, for each of the following sentences, whether it is quantifi cationally
true, quantifi cationally false, or quantifi cationally indeterminate.

 a. a � b ≡ b � a
 *b. (~ a � b & ~ b � c) ⊃ ~ a � c
 c. (Gab & ~ Gba) ⊃ ~ a � b
 *d. (∀x)(∃y)x � y
 e. Fa ≡ (∃x)(Fx & x � a)
 *f. ~ (∃x)x � a
 g. (∀x)x � a ⊃ [(∃x)Fx ⊃ (∀x)Fx]
 *h. (∀x)(∀y)x � y
 i. (∀x)(∀y) ~ x � y
 *j. (∃x)(∃y)x � y

ber38413_ch09_402-473.indd Page 455 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 455 12/4/12 2:33 PM F-400F-400

456 PREDICATE LOGIC: TRUTH-TREES

 k. (∃x)(∃y) ~ x � y
 *l. (∀x)(∀y)[x � y ⊃ (Fx ≡ Fy)]
 m. (∀x)(∀y)[(Fx ≡ Fy) ⊃ x � y]
 *n. (∀x)(∀y)[x � y ⊃ (∀z)(Fxz ≡ Fyz)]
 o. [(∃x)Gax & ~ (∃x)Gxa] ⊃ (∀x)(Gxa ⊃ ~ x � a)

 3. Determine which of the following sentences are quantifi cationally true.
 a. (∃x)x � f(a)
 *b. (∀x)(∃y)y � f(x)
 c. (∃x)(∃y)x � y
 *d. (∃x)(∃y)x � f(y)
 e. (∀x)[Gx ⊃ (∃y)f(x) � y]
 *f. (∀x)(∀y)[x � y ⊃ f(x) � f(y)]
 g. (∀y) ~ [(∀x)x � y ∨ (∀x)f(x) � y]
 *h. (∀x)(∃y)[y � f(x) & (∀z)(z � f(x) ⊃ z � y)]

 4. Determine which of the following pairs of sentences are quantifi cationally
equivalent.

 a. ~ a � b ~ b � a
 *b. (∃x) ~ x � a (∃x) ~ x � b
 c. (∀x)x � a (∀x)x � b
 *d. a � b & b � c a � c & b � c
 e. (∀x)(∀y)x � y (∀x)x � a
 *f. (∀x)(∃y)x � y (∀y)(∃x)x � y
 g. (∀x)(Fx ⊃ x � a) (∀x)(Fa ⊃ x � a)
 *h. (∀x)(x � a ∨ x � b) (∀x)x � a ∨ (∀x)x � b
 i. (∀x)Fx ∨ (∀x) ~ Fx (∀y)(Fy ⊃ y � b)
 *j. a � b (∀y)(y � a ⊃ y � b)
 k. (∃x)(x � a & x � b) a � b

 5. Determine which of the following arguments are quantifi cationally valid.

 a. a � b & ∼ Bab

 ∼ (∀x)Bxx

 *b. Ge ⊃ d � e

 Ge ⊃ He

 Ge ⊃ Hd

 c. (∀z)(Gz ⊃ (∀y)(Ky ⊃ Hzy))

 (Ki & Gj) & i � j

 Hii

 *d. (∃x)(Hx & Mx)

 Ms & ∼ Hs

 (∃x)((Hx & Mx) & ∼ x � s)

 e. a � b

 Ka ∨ ∼ Kb

 *f. (∃x) ∼ Pxx ⊃ ∼ a � a

 a � c

 Pac

 g. (∀x)(x � a ∨ x � b)

 (∃x)(Fxa & Fbx)

 (∃x)Fxx

 *h. (∃x)Fxa

 (∀y)(y � a ⊃ y � b)

 (∃y)Fyy

ber38413_ch09_402-473.indd Page 456 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 456 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 457

 i. (∀x)(∀y)(Fxy ∨ Fyx)

 a � b

 (∀x)(Fxa ∨ Fbx)

 *j. (∃x)Fxa & (∃x)Fxb

 ∼ a � b

 (∀x)(∀y)((Fxa & Fyb) ⊃ ∼ x � y)

 k. (∀x)(Fx K ∼ Gx)

 Fa

 Gb

 ∼ a � b

 *l. ∼ (∃x)Fxx

 (∀x)(∀y)(Fxy ⊃ ∼ x � y)

 m. (∀x)(∀y)x � y

 ∼ (∃x)(∃y)(Fx & ∼ Fy)

 *n. (∀x)(∼ x � a � (∃y)Gyx)

 Gbc

 ∼ c � a

 o. (∀x)(Hx ⊃ Hf(x))

 (∃z) ∼ Hf(z)

 ∼ (∀x)Hx

 *p. (∀y)(Hy ⊃ g(y) � y)

 (∃x) ∼ g(x) � x

 (∃x) ∼ Hx

 q. (∀x)(∀y)(Hxy � ∼ Hyx)

 (∃x)[Hxf(x) & ∼ Hf(x)x]

 ∼ (∀x)f(x) � x

 *r. (∃x)h(x) � x

 (∀x)(Fx ⊃ ∼ Fh(x))

 (∃x) ∼ Fx

 s. (∀x)[Px ⊃ (Ox ∨ ∼ x � f(b))]

 (∃x)[(Px & ∼ Ox) & x � f(b)]

 Ob

 *t. (∀x)(∀y)(Hxy ⊃ f(x) � y)

 (∃x)Hxx

 (∃x)f(x) � x

 6. Determine which of the following claims are true.
 a. {(∀x)(Fx ⊃ (∃y)(Gyx & ~ y � x)), (∃x)Fx)} (∃x)(∃y) ~ x � y
 *b. {~ (∃x)(Fxa ∨ Fxb), (∀x)(∀y)(Fxy ⊃ ~ x � y)} ~ a � b
 c. {(∀x)(Fx ⊃ ~ x � a), (∃x)Fx} (∃x)(∃y) ~ x � y
 *d. {(∀x)(∃y)(Fxy & ~ x � y), a � b, Fab} (∃y)(Fay & y � b)
 e. {(∃w)(∃z) ~ w � z, (∃w)Hw} (∃w) ~ Hw
 *f. {(∃w)(∀y)Gwy, (∃w)(∀y)(~ w � y ⊃ ~ Gwy)} (∃z) ~ Gzz
 g. {(∀x)(∀y)((Fx ≡ Fy) ≡ x � y), (∃z)Fz} (∃x)(∃y)(~ x � y & (Fx & ~ Fy))
 *h. {(∀x)(∃y)y � f(x)} (∃z)z � f(a)
 i. {(∀x)(∀y)[~ x � g(y) ⊃ Gxy], ~ (∃x)Gax} (∃x)a � g(x)

 9.6 FINE-TUNING THE TREE METHOD FOR PLE

The last tree that we presented in Section 9.5 contained an unending branch
in the making, due to a sentence that contained an existential quantifi er
within the scope of a universal quantifi er. We introduced a new rule in

ber38413_ch09_402-473.indd Page 457 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 457 12/4/12 2:33 PM F-400F-400

458 PREDICATE LOGIC: TRUTH-TREES

 Section 9.4, Existential Decomposition-2, as well as a systematic method of
constructing trees for PL, to ensure that such branches would neither pre-
vent discovering completed open branches (where they exist) nor prevent
closing trees for inconsistent sets. Because the tree method for PLE includes
all of the rules for PL, we will clearly need to address infi nite branches aris-
ing from the interplay between existential and universal quantifi ers here as
well. But the inclusion of functors in PLE creates an additional source of
nonterminating branches in trees for fi nite sets of sentences. Consider a tree
for the set {(∀x)Hf(x)}:

1 (∀x)Hf(x) SM
2 Hf(a) 1 ∀D
3 Hf(f(a)) 1 ∀D
4 Hf(f(f(a))) 1 ∀D
 •
 •
 •

To qualify as a completed open branch, every universally quantifi ed sentence
on that branch must be decomposed at least once and must be decomposed
to every closed term occurring on the branch. To satisfy the fi rst requirement,
we fi rst decompose the universally quantifi ed sentence occurring on line 1
using the constant ‘a’. This introduces two new closed terms to the one branch
of the tree: ‘a’ and ‘f(a)’ (both occurring within the formula ‘Hf(a)’). The
universal quantifi cation has just been decomposed using ‘a’, but now we must
also decompose it using the closed term ‘f(a)’. This produces line 3, and a new
closed term, ‘f(f(a))’, which triggers another decomposition of the universally
quantifi ed sentence, producing a new closed term, ‘f(f(f(a)))’, at line 4, and
so on. Clearly this branch will never close and will never become a completed
open branch.

As for PL, we would like to have a tree system for PLE such that every
fi nite inconsistent set has a closed tree and every fi nite set with a fi nite model
has a fi nite tree with a completed open branch. We just saw that we cannot
produce a fi nite tree for the set {(∀x)Hf(x)}, given the methods presented for
PLE in Section 9.5. Yet this set has a fi nite model, for example, any interpreta-
tion that includes the following assignments:

 UD: The set {2}
 f : {<2, 2>}
 H: {<2>}

In this section we will modify our defi nition of completed open branches,
add a new decomposition rule for constructing PLE trees, and then present
a systematic method for constructing trees such that our desiderata are
satisfi ed.

ber38413_ch09_402-473.indd Page 458 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 458 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 459

We will modify the defi nition of completed open branches in sev-
eral ways. The fi rst of these will be to drop the requirement that universally
quantifi ed sentences be decomposed using every closed term occurring on a
branch, and adopt the weaker requirement that universally quantifi ed sen-
tences must be decomposed using every constant occurring on a branch (and
that at least one constant must be so used). This will cut short the infi nite
branch that we just saw in progress for the set {(∀x)Hf(x)}, but without other
changes it will also count the single branch of the following tree as a com-
pleted open branch:

1 (∀x)Bx SM
2 ~ Bg(a) SM
3 Ba 1 ∀D

We clearly don’t want to count this as a completed open branch, for the set
{(∀x)Bx, ~ Bg(a)} is quantifi cationally inconsistent. Because we are required to
decompose universally quantifi ed sentences only with constants, we will add a
new rule that identifi es the individuals denoted by closed complex terms with
individuals identifi ed by contants, a rule that will lead to a closed tree for this
set once we make a fi nal modifi cation of the defi nition of open branches.

The new rule is:8

Complex Term Decomposition (CTD)

. . . f(a1, . . . , an) . . .

b1 � f(a1, . . . , an) bm � f(a1, . . . , an) bm�1 � f(a1, . . . , an). . .

where f(a1, . . . , an) is a closed complex term occurring within a literal
and whose arguments a1, . . . , an are individual constants; b1, . . . , bm
are the constants that already occur on the branch that contains the
literal, and bm�1 is a constant that is foreign to that branch.

The expression ‘. . . f(a1, . . . , an) . . .’ stands for any literal that contains the
complex term ‘f(a1, . . . , an)’. This rule bears an obvious affi nity to Existential
Decomposition-2: it branches out based on the constants that occur on the
branch containing the complex term being decomposed, and generates one
additional branch with a constant that was foreign to that branch. At the end
of each of the new branches is an identity sentence, with one of the constants
on the left-hand side and the complex term being decomposed on the right-
hand side.

8This is a slight variation of the rule introduced in Merrie Bergmann, “Finite Tree Property for First-Order Logic
with Identity and Functions,” Notre Dame Journal of Formal Logic, 46 (2005), pp. 173–180.

ber38413_ch09_402-473.indd Page 459 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 459 12/4/12 2:33 PM F-400F-400

460 PREDICATE LOGIC: TRUTH-TREES

The following tree for the set {Gf(a), ~ Ga} illustrates the use of
 Complex Term Decomposition:

1
2

3
4

SM
SM

1 CTD
1, 3 �D

Gf(a)
∼ Ga

a � f(a)
Ga
�

b � f(a)
Gb
o

The tree begins with the set members on the fi rst two lines. The sentence
on line 1 is a literal containing the closed complex term ‘f(a)’, so Com-
plex Term Decomposition must be applied to this term. Prior to applying
the rule there is one constant, ‘a’, that occurs on the single branch. So
one of the new branches must end with the identity sentence ‘a � f(a)’,
while the other ends with an identity sentence that has a new constant on
the left-hand side. (Note that we do not check off the sentence containing
the closed term that is being decomposed. Checks will continue to indicate
completed sentence decomposition only.) The tree is then extended to line 4,
because the identity sentences on line 3 must be decomposed by substitut-
ing the constants for ‘f(a)’ in the literal ‘Gf(a)’. The left branch closes, as
it should, because if ‘a’ and ‘f(a)’ denote the same individual, then the set
members state that this individual both does and does not have the property
G. The right branch is a completed open branch, confi rming that the set
{Gf(a), ~ Ga} is quantifi cationally consistent. (Strictly speaking, the formula
‘b � b’ should also appear on the right branch by virtue of applying Identity
Decomposition to the single formula on line 3 of that branch. But here, as
in Section 9.5, we omit identity formulas in which the same term appears
on both sides of the identity predicate because such formulas will never
cause a branch to close.) Because the open branch contains two individual
constants, it indicates that we can construct a model for the set using a UD
with at least two members, for example, any interpretation that includes the
following assignments:

 UD: {1, 2}
 a: 1
 b: 2
 f : {<1, 2>, <2, 1>}
 G: {<2>}

(In addition, the fact that the left branch, the only branch that contains exactly
one individual constant, closes tells us that any model for this set must have at
least two members in its UD.)

ber38413_ch09_402-473.indd Page 460 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 460 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 461

Using Complex Term Decomposition we can produce a closed tree for
the quantifi cationally inconsistent set {(∀x)Bx, ~ Bg(a)}:

1
2

3
4
5

SM
SM

2 CTD
2, 3 �D
1 ∀D

(∀x)Bx
∼ Bg(a)

a � g(a)
∼ Ba
Ba
�

b � g(a)
∼ Bb
Bb
�

Although we dropped the requirement that universally quantifi ed sentences
must be decomposed using closed complex terms as well as constants, this tree
nevertheless closes because of the identity sentences that were generated on
line 3 by Complex Term Decomposition. Branching to those sentences says
that either the constant ‘a’ or the constant ‘b’ denotes the individual that the
complex term ‘g(a)’ denotes. Further, the identity sentences must themselves
be decomposed with Identity Decomposition, and respectively substituting the
constants ‘a’ and ‘b’ for ‘g(a)’ in the sentence ‘~ Bg(a)’ produces ‘~ Ba’ on
the left branch and ‘~ Bb’ on the right branch. Finally, because universally
quantifi ed sentences must be decomposed using all the constants occurring on a
branch, we add the substitution instances on line 5 that respectively contradict
the sentences on line 4 of the two branches. So the tree closes.

On the other hand, Complex Term Decomposition and our modifi ed
requirement for decomposing universally quantifi ed sentences produce a com-
pleted open branch on a tree for the set {(∀x)Hf(x)}:

1
2

3
4
5

SM
1 ∀D

2 CTD
2, 3 �D
1 ∀D

(∀x)Hf(x)
Hf(a)

a � f(a)
Ha
o

b � f(a)
Ηb

Hf(b)

After adding the sentences on line 3 with Complex Term Decomposition, we
substitute the constants for the complex term ‘f(a)’ in the literal on line 2 to
generate the literals on line 4. The left branch is now completed: We have
decomposed the universal quantifi cation on line 1 with the only constant on
the branch (this occurs at line 2), we have decomposed the complex term
on line 2 (although we haven’t yet stated so, there will be a requirement
that all complex terms must be decomposed), and the identity on line 3
has also been decomposed as many times as it can be (it produces only the
sentence on line 4). This branch is also open, indicating that the set being
tested is quantifi cationally consistent. The right branch is also open, but it

ber38413_ch09_402-473.indd Page 461 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 461 12/4/12 2:33 PM F-400F-400

462 PREDICATE LOGIC: TRUTH-TREES

is not completed. On line 5 we have added another substitution instance of
the universal quantifi cation, because the right branch now contains the con-
stant ‘b’ along with the constant ‘a’. This generates a new closed complex
term, to which Complex Term Decomposition must be applied. An infi nite
branch is in the making here, for Complex Term Decomposition will pro-
duce a new branch with the constant ‘c’, which must be used to form a sub-
stitution instance of the universal quantifi cation on line 1, and so on. The
important point is, however, that we have managed to produce a completed
open branch. That branch contains exactly one constant, confi rming (as we
already saw) that there is a model for the set {(∀x)Hf(x)} in which the UD
has exactly one member.

Having seen Complex Term Decomposition in action, we will now
examine a tree that illustrates some of the fi ner points of this rule:

1
2

3
4

5
6

SM
1 ∃D2

2 CTD
2, 3 �D

4 CTD
4, 5 �D

(∃x)Hg(x,f(x))�
Hg(a,f(a))

a � f(a)
Hg(a,a)

b � f(a)
Hg(a,b)

a � g(a,a)
Ha
o

b � g(a,a)
Hb
o

a � g(a,b)
Ha
o

c � g(a,b)
Hc
o

b � g(a,b)
Hb
o

(In this section, as in Section 9.4, we will always use Existential Decomposition-2
to decompose existentially quantifi ed sentences.) The sentence on line 1 con-
tains the complex term ‘g(x,f(x))’ but that term is not decomposed because it
is not a closed term. The sentence on line 2 contains two complex terms: ‘f(a)’
and ‘g(a,f(a))’. Both are closed, but only ‘f(a)’ gets decomposed (on line 3).
The term ‘g(a,f(a))’ does not get decomposed because Complex Term Decom-
position only applies if all of the arguments to the main functor are constants,
but the argument ‘f(a)’ is not a constant. After Identity Decomposition adds
identity sentences at line 4, the tree contains two new complex terms: ‘g(a,a)’
and ‘g(a,b)’. These terms are closed, and the arguments in both are exclusively
constants, so they must be decomposed—this is done on line 5. Identity Decom-
position then produces the sentences on line 6, and all fi ve branches become
completed open branches.

Now we will use Complex Term Decomposition to produce trees that
show that the sentence ‘(∀x)[Hg(x,f(b)) ⊃ ~ Hg(f(b),x)]’ is quantifi cationally

ber38413_ch09_402-473.indd Page 462 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 462 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 463

indeterminate. The fi rst tree shows that this sentence is not quantifi cationally
false:

1
2

3

4
5

6
7

SM
1 ∀D

2 ⊃D

3 CTD
3, 4 �D

5 CTD
5, 6 �D

(∀x)[Hg(x,f(b)) ⊃ ∼ Hg(f(b),x)]
Hg(b,f(b)) ⊃ ∼ Hg(f(b),b)�

∼ Hg(b,f(b)) ∼ Hg(f(b),b)

b � f(b)
∼ Hg(b,b)

c � f(b)
∼ Hg(b,c)

b � g(b,b)
∼ Hb

o

c � g(b,b)
∼ Hc

b � f(b)
∼ Hg(b,b)

c � f(b)
∼ Hg(b,c)

The leftmost branch is a completed open branch. The remaining branches are
incomplete, but since the tree does have at least one completed open branch
there is no need to complete them. In constructing the tree we reached the
sentences ‘~ Hb’ and ‘~ Hc’ through repeated applications of Complex Term
Decomposition and Identity Decomposition, applying CTD fi rst to line 3 to
produce the identities on line 4, then to ‘g(b,b)’ as that closed term occurs
in a literal on line 5. The following tree establishes that ‘(∀x)[Hg(x,f(b))
⊃ ~ Hg(f(b),x)]’ also is not quantifi cationally true, and hence that it is quan-
tifi cationally indeterminate:

1
2

3
4
5
6

7
8
9

10
11

∼ (∀x)[Hg(x,f(b)) ⊃ ∼ Hg(f(b),x)]�
(∃x) ∼ [Hg(x,f(b)) ⊃ ∼ Hg(f(b),x)]�

SM
1 ∼ ∀D

2 ∃D2
3 ∼ ⊃D
3 ∼ ⊃D
5 ∼ ∼ D

6 CTD
4, 7 �D
6, 7 �D

8 CTD
8, 10 �D

∼ [Hg(b,f(b)) ⊃ ∼ Hg(f(b),b)]�
Hg(b,f(b))

∼ ∼ Hg(f(b),b)�
Hg(f(b),b)

∼ [Hg(c,f(b)) ⊃ ∼ Hg(f(b),c)]�
Hg(c,f(b))

∼ ∼ Hg(f(b),c)�
Hg(f(b),c)

b � g(b,b)
Hb
o

c � g(b,b)
Hc
o

b � f(b)
Hg(b,b)

c � f(b)
Hg(b,c)
Hg(c,b)

b � f(b)
Hg(c,b)
Hg(b,c)

d � f(b)
Hg(c,d)
Hg(d,c)

c � f(b)
Hg(c,c)

ber38413_ch09_402-473.indd Page 463 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 463 12/4/12 2:33 PM F-400F-400

464 PREDICATE LOGIC: TRUTH-TREES

The left two branches of this tree are completed open branches, so there is no
point in continuing to work on the other branches. Note that the closed term
‘f(b)’ occurs in literals on lines 4 and 6. Nonetheless we applied CTD to this
closed term only once—at line 7, citing line 6. We could equally well have cited
line 4. (There is no point to applying CTD twice to the same closed term, as
the results will always be the same.) Also note that we applied Identity Decom-
position at line 8 to lines 4 and 7 on all fi ve branches. At line 9 we applied it
only to the branches where a new literal is yielded.

Before we give our offi cial defi nition of open branches for trees
of PLE, we pause to consider the restriction, in the statement of Complex
Term Decomposition, that the complex term being decomposed must be a
closed term whose arguments are individual constants. In each of the preceding
three trees there are closed complex terms whose arguments include com-
plex terms. Why are we not required to decompose these complex terms?
Keep in mind that the point of Complex Term Decomposition was to ensure
that for every closed complex term occurring on a branch, there is a con-
stant on that branch that denotes the same individual (so that when decom-
posing universally quantifi ed sentences, we only need to generate substitu-
tion instances that are formed from individual constants that occur on the
branch). It turns out that this requirement is met as long as we are careful
to apply CTD to all complex terms in which the arguments are all constants,
and to decompose identity sentences wherever they occur. To see this, take
as an example the term ‘g(b,f(b))’ that occurs at line 4 in the literal on
the left branch of the preceding tree. The required decompositions on the
two completed open branches below line 4 guarantee that on each of these
branches there is an individual constant that denotes the same member of
the UD as ‘g(b,f(b))’. More specifi cally, consider the completed open branch
on the left. The identity sentence on line 7 states that ‘b’ and ‘f(b)’ denote
the same individual, and from this it follows that ‘g(b,b)’ must denote the
same individual as the more complex term ‘g(b,f(b))’. Moreover, the identity
sentence on line 10 states that ‘b’ and ‘g(b,b)’ denote the same individual—
from which it follows that on any interpretation represented by this branch,
‘b’ denotes the same individual as the complex term ‘g(b,f(b))’. Similarly,
it follows from the identity sentences on the right completed open branch
that on any interpretation represented by that branch, ‘c’ denotes the same
individual as ‘g(b,f(b))’.

The availability of CTD justifi es our relaxing clause 3 of our defi nition
of a completed open branch so as not to require that universally quantifi ed
sentences be decomposed to substitution instances formed from closed com-
plex terms. Such decompositions are still allowed and will sometimes produce
closed trees sooner than will using CTD, but they are not required for a branch
to be a completed open branch. It turns out that we can similarly loosen the
requirement concerning the use of Identity Decomposition. So our revised
defi nition of a completed open branch for trees for PLE is:

ber38413_ch09_402-473.indd Page 464 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 464 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 465

A completed open branch is a fi nite open branch on which each sen-
tence is one of the following:

 1. A literal that is not an identity sentence of the form a � t, where
a is an individual constant and t is a closed term

 2. A sentence of the form a � t, where a is an individual constant
and t is a closed term such that the branch also contains, for
every literal P on the branch containing t, every sentence P(a//t)
that can be obtained from P by Identity Decomposition

 3. A nonliteral sentence that is not a universally quantifi ed sentence
and is decomposed

 4. A universally quantifi ed sentence (∀x)P such that at P(a/x) also
occurs on the branch for at least one constant a, and for each
 constant a occurring on the branch, P(a/x) also occurs.

and on which Complex Term Decomposition has been applied to all
closed complex terms whose arguments are all individual constants that
occur in literals on the branch.

All branches that we have marked as completed open branches on trees in this
section meet this defi nition (except that we do not bother to show the required
identity sentences in which the same term occurs on both sides of the identity
predicate). Note that Identity Decomposition can still be used on sentences of
the form t1 � t2 when t1 is a complex term, but doing so is not necessary for
producing closed branches. So, where t1 � t2 occurs on a branch and t1 is a
complex term, Identity Decomposition should be used if we suspect that doing
so will quickly produce a closed branch, but not otherwise.

We’ll now use this revised defi nition of completed open branches as we
construct trees that show that the sentence ‘(∀x)(∀y)f(x,y) � f(y,x)’ is quan-
tifi cationally indeterminate. We start by constructing a tree for the unit set of
the sentence:

1
2
3

4
5

(∀x)(∀y)f(x,y) � f(y,x)
(∀y)f(a,y) � f(y,a)

f(a,a) � f(a,a)

SM
1 ∀D
2 ∀D

3 CTD
3, 4 �D

 a � f(a,a)
f(a,a) � a

o

 b � f(a,a)
f(a,a) � b

The left-hand branch is, as of line 5, a completed open branch. So the sentence is
true on at least one interpretation and is therefore not quantifi cationally false. The
right-hand branch is not completed, as it does not contain substitution instances of

ber38413_ch09_402-473.indd Page 465 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 465 12/4/12 2:33 PM F-400F-400

466 PREDICATE LOGIC: TRUTH-TREES

the sentences on lines 1 and 2 that can be formed using the constant ‘b’ that occurs
on that branch. Here is a tree for the unit set of the negation of our sentence:

 1 ∼ (∀x)(∀y)f(x,y) � f(y,x)� SM
 2 (∃x) ∼ (∀y)f(x,y) � f(y,x)� 1 ∼ ∀D
 3 ∼ (∀y)f(a,y) � f(y,a)� 2 ∃D2
 4 (∃y) ∼ f(a,y) � f(y,a)� 3 ∼ ∀D

 5 ∼ f(a,a) � f(a,a) ∼ f(a,b) � f(b,a) 4 ∃D2
 �

 6 a � f(a,b) b � f(a,b) c � f(a,b) 5 CTD
 7 ∼ a � f(b,a) ∼ b � f(b,a) ∼ c � f(b,a) 5, 6 �D

 8 a � f(b,a) b � f(b,a) c � f(b,a) a � f(b,a) b � f(b,a) c � f(b,a) a � f(b,a) b � f(b,a) c � f(b,a) d � f(b,a) 5 CTD
 9 � ∼ a � b ∼ a � c ∼ b � a � ∼ b � c ∼ c � a ∼ c � b � ∼ c � d 7, 8 �D
10 ∼ f(a,b) � b ∼ f(a,b) � c ∼ f(a,b) � a ∼ f(a,b) � c ∼ f(a,b) � a ∼ f(a,b) � b ∼ f(a,b) � d 5, 8 �D
 o o o o o o o

This tree has seven completed open branches, so the sentence at line 1 is
not quantifi cationally false, and the sentence ‘(∀x)(∀y)f(x,y) � f(y,x)’ is not
quantifi cationally true. This establishes that ‘(∀x)(∀y)f(x,y) � f(y,x)’ is quan-
tifi cationally indeterminate.

As we did for PL, we will present a procedure for constructing trees for
PLE in a systematic fashion that will always, in a fi nite number of steps, fi nd a
completed open branch if one exists or close the tree if it can be closed. The
System for PLE is somewhat more complicated than that for PL, owing to the
presence of identity sentences and complex terms:

The System for PLE

List the members of the set to be tested.

Exit Conditions: Stop if

a. the tree closes, or

b. an open branch becomes a completed open branch.

Construction Procedures:
Stage 1: Decompose all truth-functionally compound and existentially

 quantifi ed sentences and each resulting sentence that is itself either
a truth-functional compound or an existentially quantifi ed sentence.

Stage 2: For each universally quantifi ed sentence (∀x)P on the tree:
 i) Enter P(a/x) on each open branch passing through (∀x)P for

each individual constant a already occurring on that branch.

ber38413_ch09_402-473.indd Page 466 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 466 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 467

Note that Stage 3 does not require us to apply Complex Term Decom-
position to the same complex term on a branch more than once, even though
the term may occur in more than one literal on that branch. Stage 4 ensures
that after passing through that stage every sentence of the form a � t on
every open branch meets the requirements of clause 4 of the defi nition of a
completed open branch. That is, if the branch is not completed at this point,
this will not be because we have failed to apply Identity Decomposition the
required number of times. Stages 2 and 4 each contain instructions to apply
a decomposition rule in certain cases only if doing so closes a branch. The
decompositions in question do not need to be done to meet the requirements
for having a completed open branch, and doing such decompositions when
the result is not a closed branch can produce infi nite branches in cases where
completed open branches are possible. Nor are such decompositions needed to
produce closed branches—the branches in question will eventually close even
without these decompositions—but they can result in less complex trees than
would otherwise be produced by The System.

We conclude with some examples that use The System for PLE. The
sentence ‘(∀x)(∃y)y � f(f(x))’ is quantifi cationally true. So the truth-tree for
the negation of that sentence should close, and it does:

 ii) On each open branch passing through (∀x)P on which no
 constant occurs, enter P(a/x).

 iii) Enter P(t/x) on an open branch passing through (∀x)P for a
closed complex term t if and only if doing so closes the branch.

Repeat this process until every universally quantifi ed sentence on
the tree, including those added as a result of this process, has been
so decomposed.

Stage 3: Apply Complex Term Decomposition to every complex term on
an open branch whose arguments are all constants and to which
Complex Term Decomposition has not already been applied.

Stage 4: For every sentence of the form t1 � t2 occurring on an open branch,
apply Identity Decomposition as follows:

 i) Where t1 is an individual constant, apply Identity Decomposition
until every open branch passing through t1 � t2 also contains,
for every literal P containing t2 on that branch, every sentence
P(t1//t2) that can be obtained from P by Identity Decomposition.

 ii) Where t1 is a closed complex term, apply Identity Decomposition
to t1 � t2 and a literal P containing t2 that occurs on a branch passing
through t1 � t2 if and only if doing so closes the branch.

Return to Stage 1.

ber38413_ch09_402-473.indd Page 467 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 467 12/4/12 2:33 PM F-400F-400

468 PREDICATE LOGIC: TRUTH-TREES

1 ~ (∀x)(∃y)y � f(f(x))� SM
2 (∃x) ~ (∃y)y � f(f(x))� 1 ~ ∀D
3 ~ (∃y)y � f(f(a))� 2 ∃D2
4 (∀y) ~ y � f(f(a)) 3 ~ ∃D
5 ~ a � f(f(a)) 4 ∀D
6 ~ f(f(a)) � f(f(a)) 4 ∀D
 �

We closed this systematic tree by taking advantage of the instruction that a uni-
versally quantifi ed sentence be decomposed to a substitution instance formed
from a complex term if and only if doing so closes the branch.

On the other hand, the sentence ‘(∀x)(∀y)y � f(f(x))’ is quantifi -
cationally indeterminate. The following tree shows that the sentence is not
quantifi cationally true:

1
2
3
4

5

6
7
8
9

SM
1 ∼ ∀D
2 ∃D2
3 ∼ ∀D

4 ∃D2

3 CTD
5, 6 �D
6, 6 �D
6, 7 �D

∼ (∀x)(∀y)y � f(f(x))�
(∃x) ∼ (∀y)y � f(f(x))�

∼ (∀y)y � f(f(a))�
(∃y) ∼ y � f(f(a))�

∼ a � f(f(a)) ∼ b � f(f(a))

a � f(a)
∼ a � f(a)

a � a
∼ a � a

�

b � f(a)
∼ a � f(b)

b � b

a � f(a)
∼ b � f(a)

a � a
∼ b � a

o

c � f(a)
∼ b � f(c)

c � c

b � f(a)
∼ b � f(b)

b � b

Recall that the identity sentences on line 8 are offi cially required on completed open
branches. At line 9 the leftmost branch closes owing to the sentence just entered on
that branch, while the third branch becomes a completed open branch. The following
tree shows that the sentence ‘(∀x)(∀y)y � f(f(x))’ is also not quantifi cationally false:

1
2
3

4
5
6

(∀x)(∀y)y � f(f(x))
(∀y)y � f(f(a))

a � f(f(a))

SM
1 ∀D
2 ∀D

3 CTD
3, 4 �D
4, 4 �D

 a � f(a)

a � a
o

 b � f(a)
a � f(b)

b � b

Here, when we applied Identity Decomposition at line 5 using the sentences
from lines 3 and 4, we did not add ‘a � f(a)’ to the left branch since it already
occurred on that branch. The left branch (but not the right one) became a
completed open branch after adding the fi nal sentence at line 6.

As a fi nal example we shall construct a substantially more complicated
systematic tree. This tree establishes that the sentence ‘(∃x)(∃y)Hg(x,y) ≡ (∃x)
(∃y)Hg(y,x)’ is quantifi cationally true:

ber38413_ch09_402-473.indd Page 468 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 468 12/4/12 2:33 PM F-400F-400

 469

∼[
(∃

x)
(∃

y)
H

g(
x,

y)
 �

 (
∃x

)(
∃y

)H
g(

y,
x)

]�

(∃
x)

(∃
y)

H
g(

x,
y)

�

∼
(∃

x)
(∃

y)
H

g(
y,

x)
�

(∃
y)

H
g(

a,
y)

�

∼
(∃

x)
(∃

y)
H

g(
x,

y)
�

 (
∃x

)(
∃y

)H
g(

y,
x)

�

(∀
x)

 ∼
 (

∃y
)H

g(
x,

y)

H
g(

a,
a)

�
H

g(
a,

b)
�

H
g(

a,
a)

H
g(

b,
a)

a
�

 g
(a

,a
)

a
�

 g
(a

,b
)

a
�

 g
(a

,a
)

b
�

 g
(a

,a
)

a
�

 g
(a

,b
)

b
�

 g
(a

,b
)

c
�

 g
(a

,b
)

b
�

 g
(a

,b
)

c
�

 g
(a

,b
)

b
�

 g
(a

,a
)

(∀
x)

 ∼
 (

∃y
)H

g(
y,

x)

a
�

 a

(∀
x)

 ∼
 H

g(
y,

a)

∼
H

g(
a,

a)
�

∼
H

g(
a,

b)
�

∼
H

g(
a,

a)
�

(∀
y)

 ∼
 H

g(
y,

a)
(∀

y)
 ∼

 H
g(

y,
a)

(∀
y)

 ∼
 H

g(
y,

b)
(∀

y)
 ∼

 H
g(

y,
a)

(∀
y)

 ∼
 H

g(
y,

b)

∼
H

g(
a,

a)
�

∼
H

g(
a,

a)
�

∼
H

g(
b,

a)
�

∼
H

g(
b,

a)
�

∼
H

g(
b,

a)
�

b
�

 b
a

�
 a

b
�

 b
c

�
 c

(∃
y)

H
g(

y,
a)

�

∼
(∃

y)
H

g(
y,

a)
�

∼
(∃

y)
H

g(
y,

a)
�

∼
(∃

y)
H

g(
y,

b)
�

∼
(∃

y)
H

g(
a,

y)
∼

(∃
y)

H
g(

a,
y)

∼
(∃

y)
H

g(
b,

y)

H
a

H
a

H
b

H
b

H
c

H
a

H
a

H
b

H
b

H
c

a
�

 a
b

�
 b

a
�

 a
b

�
 b

c
�

 c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

SM 1
�

D

2
∃D

2

4
∃D

2
5

∃D
2

6
∀

D
6

∀
D

7
∀

D
7

∀
D

8
C

T
D

9
C

T
D

8,
 1

4
�

D
9,

 1
5

�
D

14
, 1

4
�

D
15

, 1
5

�
D

10
 ∼

 ∃
D

11
 ∼

 ∃
D

12
 ∼

 ∃
D

13
 ∼

 ∃
D

20
 ∀

D
21

 ∀
D

22
 ∀

D
23

 ∀
D

3
∃D

2
3

∼
∃D

2
∼

∃D

1
�

D

∼
H

g(
a,

b)
�

(∀
y)

 ∼
 H

g(
y,

a)
(∀

y)
 ∼

 H
g(

y,
b)

(∀
y)

 ∼
 H

g(
a,

y)
(∀

y)
 ∼

 H
g(

b,
y)

(∀
y)

 ∼
 H

g(
a,

y)
(∀

y)
 ∼

 H
g(

b,
y)

(∀
y)

 ∼
 H

g(
a,

y)
(∀

y)
 ∼

 H
g(

b,
y)

(∀
y)

 ∼
 H

g(
a,

y)
(∀

y)
 ∼

 H
g(

a,
y)

∼
H

g(
a,

b)
�

ber38413_ch09_402-473.indd Page 469 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 469 12/4/12 2:33 PM F-400F-400

470 PREDICATE LOGIC: TRUTH-TREES

• We begin work on the tree by decomposing all the truth-functionally
compound sentences and existentially quantifi ed sentences
on the tree, and all such sentences that are added through those
decompositions. This Stage 1 work takes us through line 9 of
the tree.

• Next, we move to Stage 2 of The System and decompose all univer-
sally quantifi ed sentences on each branch using constants already
on the branch. This takes us through line 13

• Then we move to Stage 3 and apply Complex Term Decomposition
to all complex terms that occur in literals. We complete this stage at
line 15.

• Moving to Stage 4, we apply Identity Decomposition as directed at
lines 16 through 19.

• At this point we have moved through The System once, but the
tree has not closed and does not have a completed open branch.

• So we return, as instructed, to Stage 1. We apply Negated Existential
Decomposition, which yields lines 20–23.

• We then move to Stage 2 and apply Universal Decomposition,
which yields lines 24–27. After these four applications of Univer-
sal Decomposition, every branch is closed and we have a
closed tree.

Note that The System specifi es, at Stage 3, that we apply Complex Term Decom-
position. We did so in this tree, even though the results (the introduction of the
literals ‘Ha’, ‘Hb’, and ‘Hc’ on appropriate branches) play no role in closing
any branch. In systematic trees, it is common for a tree to contain entries that
are not germane to the fi nal result. This is the price we pay for ensuring that
we explore all possibilities.

 9.6E EXERCISES

 1. Construct systematic trees to determine, for each of the following sets, whether
that set is quantifi cationally consistent. State your result. If you abandon a tree,
explain why.

 a. {(∀x)(∀y)[~ x � g(y) ⊃ Gxy], ~ (∃x)Gax}
 *b. {(∀x)(Gx ⊃ Gh(x)), (∃x)(Gx & ~ Gh(x))}
 c. {(∃x)(∃y)Hf(x,y), ~ (∃x)Hx}
 *d. {(∃x)(∀y) x � f(y), (∃x)(∀y) ~ x � f(y)}
 e. (∀x) Lxf(x), (∃y) ~ Lf(y)y}
 *f. {(∀x) ~ x � f(x), (∃x) x � f(f(x))}
 g. {(∀x)(Gx ⊃ ~ Gh(x)), (∃x)(~ Gx & ~ Gh(x))}
 *h. {(∀x) x � f(x), (∃x) ~ x � f(f(x))}

ber38413_ch09_402-473.indd Page 470 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 470 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 471

 2. Show that the following sentences are not quantifi cationally true by constructing
an appropriate systematic truth-tree.

 a. (∀x)(Pf(x) ⊃ Px)
 *b. (∀x)(∀y)(x � g(y) ∨ y � g(x))
 c. (∃x)(∀y)x � g(y)
 *d. (∀x) ~ x � f(x)
 e. (∀x)(∀y)(Dh(x,y) ⊃ Dh(y,x))
 *f. (∃x)(∃y) ~ (x � f(y) ∨ y � f(x))

 3. Show that the following sentences are quantifi cationally true by constructing
an appropriate systematic tree.

 a. (∀x)(∃y)y � f(f(x))
 *b. (∀x)(∀y)(∀z)((y � f(x) & z � f(x)) ⊃ y � z)
 c. (∀x)Lf(x) ⊃ (∀x)Lf(f(x))
 *d. (∃y)y � g(f(a))

 4. Construct systematic trees to determine, for each of the following sentences,
whether that sentence is quantifi cationally true, quantifi cationally false, or
quantifi cationally indeterminate. In each case state your result. If you abandon
a tree, explain why.

 a. (∃x)f(x) � x
 *b. (∀x)Gf(x)x
 c. (∀x)(∃y)y � f(f(x))
 *d. (∀x)(Fx ∨ ~ Fg(x))

 5. Construct systematic trees to determine which of the following arguments are
quantifi cationally valid. In each case state your result. If you abandon a tree,
explain why.

 a. (∃x)(Fg(x) & ∼ Hg(x))

 (∀x)(Fx ⊃ Hx)

 ∼ Ra

 *b. (∀x) Pf(f(x))

 Pf(a)

 c. a � f(b) & b � f(a)

 (∃x)(∼ x � a & ∼ x � b)

 *d. (∀x)(Fx ∨ Fg(x))

 (∀x)(Fx ∨ Fg(g(x)))

 6. Construct systematic trees to determine which of the following pairs of sen-
tences are quantifi cationally equivalent. In each case state your result. If you
abandon a tree, explain why.

 a. (∀x)(∃y)y � f(x) (∀x)(∃y)x � f(y)
 *b. Labf(b) Laf(b)b
 c. (∃x)x � x (∃x)x � f(x)
 *d. (∀x)Bh(x)x (∀x)Bxh(x)

 7. Construct systematic trees to determine which of the following alleged entail-
ments hold. In each case state your result. If you abandon a tree, explain why.

 a. {(∀x)(∀y)x � g(x,y)} (∀x)x � g(x,x)
 *b. {(∃x)(∀y) x � g(y)} h(a) � g(a)
 c. {(∀x)x � f(f(x))} (∀x)x � f(x)
 *d. {(∀x)x � f(x)} (∀x)x � f(f(x))

ber38413_ch09_402-473.indd Page 471 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 471 12/4/12 2:33 PM F-400F-400

472 PREDICATE LOGIC: TRUTH-TREES

GLOSSARY

Core Logical Concepts
QUANTIFICATIONAL INCONSISTENCY: A fi nite set � of sentences of PL/PLE is

quantifi cationally inconsistent if and only if � has a closed truth-tree.
QUANTIFICATIONAL CONSISTENCY: A fi nite set � of sentences of PL/PLE is

 quantifi cationally consistent if and only if � does not have a closed truth-tree.
QUANTIFICATIONAL TRUTH: A sentence P of PL/PLE is quantifi cationally true if and

only if {~ P} has a closed truth-tree.
QUANTIFICATIONAL FALSITY: A sentence P of PL/PLE is quantifi cationally false if

and only if {P} has a closed truth-tree.
QUANTIFICATIONAL INDETERMINACY: A sentence P of PL/PLE is quantifi cationally

indeterminate if and only if neither {P} nor {~ P} has a closed truth-tree.
QUANTIFICATIONAL EQUIVALENCE: Sentences P and Q of PL/PLE are

 quantifi cationally equivalent if and only if {~ (P ≡ Q)} has a closed truth-tree.
QUANTIFICATIONAL ENTAILMENT: A fi nite set � of sentences of PL/PLE

 quantifi cationally entails a sentence P of PL/PLE if and only if � ∪ {~ P} has a closed
truth-tree.

QUANTIFICATIONAL VALIDITY: An argument of PL/PLE with a fi nite number of
premises is quantifi cationally valid if and only if the set consisting of the premises
and the negation of the conclusion has a closed truth-tree.

Key Truth-Tree Concepts

CLOSED BRANCH OF A TRUTH-TREE FOR A SET OF SENTENCES OF PL: A
branch containing a contradictory pair of literals.

CLOSED BRANCH OF A TRUTH-TREE FOR A SET OF SENTENCES OF PLE: A
branch containing a contradictory pair of literals or a sentence of the form
~ t � t.

CLOSED TRUTH-TREE: A truth-tree each of whose branches is closed.
OPEN BRANCH: A branch that is not closed.
COMPLETED OPEN BRANCH OF A TRUTH-TREE FOR A SET OF SENTENCES OF

PL: A fi nite open branch on which each sentence is one of the following:

1. A literal (an atomic sentence or the negation of an atomic sentence)
2. A compound sentence that is not a universally quantifi ed sentence and is

 decomposed
3. A universally quantifi ed sentence (∀x)P such that P(a/x) also occurs on that

branch for each constant a occurring on the branch and at least one substitution
instance P(a/x) occurs on the branch

(SECTION 9.5 ACCOUNT) COMPLETED OPEN BRANCH OF A TRUTH-TREE FOR
A SET OF SENTENCES OF PLE: A fi nite open branch on which each sentence is
one of the following:

1. A literal that is not an identity sentence
2. A compound sentence that is not a universally quantifi ed sentence and is

 decomposed
3. A universally quantifi ed sentence (∀x)P such that P(t/x) also occurs on that

branch for each closed individual term t occurring on the branch and at least one
substitution instance P(t/x) occurs on the branch

ber38413_ch09_402-473.indd Page 472 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 472 12/4/12 2:33 PM F-400F-400

9.6 FINE-TUNING THE TREE METHOD FOR PLE 473

4. A sentence of the form t1 � t2, where t1 and t2 are closed terms such that the
branch also contains, for every literal P on that branch containing t2, every
sentence P(t1//t2) that can be obtained from P by Identity Decomposition

(SECTION 9.6 ACCOUNT) COMPLETED OPEN BRANCH OF A TRUTH-TREE FOR
A SET OF SENTENCES OF PLE: A fi nite open branch on which each sentence is
one of the following:

1. A literal that is not an identity sentence
2. A nonliteral sentence that is not a universally quantifi ed sentence and is

 decomposed
3. A universally quantifi ed sentence (∀x)P such that P(a/x) also occurs on that

branch for each constant a occurring on the branch and P(a/x) occurs on the
branch for at least one constant a

4. A sentence of the form a � t, where a is an individual constant and t is a closed
term such that the branch also contains, for every literal P on that branch
containing t, every sentence P(a//t) that can be obtained from P by Identity
Decomposition

 and on which Complex Term Decomposition has been applied to every closed
complex term occurring in a literal on the branch whose arguments are all
 individual constants.

NONTERMINATING BRANCH: An open branch that never closes and will never, in
a fi nite number of steps, become a completed open branch.

COMPLETED TRUTH-TREE: A truth-tree each of whose branches is either closed or
is a completed open branch.

OPEN TRUTH-TREE: A truth-tree that is not closed.

ber38413_ch09_402-473.indd Page 473 12/4/12 2:33 PM ber38413_ch09_402-473.indd Page 473 12/4/12 2:33 PM F-400F-400

474 PREDICATE LOGIC: DERIVATIONS

 10.1 THE DERIVATION SYSTEM PD

Chapter 10
PREDICATE LOGIC:
DERIVATIONS

In this chapter we develop natural deduction systems for predicate logic. The
fi rst system, PD (for predicate derivations), contains exactly two rules for each
logical operator, just as SD contains exactly two rules for each sentential con-
nective. It provides syntactic methods for evaluating sentences and sets of sen-
tences of PL, just as the natural deduction system SD provides methods for
evaluating sentences and sets of sentences of SL. PD is both complete and
sound: for any set � of sentences of PL and any sentence P of PL

� P if and only if � � P in PD.

That is, a sentence P of PL is quantifi cationally entailed by a set � of sentences
of PL if and only if P is derivable from � in PD. We prove this in Chapter 11.

The derivation rules of PD include all the derivation rules of SD, with
the understanding that they apply to sentences of PL. So the following is a
derivation in PD:

Derive: ∼ (∀x)Hx

1 (∀x)Hx ⊃ ∼ (∃y)Py Assumption
2 (∃y)Py Assumption

3 (∀x)Hx A / ∼ I

4 ∼ (∃y)Py 1, 3 ⊃E
5 (∃y)Py 2 R
6 ∼ (∀x)Hx 3–5 ∼ I

ber38413_ch10_474-544.indd Page 474 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 474 12/4/12 1:38 PM F-400F-400

10.1 THE DERIVATION SYSTEM PD 475

The strategies we used with SD are also useful when working in PD. Those
strategies are based on careful analyses of the goal or goals of a derivation—the
structure of the sentence or sentences to be derived—and the structure of acces-
sible sentences. They can be summarized thus:

• If the current goal sentence can be obtained by Reiteration, use that
rule, otherwise

• If the current goal sentence can be obtained by using a non-subderivation
rule, or a series of such rules, do so; otherwise

• Try to obtain the goal sentence by using an appropriate subderivation
rule.

• When using a negation rule, try to use an already accessible negation
(if there is one) as the ~ Q that the negation rules require be derived.

The new rules of PD call for some new strategies. We will introduce
these as we introduce the new derivation rules of PD. PD contains four new
rules, Universal Elimination, Universal Introduction, Existential Elimination,
and Existential Introduction. Each of the new rules involves a quantifi ed sen-
tence and a substitution instance of that sentence. The elimination rule for the
universal quantifi er is Universal Elimination:

Universal Elimination (∀E)

 (∀x)P

� P(a/x)

Here we use the expression ‘P(a/x)’ to stand for a substitution instance of
the quantifi ed sentence (∀x)P. P(a/x) is obtained from the quantifi ed sen-
tence by dropping the initial quantifi er and replacing every occurrence of x
with a. We will refer to the constant a that is substituted for the variable x as
the instantiating constant for the rule ∀E (and similarly for the other rules
introduced on the following pages).

Universal Elimination allows us, given a universal generalization, to
infer a sentence that says of a particular thing what the given universal gener-
alization says of everything. Consider the following argument:

All philosophers are somewhat strange.

Socrates is a philosopher.

Socrates is somewhat strange.

The fi rst premise makes a universal claim: it says that each thing is such that
if it is a philosopher then it is somewhat strange. We can symbolize this claim
as ‘(∀y)(Py ⊃ Sy)’. The second premise can be symbolized as ‘Ps’ and the
conclusion as ‘Ss’. Here is a derivation of the conclusion from the premises.

ber38413_ch10_474-544.indd Page 475 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 475 12/4/12 1:38 PM F-400F-400

476 PREDICATE LOGIC: DERIVATIONS

The sentence on line 3 is a substitution instance of the quantifi ed sentence on
line 1. When we remove the initial (and only) quantifi er from ‘(∀y)(Py ⊃ Sy)’
we get the open sentence ‘Py ⊃ Sy’, which contains two free occurrences of ‘y’.
Replacing both occurrences with the constant ‘s’ yields the substitution instance
‘Ps ⊃ Ss’ on line 3, justifi ed by ∀E. We then use Conditional Elimination to
obtain ‘Ss’.

This simple derivation illustrates the fi rst new strategy for constructing
derivations in PD:

• When using Universal Elimination use goal sentences as guides to
which constant to use in forming the substitution instance of the
universally quantifi ed sentence.

At line 3 in the above derivation we could have entered ‘Pa ⊃ Sa’, or any other
substitution instance of ‘(∀y)(Py ⊃ Sy)’. But obviously only the substitution
instance using ‘s’ is of any use in completing the derivation.

The instantiating constant employed in Universal Elimination may or
may not already occur in the quantifi ed sentence. The following is a correct
use of Universal Elimination:

Derive: Ss

1 (∀y)(Py ⊃ Sy) Assumption
2 Ps Assumption

3 Ps ⊃ Ss 1 ∀E
4 Ss 2, 3 ⊃E

1 (∀x)Lxa Assumption

2 Lta 1 ∀E

If we take our one assumption to symbolize ‘Everyone loves Alice’, with ‘a’
designating Alice, then clearly it follows that Tom, or whomever t designates,
loves Alice. The following is also a correct use of Universal Elimination:

1 (∀x)Lxa Assumption

2 Laa 1 ∀E

If everyone loves Alice, then it follows that Alice loves Alice, that is, that Alice
loves herself.

The introduction rule for existential quantifiers is Existential
Introduction:

Existential Introduction (∃I)

 P(a/x)

� (∃x)P

ber38413_ch10_474-544.indd Page 476 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 476 12/4/12 1:38 PM F-400F-400

This rule allows us to infer an existentially quantifi ed sentence from any one
of its substitution instances. Here is an example:

1 Fa Assumption

2 (∃y)Fy 1 ∃I

That Existential Introduction is truth-preserving should also be obvious. If the
thing designated by the constant ‘a’ is F, then at least one thing is F. For exam-
ple, if Alfred is a father, then it follows that someone is a father.

The following derivation uses Existential Introduction three times:

1 Faa Assumption

2 (∃y)Fya 1 ∃I
3 (∃y)Fyy 1 ∃I
4 (∃y)Fay 1 ∃I

These uses are all correct because the sentence on line 1 is a substitution
instance of the sentence on line 2, and of the sentence on line 3, and of the
sentence on line 4. If Alice is fond of herself, then it follows that someone is
fond of Alice, that someone is fond of her/himself, and that Alice is fond of
someone.

The strategy for using Existential Introduction is straightforward:

• When the goal to be derived is an existentially quantifi ed sentence
establish a substitution instance of that sentence as a subgoal, with
the intent of applying Existential Introduction to that subgoal to
obtain the goal.

The rules Universal Introduction and Existential Elimination are some-
what more complicated. We begin with Universal Introduction:

provided that

 (i) a does not occur in an open assumption.
 (ii) a does not occur in (∀x)P.

Here, again, we will call the constant a in P(a/x) the instantiating constant. This
rule specifi es that under certain conditions we can infer a universally quantifi ed
sentence from one of its substitution instances. At fi rst glance this might seem
implausible, for how can we infer, from a claim that a particular thing is of a
certain sort, that everything is of that sort? The answer, of course, lies in the
restrictions specifi ed in the “provided that” clause.

Universal Introduction (∀I)

 P(a/x)

� (∀x)P

10.1 THE DERIVATION SYSTEM PD 477

ber38413_ch10_474-544.indd Page 477 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 477 12/4/12 1:38 PM F-400F-400

478 PREDICATE LOGIC: DERIVATIONS

Here is a very simple example. The sentences ‘(∀x)Fx’ and ‘(∀y)Fy’
are equivalent; they are simply notational variants of each other. They both say
that everything is F. So we should be able to derive each from the other. Below
we derive the second from the fi rst:

The use of Universal Introduction at line 3 meets both the restrictions on that
rule. The instantiating constant ‘b’ does not occur in an open assumption and
does not occur in the universal generalization entered on line 3.

The kind of reasoning that Universal Introduction is based on is com-
mon in mathematics. Suppose we want to establish that no even positive integer
greater than 2 is prime. [A prime is a positive integer that is evenly divisible
only by itself and 1, and is not 1.] We might reason thus:

Consider any even positive integer i greater than 2. Because i is even, i must
be evenly divisible by 2. But since i is not 2 (it is greater than 2), it follows
that i is evenly divisible by at least three positive integers: 1, 2, and i itself. So
it is not the case that i is evenly divisible only by itself and 1, and i cannot be
prime. Therefore no even positive integer greater than 2 is prime.

It would exhibit a misunderstanding of this reasoning to reply “but the positive
integer i you considered might have been 4, and while the reasoning does hold
of 4—it is not prime—that fact alone doesn’t show that the reasoning holds of
every even positive integer greater than 2. You haven’t considered 6 and 8 and
10 and. . . .” It would be a misunderstanding because in saying ‘Consider any
even positive integer i greater than 2’ we don’t mean ‘Pick one’. We say ‘Con-
sider any even positive integer i . . .’ because it is easier to construct the argu-
ment when we are speaking, grammatically, in the singular (‘i is . . .’, ‘i is not
. . .’). But what we are really saying is ‘Consider what we know about all positive
integers that are even and greater than two . . .’ So the proof is a proof about
all such integers. Similarly, in derivations we often use an individual constant
to reason about all cases of a certain sort.

Suppose we want to establish that ‘(∀x)[Fx ⊃ (Fx ∨ Gx)]’ can be
derived from no assumptions. (This will, of course, establish that this sentence
of PL is a theorem in PD.) Here is one such derivation:

Derive: (∀y)Fy

1 (∀x)Fx Assumption

2 Fb 1 ∀E
3 (∀y)Fy 2 ∀I

Derive: (∀x)[Fx ⊃ (Fx ∨ Gx)]

1 Fc A / ⊃I

2 Fc ∨ Gc 1 ∨I
3 Fc ⊃ (Fc ∨ Gc) 1–2 ⊃I
4 (∀x)[Fx ⊃ (Fx ∨ Gx)] 3 ∀I

ber38413_ch10_474-544.indd Page 478 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 478 12/4/12 1:38 PM F-400F-400

The sentence on line 3 follows from the subderivation on lines 1–2, no matter
what the constant ‘c’ designates. The subderivation establishes that no matter
what c is, if it is F then it is F or G. Hence we are justifi ed in deriving the
universal quantifi cation on line 4. Note that although ‘c’ occurs in the assump-
tion on line 1, that assumption is not open at line 4, so we have not run afoul
of the fi rst restriction on the rule Universal Introduction.

On the other hand, Universal Introduction is misused in the following
attempted derivation:

‘Fb’ does follow from line 1. But line 3 does not follow from line 2, and the
restriction that the instantiating constant, in this case ‘b’, not occur in an open
assumption prevents us from using Universal Introduction at line 3. (From the
fact that Beth is a faculty member and Carl is not it does not follow that everyone
is a faculty member.)

The rule Universal Introduction contains a second restriction, namely
that the instantiating constant not occur in the derived universally quantifi ed
sentence. The following attempt at a derivation illustrates why this restriction
is needed:

Derive: (∀y)Fy

1 Fb & ~ Fc Assumption

2 Fb l &E
3 (∀y)Fy 2 ∀I MISTAKE!

The sentence on line 1 tells us that everying bears L to itself. It certainly follows
that h bears L to itself. But it does not follow that everything bears L to h, and
the second restriction on Universal Introduction disallows the use of that rule
to obtain the sentence on line 3, because the instantiating constant, ‘h’, does
occur in that sentence.

The strategy associated with Universal Introduction is

• When the current goal is a universally quantifi ed sentence make a
substitution instance of that quantifi ed sentence a subgoal, with the
intent of applying Universal Introduction to derive the goal from the
subgoal. Make sure that the two restrictions on Universal Introduc-
tion will be met: use an instantiating constant in the substitution
instance that does not occur in the universally quantifi ed goal sen-
tence and that does not occur in any assumption that is open at the
line where the substitution instance is entered.

Derive: (∀x)Lxh

1 (∀x)Lxx Assumption

2 Lhh 1 ∀E
3 (∀x)Lxh 2 ∀I MISTAKE!

10.1 THE DERIVATION SYSTEM PD 479

ber38413_ch10_474-544.indd Page 479 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 479 12/4/12 1:38 PM F-400F-400

480 PREDICATE LOGIC: DERIVATIONS

Here is the elimination rule for existential quantifi ers:

provided that

 (i) a does not occur in an open assumption.
 (ii) a does not occur in (∃x)P.
 (iii) a does not occur in Q.

The idea behind this rule is that if we have an existentially quantifi ed sentence
(∃x)P then we know that something is of the sort specifi ed by P, though not
which thing. If, by assuming an arbitrary substitution instance P(a/x) of (∃x)P,
we can derive a sentence Q that does not contain the instantiating constant a
in P(a/x), then we can end the subderivation and enter Q on the next line of
the derivation.

We illustrate a simple use of Existential Elimination by deriving
‘(∃x)(Gx ∨ Fx)’ from {(∃z)Fz & (∀y)Hy}.

Existential Elimination (∃E)

 (∃x)P

 P(a/x)

 Q

� Q

‘Existential Elimination’ may seem like an odd name for the rule we used at
line 6 of the above derivation, because the sentence entered at line 6 is itself
an existentially quantifi ed sentence. But remember that what is common to
all elimination rules is that they are rules that start with a sentence with a
specifi ed main logical operator and produce a sentence that may or may not
have that operator as a main logical operator. Here Existential Elimination
cites the existentially quantifi ed sentence at line 2, along with the subderiva-
tion beginning with a substitution instance of that sentence. Note that we have
met all the restrictions on Existential Elimination. The instantiating constant
‘b’ does not occur in an assumption that is open as of line 6. Nor does ‘b’
occur in ‘(∃z)Fz’. Finally, ‘b’ does not occur in the sentence that is derived,
at line 6, by Existential Elimination. All three of these restrictions are neces-
sary, as we will now illustrate.

Derive: (∃x)(Gx ∨ Fx)

1 (∃z)Fz & (∀y)Hy Assumption

2 (∃z)Fz 1 &E
3 Fb A / ∃E

4 Gb ∨ Fb 3 ∨I
5 (∃x)(Gx ∨ Fx) 4 ∃I
6 (∃x)(Gx ∨ Fx) 2, 3–5 ∃E

ber38413_ch10_474-544.indd Page 480 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 480 12/4/12 1:38 PM F-400F-400

Two specifi c strategies are associated with the rule Existential Elimina-
tion. The fi rst is this:

• When one or more of the currently accessible sentences in a deriva-
tion is an existentially quantifi ed sentence, consider using Existential
Elimination to obtain the current goal. Assume a substitution instance
that contains a constant that does not occur in the existential quanti-
fi cation, in an open assumption, or in the current goal. Work within
the Existential Elimination subderivation to derive the current goal.

In other words, whenever an existentially quantifi ed sentence is acces-
sible consider making Existential Elimination the primary strategy for obtaining
the current goal, doing the work required to obtain the current goal within
the scope of the Existential Elimination subderivation. This is often necessary
to avoid violating the restrictions on Existential Elimination. For example, in
the previous derivation we had to use Existential Introduction within the scope
of the assumption on line 3—because trying to derive ‘Gb ∨ Fb’ by Existential
Elimination at line 5, prior to applying Existential Introduction, would violate
the third restriction on Existential Elimination:

Line 5 is a mistake because the instantiating constant ‘b’ occurs in the sentence
we are trying to obtain by Existential Elimination, in violation of the third
restriction on Existential Elimination. From the truth of ‘(∃z)Fz’ it does not
follow that the individual designated by ‘b’ is either G or F—although it does
follow, as in the previous derivation, that something is either G or F. This is why,
in the correctly done derivation, we used Existential Introduction inside of the
Existential Elimination subderivation. Doing so results in a sentence that does
not contain the instantiating constant ‘b’ and that therefore can correctly be
moved out of the subderivation by Existential Elimination.

Here is another example in which the third restriction on Existential
Elimination is violated:

Derive: (∃x)(Gx ∨ Fx)

1 (∃z)Fz & (∀y)Hy Assumption

2 (∃z)Fz 1 &E
3 Fb A / ∃E

4 Gb ∨ Fb 3 ∨I
5 Gb ∨ Fb 2, 3–4 ∃E MISTAKE!
6 (∃x)(Gx ∨ Fx) 5 ∃I

Derive: (∃z)Fbz

1 (∃z)Fzz Assumption

2 Fbb A / ∃E

3 (∃z)Fbz 3 ∃I
4 (∃z)Fbz 1, 2–3 ∃E MISTAKE!

10.1 THE DERIVATION SYSTEM PD 481

ber38413_ch10_474-544.indd Page 481 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 481 12/4/12 1:38 PM F-400F-400

482 PREDICATE LOGIC: DERIVATIONS

The instantiating constant ‘b’ occurs in the sentence on line 4, in violation of
restriction (iii) on Existential Elimination. It is clear that we don’t want the
above to count as a derivation. Given the assumption on line 1 we know that
something bears F to itself. At line 2 we assume that thing is b (knowing that
this may not be the case). Line 3 certainly follows from line 2. If b bears F to
itself then b does bear F to something. But line 4, where we have given up the
assumption that it is b that bears F to itself, does not follow from the sentence
at line 1, which is the single open assumption as of line 4. Contrast the preced-
ing derivation with the following:

Here ‘b’ does not occur in the sentence at line 4, so the third restriction on
Existential Elimination is not violated. We have used Existential Elimination to
show that ‘(∃y)Fyy’ follows from ‘(∃z)Fzz’, which should be no surprise since
these sentences are clearly equivalent.

We will now examine some misuses of Existential Elimination that illustrate
why the two other restrictions on Existential Elimination are also necessary.

Derive: (∃y)Fyy

1 (∃z)Fzz Assumption

2 Fbb A / ∃E

3 (∃y)Fyy 2 ∃I
4 (∃y)Fyy 1, 2–3 ∃E

From line 1 we know that if a particular thing, namely b, is G, then everything
is F. And from line 2 we know that something is G. But we do not know that
it is b that is G. So we should not be able to infer, as we have here tried to do
at line 5, that everything is F. Line 5 is a mistaken application of Existential
Elimination because restriction (i) has not been met. The assumption at line
1, which contains the instantiating constant ‘b’, is still open as of line 5. The
rationale for restriction (i) should now be clear. Existential Elimination uses a
substitution instance of an existentially quantifi ed claim to show what follows
from the existentially quantifi ed claim. But the constant used in the substitution
instance, the instantiating constant, should be arbitrary, in the sense that no
assumptions have been made concerning the thing designated by that constant.
If the instantiating constant occurs in an open assumption then it is not arbi-
trarily selected, because the open assumption provides information about b
(that if it is G everything is F). It may be the case that if Bob graduates then

Derive: (∀x)Fx

1 Gb ⊃ (∀x)Fx Assumption
2 (∃z)Gz Assumption

3 Gb A / ∃E

4 (∀x)Fx 1, 3 ⊃E
5 (∀x)Fx 2, 3–4 ∃E MISTAKE!

ber38413_ch10_474-544.indd Page 482 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 482 12/4/12 1:38 PM F-400F-400

everyone is happy and the case that someone does graduate. But it does not
follow from this that everyone is happy, for the someone who graduates may
not be Bob.

We now turn to the rationale for the second restriction. Consider the
following attempt at a derivation:

The problem is that the instantiating constant ‘a’ used at line 3 to form
a substitution instance of the sentence ‘(∃z)Lza’ occurs in ‘(∃x)Lza’, violating
the second restriction. If we only know that something stands in the relation L
to a, we should not assume that that something is in fact a itself.

Universal Elimination produces a substitution of the universally quanti-
fi ed sentence to which it is applied. Existential Elimination does not, in general,
produce a substitution instance of the existentially quantifi ed sentence to which
it is applied. Indeed the sentence it produces may bear no resemblance, by any
normal standard of resemblance, to the existentially quantifi ed sentence to
which it is applied. Here is a case in point:

Derive: (∃w)Lww

1 (∀y)(∃z)Lzy Assumption

2 (∃z)Lza 1 ∀E
3 Laa A / ∃E

4 (∃w)Lww 3 ∃I
5 (∃w)Lww 2, 3–4 ∃E MISTAKE!

Here the sentence derived at line 6 has no obvious connection to the existen-
tially quantifi ed sentence at line 1. The existentially quantifi ed sentence tells us
that something is G. At line 3 we assume that that thing is b. The constant ‘b’
is not used earlier in the derivation, so we are committed to nothing about b
other than its being G. At line 4 we use Universal Elimination to obtain ‘Gb ⊃
Hc’, and then we use Conditional Elimination at line 5 to obtain ‘Hc’. At the
point we apply Existential Elimination (line 6) there is here no open assumption
that contains ‘b’—the only open assumptions are those on line 1 and line 2—so
the fi rst restriction on Existential Elimination is met. The second and third
restrictions are also met since ‘b’ occurs in neither ‘(∃z)Gz’ nor ‘Hc’. We can,
therefore, derive ‘Hc’ by Existential Elimination at line 6.

Derive: (∃x)Hx

1 (∃z)Gz Assumption
2 (∀y)(Gy ⊃ Hc) Assumption

3 Gb A / ∃E

4 Gb ⊃ Hc 2 ∀E
5 Hc 3, 4 ⊃E
6 Hc 1, 3–5 ∃E
7 (∃x)Hx 6 ∃I

10.1 THE DERIVATION SYSTEM PD 483

ber38413_ch10_474-544.indd Page 483 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 483 12/4/12 1:38 PM F-400F-400

484 PREDICATE LOGIC: DERIVATIONS

Note that in this case we were able to move ‘Hc’ out of the Existential
Elimination subderivation prior to using Existential Introduction. We could do
this because ‘c’ was not the instantiating constant for our use of Existential
Elimination. However, we could also have applied Existential Introduction
within the subderivation;

Existential Elimination provides a strategy for working from a substitu-
tion instance of an existentially quantifi ed sentence to a sentence that does not
contain the instantiating constant of the substitution instance. If the other
restrictions on Existential Elimination are also met the subderivation can be
ended and the derived sentence entered on the next line of the derivation.

There is a second important strategy associated with Existential Elimi-
nation. We will use it to show that the set {(∃x) ~ Fx, (∀x)Fx} is inconsistent
in PD. The foregoing set obviously is inconsistent, but demonstrating this is not
as easy as it might seem. We might start as follows:

Derive: (∃x)Hx

1 (∃z)Gz Assumption
2 (∀y)(Gy ⊃ Hc) Assumption

3 Gb A / ∃E

4 Gb ⊃ Hc 2 ∀E
5 Hc 3, 4 ⊃E
6 (∃x)Hx 5 ∃I
7 (∃x)Hx 1, 3–6 ∃E

Line 4 is an obvious misuse of Existential Elimination. A more promising
approach might be as follows:

Derive: Fa, ~ Fa

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3 Fa 2 ∀E

4 ~ Fa 1 ∃E MISTAKE!

We have derived a sentence and its negation (‘Fa’ and ‘~ Fa’), but only within the
scope of our Existential Elimination subderivation. And since ‘a’ is the instantiating
constant of the assumption at line 3, we cannot hope to move either ‘Fa’ or ‘~ Fa’
out from the scope of the assumption at line 3 by Existential Elimination. The

Derive: Fa, ~ Fa

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3 ~ Fa A / ∃E

4 Fa 2 ∀E
5 ~ Fa 3 R

ber38413_ch10_474-544.indd Page 484 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 484 12/4/12 1:38 PM F-400F-400

situation we are in is not an uncommon one. We need to use Existential Elimina-
tion, and we can derive a contradiction within the Existential Elimination subderi-
vation, but the contradictory sentences we derive cannot be moved outside that
subderivation because they contain the instantiating constant of the assumption.

The strategy we will use in situations such as this makes use of the fact
that we can derive contradictory sentences within the Existential Elimination
subderivation. Since we can do this, we can also derive any sentence we want
by use of the appropriate negation rule. In our present case we want to derive
a sentence and its negation, to show that the set we are working from is incon-
sistent in PD. There are no negations among our primary assumptions. We
know taking ‘Fa’ and ‘~ Fa’ as our ultimate goals will not work (so long as
‘~ Fa’ remains as our Existential Elimination assumption at line 3). So we will
take a sentence that is accessable, ‘(∀x)Fx’, and its negation as our ultimate
goals, and we will derive ‘~ (∀x)Fx’ by Negation Introduction within our
Existential Elimination subderivation, and then move it out of that subderiva-
tion by Existential Elimination:

What may strike one as odd about this derivation is that we are assuming, at
line 4, a sentence that is already accessible (as the assumption on line 2). But
the point of making this assumption of a sentence we already have is to derive
its negation, which we do at line 7. Negation Introduction requires us to assume
this sentence, even though it also occurs at line 2, before we can apply that
rule. At line 4 we could, of course, have equally well assumed ‘(∃x) ~ Fx’, in which
case our ultimate goals would have been ‘(∃x) ~ Fx’ and ‘~ (∃x) ~ Fx’.

The strategy we are illustrating can be put thus:
• When contradictory sentences are available within an Existential

Elimination subderivation but cannot be moved out of that subderi-
vation without violating the restrictions on Existential Elimination,
derive another sentence—one that is contradictory to a sentence
accessible outside the Existential Elimination subderivation and one
that can be moved out. That sentence will be derivable by the appro-
priate negation strategy (because contradictory sentences are avail-
able within the Existential Elimination subderivation).

Derive: (∀x)Fx, ~ (∀x)Fx

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3 ~ Fa A / ∃E

4 (∀x)Fx A / ~ I

5 Fa 4 ∀E
6 ~ Fa 3 R
7 ~ (∀x)Fx 4–6 ~ I
8 ~ (∀x)Fx 1, 3–7 ∃E
9 (∀x)Fx 2 R

10.1 THE DERIVATION SYSTEM PD 485

ber38413_ch10_474-544.indd Page 485 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 485 12/4/12 1:38 PM F-400F-400

486 PREDICATE LOGIC: DERIVATIONS

Using this strategy will frequently involve assuming, as the assumption of a
negation strategy, a sentence that is already accessible outside the Existential
Elimination subderivation.

Consider next the following failed attempt at a derivation of ‘~ (∃x)Fx’
from {~ (∃x)Fx}:

Derive: ~ (∃x)Fx

1 (∀x) ~ Fx Assumption

2 (∃x)Fx A / ~ I

3 Fa A / ∃E

4 ~ Fa 1 ∀E
5 Fa 3 R
6 ~ (∃x)Fx 3–5 ~ I MISTAKE!
7 ~ (∃x)Fx 2, 3–6 ∃E MISTAKE!

We are trying to derive a negation, ‘~ (∃x)Fx’, and so assume ‘(∃x)Fx’ at line 2.
Clearly an Existential Elimination strategy is now called for, and accordingly
we assume ‘Fa’ at line 3. It is now easy to derive the contradictory sentences
‘Fa’ and ‘~ Fa’, and we do so at lines 4 and 5. But line 6 is a mistake. Our
primary strategy is Negation Introduction and we have derived a sentence and
its negation; but we have done so only within the scope of an additional assump-
tion, the one at line 3 that begins our Existential Elimination strategy. Line 6
is a mistake because ‘Fa’ and ‘~ Fa’ have been derived, not from just the
assumptions on lines 1 and 2, but also using the assumption on line 3. We need
to complete our Existential Elimination strategy before using Negation Intro-
duction. And what we want our Existential Elimination strategy to yield is a
sentence that can serve as one of the contradictory sentences we need to com-
plete the Negation Introduction subderivation we began at line 2.

Two sentences are accessible outside our Existential Elimination sub-
derivation—those on lines 1 and 2 (‘(∀x) ~ Fx’ and ‘(∃x)Fx’) and obtaining
the negation of either one of these by Existental Elimination will allow us to
complete the derivation. Here is a successful derivation in which we derive ‘~ (∀x)
~ Fx’ by Existential Elimination.

Derive: ~ (∃x)Fx

 1 (∀x) ~ Fx Assumption

 2 (∃x)Fx A / ~ I

 3 Fa A / ∃E

 4 (∀x) ~ Fx A / ~ I

 5 ~ Fa 1 ∀E
 6 Fa 3 R
 7 ~ (∀x) ~ Fx 4–6 ~ I
 8 ~ (∀x) ~ Fx 2, 3–7 ∃E
 9 (∀x) ~ Fx 1 R
10 ~ (∃x)Fx 2–9 ~ I

ber38413_ch10_474-544.indd Page 486 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 486 12/4/12 1:38 PM F-400F-400

After making the assumption at line 3 we realize we can derive the contradic-
tory sentences ‘Fa’ and ‘~ Fa’. Because we want to obtain ‘~ (∀x) ~ Fx’ by
Existential Elimination, we assume ‘(∀x) ~ Fx’ at line 4 and derive ‘~ Fa’ and
‘Fa’ within the scope of that assumption, allowing us to then derive ‘~ (∀x) ~ Fx’
by Negation Introduction.

Alternatively, we could have used ‘(∃x)Fx’ as an assumption at line 4,
derived ‘Fa’ and ‘~ Fa’, obtained ‘~ (∃x)Fx’ by Negation Elimination, moved
that sentence out of the scope of the assumption made at line 3 by Existential
Elimination, and then reiterated ‘(∃x)Fx’ within the scope of the assumption
‘(∃x)Fx’ so as to have the contradictory sentences we need to fi nish the deriva-
tion with Negation Introduction. Note also that the assumption at line 4 is
necessary to obtain its negation even though the sentence we assume is already
available as an earlier assumption (on line 1). As noted earlier this process of
making an assumption of a sentence that is already available outside the scope
of an Existential Elimination strategy within that strategy in order to obtain its
negation is extremely useful and frequently called for, as we will see in examples
and exercises later in this chapter.

As another example, suppose we want to derive ‘~ (∃x)(Fx & ~ Gx)’
from {(∀x)(~ Gx ⊃ ~ Fx)}. Since our primary goal is a negation, we plan to use
Negation Introduction, and since the assumption of that strategy will be an
existentially quantifi ed sentence, we will use Existential Elimination within the
Negation Introduction subderivation:

10.1 THE DERIVATION SYSTEM PD 487

Derive: ~ (∃x)(Fx & ~ Gx)

 1 (∀x)(~ Gx ⊃ ~ Fx) Assumption

 2 (∃x)(Fx & ~ Gx) A / ~ I

 3 Fa & ~ Ga A / ∃E

G
 ~ (∃x)(Fx & ~ Gx)

Following our new strategy we will begin a Negation Introduction subderiva-
tion inside of the Existential Elimination subderivation, assuming one of the
sentences that is accessible from outside of that subderivation. In this example
there are again two such sentences, ‘(∀x)(~ Gx ⊃ ~ Fx)’ and ‘(∃x)(Fx & ~ Gx)’.
We arbitrarily select the latter as the assumption of the inner Negation Introduction

ber38413_ch10_474-544.indd Page 487 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 487 12/4/12 1:38 PM F-400F-400

488 PREDICATE LOGIC: DERIVATIONS

subderivation and complete the derivation as follows:

Derive: ~ (∃x)(Fx & ~ Gx)

 1 (∀x)(~ Gx ⊃ ~ Fx) Assumption

 2 (∃x)(Fx & ~ Gx) A / ~ I

 3 Fa & ~ Ga A / ∃E

 4 (∃x)(Fx & ~ Gx) A / ~ I

 5 ~ Ga ⊃ ~ Fa 1 ∀E
 6 ~ Ga 3 &E
 7 ~ Fa 5, 6 ⊃E
 8 Fa 3 &E
 9 ~ (∃x)(Fx & ~ Gx) 4–8 ~ I
10 ~ (∃x)(Fx & ~ Gx) 2, 3–9 ∃E
11 (∃x)(Fx & ~ Gx) 2 R
12 ~ (∃x)(Fx & ~ Gx) 2–11 ~ I

Although the assumption at line 4 is an existentially quantifi ed sentence, there
is no need for a second use of Existential Elimination. We can derive the con-
tradictory pair of sentences ‘Fa’ and ‘~ Fa’ without making any additional
assumptions.

We have specifi ed strategies for using each of the four new quantifi er
rules. Now that we have introduced all the rules of PD a note about applying
those rules is in order. The quantifi er introduction and elimination rules,
like all the rules of PD, are rules of inference. That is, they apply only to whole
sentences, not to subsentential components of sentences that may or may not
themselves be sentences. The only sentences that quantifi er elimination rules
can be applied to are sentences whose main logical operators are quantifi ers.
Moreover, the quantifi er introduction rules generate only sentences whose
main logical operators are quantifi ers. The following examples illustrate
some common types of mistakes that ignore these points about the quantifi er
rules of PD.

Derive: Fa ⊃ Ha

1 (∀x)Fx ⊃ Ha Assumption

2 Fa ⊃ Ha 1 ∀E MISTAKE!

The sentence on line 1 is not a universally quantifi ed sentence. Rather, it is a
material conditional, so Universal Elimination cannot be applied to it. Obvi-
ously, the sentence on line 2 does not follow from the sentence on line 1. From
that fact that if everything is F then a is H it does not follow that if a (which
is only one thing) is F then a is H.

ber38413_ch10_474-544.indd Page 488 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 488 12/4/12 1:38 PM F-400F-400

Line 3 is a mistake even though the sentence it cites, ‘(∀x)(Fx ⊃ (∀y)Gy)’, is
a universally quantifi ed sentence. It is a mistake because it attempts to apply
Universal Elimination to ‘(∀y)Gy’, which occurs only as a component of the
sentence on line 2. Rules of inference can only be applied to sentences that
are not components of larger sentences. Universal Elimination can only pro-
duce a substitution instance, for example ‘Fa ⊃ (∀y)Gy’, of the entire sentence
on line 2.

We hasten to add that it is possible to derive ‘Ga’ from the sentences
on lines 1 and 2 but a different strategy is required:

Derive: Ga

1 Fa Assumption
2 (∀x)(Fx ⊃ (∀y)Gy) Assumption

3 (∀x)(Fx ⊃ Ga) 2 ∀E MISTAKE!
4 Fa ⊃ Ga 3 ∀E
5 Ga 1, 4 ⊃E

Here is another example illustrating a similar mistake:

Derive: Ga

1 Fa Assumption
2 (∀x)(Fx ⊃ (∀y)Gy) Assumption

3 Fa ⊃ (∀y)Gy 2 ∀E
4 (∀y)Gy 1, 3 ⊃E
5 Ga 4 ∀E

Derive: (∃z)Fz ⊃ Gb

1 Fa ⊃ Gb Assumption

2 (∃z)Fz ⊃ Gb 1 ∃I MISTAKE!

Derive: (∃z)(Fz ⊃ Gb)

1 Fa ⊃ Gb Assumption

2 (∃z)(Fz ⊃ Gb) 1 ∃I

Here Universal Elimination has only been applied to entire sentences occurring
on earlier lines.

The following also illustrates a misuse of a quantifi er rule:

Existential Introduction produces existentially quantifi ed sentences, and the
sentence on line 2 is a material conditional, not an existentially quantifi ed sen-
tence. Nor do we want to be able to derive the sentence on line 2 from the
sentence on line 1. From ‘If Alfred wins the election then Bob will be happy’
it does not follow that if someone wins the election then Bob will be happy. A
correct use of the rule would be

10.1 THE DERIVATION SYSTEM PD 489

ber38413_ch10_474-544.indd Page 489 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 489 12/4/12 1:38 PM F-400F-400

490 PREDICATE LOGIC: DERIVATIONS

In the following failed derivation, the use of Universal Elimination is
incorrect because the sentence on line 1 is not a universally quantifi ed sen-
tence. Rather, it is the negation of a universally quantifi ed sentence:

Having introduced all the rules of PD we can now defi ne syntactic analogues
of core logical concepts for PD:

Derive: ~ Fb

1 ~ (∀y)Fy Assumption

2 ~ Fb 1 ∀E MISTAKE!

Derivability in PD: A sentence P of PL is derivable in PD from a set � of
sentences of PL if and only if there is a derivation in PD in which all the
primary assumptions are members of � and P occurs within the scope of
only the primary assumptions.
Validity in PD: An argument of PL is valid in PD if and only if the con-
clusion of the argument is derivable in PD from the set consisting of
the premises. An argument of PL is invalid in PD if and only if it is not
valid in PD.
Theorem in PD: A sentence P of PL is a theorem in PD if and only if P is
derivable in PD from the empty set.
Equivalence in PD: Sentences P and Q of PL are equivalent in PD if and
only if Q is derivable in PD from {P} and P is derivable in PD from {Q}.
Inconsistency in PD: A set � of sentences of PL is inconsistent in PD if
and only if there is a sentence P such that both P and ~ P are deriv-
able in PD from �. A set � is consistent in PD if and only if it is not
inconsistent in PD.

 10.1E EXERCISES

 1. Construct derivations that establish the following claims:
 a. {(∀x)Fx} � (∀y)Fy
 *b. {Fb, Gb} � (∃x)(Fx & Gx)
 c. {(∀x)(∀y)Hxy} � (∃x)(∃y)Hxy
 *d. {(∃x)(Fx & Gx)} � (∃y)Fy & (∃w)Gw
 e. {(∀x)(∀y)Hxy, Hab ⊃ Kg} � Kg
 *f. {(∀x)(Fx � Gx), (∀y)(Gy � Hy)} � (∀x)(Fx � Hx)
 g. {(∀x)Sx, (∃y)Sy ⊃ (∀w)Ww} � (∃y)Wy
 *h. {(∀y)Hyy, (∃z)Bz} � (∃x)(Bx & Hxx)
 i. {(∀x)(∀y)Lxy, (∃w)Hww} � (∃x)(Lxx & Hxx)
 *j. {(∀x)(Fx ⊃ Lx), (∃y)Fy} � (∃x)Lx

ber38413_ch10_474-544.indd Page 490 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 490 12/4/12 1:38 PM F-400F-400

10.1 THE DERIVATION SYSTEM 491

 2. Identify the mistake in each of the following attempted derivations, and explain
why it is a mistake.

 a. Derive: Na

1 (∀x)Hx ⊃ ~ (∃y)Ky Assumption
2 Ha ⊃ Na Assumption

3 Ha 1 ∀E
4 Na 2, 3 ⊃E

 *b. Derive: (∀x)(Bx & Mx)

1 Bk Assumption
2 (∀x)Mx Assumption

3 Mk 2 ∀E
4 Bk & Mk 1, 3 &I
5 (∀x)(Bx & Mx) 4 ∀I

 c. Derive: (∃x)Cx

1 (∃y)Fy Assumption
2 (∀w)(Fw � Cw) Assumption

3 Fa 1 ∃E
4 Fa � Ca 2 ∀∃E
5 Ca 3, 4 �E
6 (∃x)Cx 5 ∃I

 *d Derive: (∃z)Gz

1 (∀x)(Fx ⊃ Gx) Assumption
2 (∃y)Fy Assumption

3 Fa A / ∃E

4 Fa ⊃ Ga 1 ∀E
5 Ga 3, 4 ⊃E
6 Ga 2, 3–5 ∃E
7 (∃z)Gz 6 ∃I

 e. Derive: (∃y)(∀x)Ayx

1 (∀x)(∃y)Ayx Assumption

2 (∀x)Aax 1 ∀E
3 (∃y)(∀x)Ayx 2 ∃I

 *f. Derive: ~ Rba

1 (∃x)Rxx Assumption
2 (∀x)(∀y)(Rxy ⊃ ~ Ryx) Assumption

3 Raa A / ∃E

4 (∀y)(Ray ⊃ ~ Rya) 2 ∀E
5 Raa ⊃ ~ Raa 2 ∀E
6 ~ Raa 3, 5 ⊃E
7 (∀x) ~ Rxx 6 ∀I
8 (∀x) ~ Rxx 1, 3–7 ∃E

ber38413_ch10_474-544.indd Page 491 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 491 12/4/12 1:38 PM F-400F-400

492 PREDICATE LOGIC: DERIVATIONS

 10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD

In this section we will work through a series of derivations, illustrating both
strategies that are useful in constructing derivations in PD and how derivations
are used to establish that various syntactic properties of PD hold of sentences
and sets of sentences of PL.

We begin by repeating the strategies we have enumerated as useful in
constructing derivations:

• If the current goal sentence can be obtained by Reiteration, use that
rule, otherwise

• If the current goal sentence can be obtained by using a non-subderivation
rule, or a series of such rules, do so; otherwise

• Try to obtain the goal sentence by using an appropriate subderiva-
tion rule.

• When using a negation rule, try to use an already accessible nega-
tion (if there is one) as the ~ Q that the negation rules require
be derived.

• When using Universal Elimination use goal sentences as guides when
choosing the instantiating constant.

• When the goal to be derived is an existentially quantifi ed sentence
make a substitution instance of that sentence a subgoal, with the
intent of applying Existential Introduction to that subgoal to obtain
the goal.

• When the current goal is a universally quantifi ed sentence make a
substitution instance of that quantifi ed sentence a subgoal, with
the intent of applying Universal Introduction to that subgoal.
Make sure the two restrictions on the instantiating constant for
the use of Universal Introduction are met. Be sure to choose an
instantiating constant that does not occur in the universally quan-
tifi ed sentence that is the goal and that does not occur in any
assumption that will be open when Universal Introduction is
applied to derive that goal.

• When one of the accessible assumptions is an existentially quantifi ed
sentence, consider using Existential Elimination to obtain the current
goal. Set up an Existential Elimination subderivation, and continue
working within that subderivation until a sentence that does not con-
tain the constant used to form the substitution instance that is the
assumption of that subderivation is derived.

• When contradictory sentences are available within an Existential
Elimination subderivation but cannot be moved out of that subderi-
vation without violating the restrictions on Existential Elimination,
derive another sentence—one that is contradictory to a sentence

ber38413_ch10_474-544.indd Page 492 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 492 12/4/12 1:38 PM F-400F-400

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 493

accessible outside the Existential Elimination subderivation and that
does not contain the instantiating constant for this use of Existential
Elimination. That sentence will be derivable by the appropriate nega-
tion strategy (using the contradictory sentences that are available
within the Existential Elimination subderivation).

• There will often be more than one plausible strategy, and often
more than one will lead to success. Rather than trying to fi gure out
which of these is the most promising it is often wise to just pick one
and pursue it.

ARGUMENTS

An argument of PL is valid in PD if and only if the conclusion can be derived
from the set consisting of the argument’s premises. The following argument is
valid in PD, as we will now show.

The single premise is an existentially quantifi ed sentence—which suggests
using Existential Elimination. The conclusion is a conjunction, suggesting
Conjunction Introduction as a strategy. We will use both strategies, and since
it is in general wise to do as much work as possible within an Existential
Elimination strategy (so as to avoid violating the third restriction on Existential
Elimination), we will make that strategy our primary strategy. We begin as
follows:

(∃x)(Fx & Gx)

(∃y)Fy & (∃z)Gz

We will try to derive the conclusion of the argument within the scope of the
Existential Elimination subderivation because doing so will avoid violating the
third restriction on Existential Elimination, that the instantiating constant not
occur in the derived sentence. In our derivation ‘a’ is the instantiating constant
and it does not occur in the conclusion of the argument.

Derive: (∃y)Fy & (∃z)Gz

 1 (∃x)(Fx & Gx) Assumption

 2 Fb & Gb A / ∃E

G (∃y)Fy & (∃z)Gz —, — &I
G (∃y)Fy & (∃z)Gz 1, 2–— ∃E

ber38413_ch10_474-544.indd Page 493 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 493 12/4/12 1:38 PM F-400F-400

494 PREDICATE LOGIC: DERIVATIONS

Our current goal is a conjunction and can be obtained by Conjunction
Introduction. The completed derivation is

Derive: (∃y)Fy & (∃z)Gz

1 (∃x)(Fx & Gx) Assumption

2 Fa & Ga A / ∃E

3 Fa 2 &E
4 (∃y)Fy 3 ∃I
5 Ga 2 &E
6 (∃z)Gz 5 ∃I
7 (∃y)Fy & (∃z)Gz 4, 6 &I
8 (∃y)Fy & (∃z)Gz 1, 2–7 ∃E

The following argument is also valid in PD:

Since the conclusion of this argument is a negation we will use Negation
Introduction as our primary strategy and we will try to derive both ‘(∃y)Oy’
and ‘~ (∃y)Oy’ within a Negation Introduction subderivation:

(∀x)(Nx ⊃ Ox)
~ (∃y)Oy

~ (∃x)Nx

Since one of the accessible sentences, ‘(∃x)Nx’ is an existentially quantifi ed sen-
tence, we will try to obtain our current goal, ‘(∃y)Oy’, by Existential Elimination:

Derive: ~ (∃x)Nx

 1 (∀x)(Nx ⊃ Ox) Assumption
 2 ~ (∃y)Oy Assumption

 3 (∃x)Nx A / ~ E

G (∃y)Oy
 ~ (∃y)Oy 2 R
G ~ (∃x)Nx 3–— ~ I

Derive: ~ (∃x)Nx

 1 (∀x)(Nx ⊃ Ox) Assumption
 2 ~ (∃y)Oy Assumption

 3 (∃x)Nx A / ~ E

 4 Na A / ∃E

G (∃y)Oy
G (∃y)Oy 3, 4–— ∃E
G ~ (∃y)Oy 2 R
G ~ (∃x)Nx 3–— ~ I

ber38413_ch10_474-544.indd Page 494 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 494 12/4/12 1:38 PM F-400F-400

Looking at the sentences on lines 1 and 4, we see that we will be able to
derive ‘Oa’ by Conditional Elimination after applying Universal Elimination
to the sentence on line 1, with ‘a’ as the instantiating constant. And from
‘Oa’ we can obtain ‘(∃y)Oy’ by Existential Introduction. So the completed
derivation is

We will next consider two arguments, both of which involve relational
predicates and quantifi ers with overlapping scope. The fi rst is

Derive: ~ (∃x)Nx

 1 (∀x)(Nx ⊃ Ox) Assumption
 2 ~ (∃y)Oy Assumption

 3 (∃x)Nx A / ~ E

 4 Na A / ∃E

 5 Na ⊃ Oa 1 ∀E
 6 Oa 4, 5 ⊃E
 7 (∃y)Oy 6 ∃I
 8 (∃y)Oy 3, 4–7 ∃E
 9 ~ (∃y)Oy 2 R
10 ~ (∃x)Nx 3–9 ~ I

(∀x)(∀y)(Hxy ⊃ ~ Hyx)

(∀x)(∃y)Hxy

(∀x)(∃y) ~ Hxy

Here our assumptions and our goal sentence are all universally quantifi ed sen-
tences. So we will clearly be using Universal Elimination and Universal Intro-
duction. Using Universal elimination on the second premise will result in an
existentially quantifi ed sentence, ‘(∃y)Hay’, which suggests using Existential
Elimination:

Derive: (∀x)(∃y) ~ Hxy

 1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
 2 (∀x)(∃y)Hxy Assumption

 3 (∃y)Hay 2 ∀E
 4 Hab A / ∃E

G (∀x)(∃y) ~ Hyx 3, 4–— ∃E

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 495

ber38413_ch10_474-544.indd Page 495 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 495 12/4/12 1:38 PM F-400F-400

496 PREDICATE LOGIC: DERIVATIONS

On line 4 we chose an instantiating constant that does not appear earlier
in the derivation, so that the restrictions on the instantiating constant can
be met. Clearly at some point we will obtain ‘(∀x)(∃y) ~ Hyx’ by Universal
Introduction. The question is whether we will use Universal Introduction
before or after ending our Existential Elimination subderivation. We have
stressed in earlier examples that it is generally wise to do as much work
as possible within Existential Elimination subderivations. This might sug-
gest that we try to obtain ‘(∀x)(∃y) ~ Hyx’ within our Existential Elimina-
tion subderivation. But this is, in the present context, a bad idea. The
substitution instance of ‘(∀x)(∃y) ~ Hyx’ we will be able to obtain is ‘(∃y)
~ Hya’, in which ‘a’ is the instantiating constant. The first restriction on
Universal Introduction requires that the instantiating constant not occur
in any open assumption. But ‘a’ does occur in ‘Hab’, the assumption on
line 4. So we cannot apply Universal Introduction within the scope of that
assumption.

A strategy that will work is to obtain ‘(∃y) ~ Hya’ by Existential
Elimination and then, after the assumption ‘Hab’ is discharged, to apply
Universal Introduction. Note that our advice—to do as much work within
Existential Elimination subderivations as possible—still holds. The current
case is simply a reminder that doing as much work as possible within an
Existential Elimination subderivation means, in part, doing as much work
as can be done without violating the restrictions on the rules we use.

We have now settled on the following strategy:

Derive: (∀x)(∃y) ~ Hxy

 1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
 2 (∀x)(∃y)Hxy Assumption

 3 (∃y)Hay 2 ∀E
 4 Hab A / ∃E

G (∃y) ~ Hya
G (∃y) ~ Hya 3, 4–— ∃E
G (∀x)(∃y) ~ Hyx — ∀I

Our current goal is ‘(∃y) ~ Hya’. We would like to use Existential Intro-
duction to derive this sentence, which means we first have to derive a
substitution instance of this sentence. Looking at our first assumption,
‘(∀x)(∀y)(Hxy ⊃ ~ Hyx)’, we see that with two applications of Universal
Elimination we can obtain ‘Hab ⊃ ~ Hba’, then we can use Conditional
Elimination to derive ‘~ Hba’, a substitution instance of our goal, ‘(∃y) ~ Hya’.
Our completed derivation is

ber38413_ch10_474-544.indd Page 496 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 496 12/4/12 1:38 PM F-400F-400

We have met all the restrictions for using each of the two rules Existential
Elimination and Universal Introduction. The constant we had to worry about in
using Existential Elimination is ‘b’, for it is the instantiating constant used to
form a substitution instance of ‘(∃y)Hay’ at line 4. By choosing ‘b’ as the instan-
tiating constant we were able to meet all the restrictions on Existential Elimina-
tion: ‘b’ does not occur in any assumption that is open at line 9, does not occur
in the existentially quantifi ed sentence ‘(∃y)Hay’ at line 3, and does not occur
in the sentence ‘(∃y) ~ Hya’ derived by Existential Elimination at line 9.

Our next argument is somewhat more complex, having one premise
that contains three quantifi ers:

Derive: (∀x)(∃y) ~ Hyx

 1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
 2 (∀x)(∃y)Hxy Assumption

 3 (∃y)Hay 2 ∀E
 4 Hab A / ∃E

 5 (∀y)(Hay ⊃ ~ Hya) 1 ∀E
 6 Hab ⊃ ~ Hba 5 ∀E
 7 ~ Hba 4, 6 ⊃E
 8 (∃y) ~ Hya 7 ∃I
 9 (∃y) ~ Hya 3, 4–9 ∃E
10 (∀x)(∃y) ~ Hyx 9 ∀I

(∀x)[(∃z)Fxz ⊃ (∀y)Fxy]

(∃x)(∃y)Fxy

(∃x)(∀w)Fxw

The argument is valid in PD, and the derivation is not as diffi cult as may be
feared. We will take our fi rst clue from the second assumption, which begins
with two existential quantifi ers. This suggests we will be using Existential Elim-
ination twice, as follows:

Derive: (∃x)(∀y)Fxy

 1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
 2 (∃x)(∃y)Fxy Assumption

 3 (∃y)Fay A / ∃E

 4 Fab A / ∃E

G (∃x)(∀w)Fxw ∃I
G (∃x)(∀w)Fxw 3, 4–— ∃E
G (∃x)(∀w)Fxw 2, 3–— ∃E

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 497

ber38413_ch10_474-544.indd Page 497 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 497 12/4/12 1:38 PM F-400F-400

498 PREDICATE LOGIC: DERIVATIONS

We next use Universal Elimination to produce a conditional to which we
can apply Conditional Elimination after applying Existential Introduction
to the assumption on line 4, being careful to choose an instantiating con-
stant that will produce a match between the conditional and the existentially
quantifi ed sentence we generate. Here the instantiating constant ‘a’ does
the trick:

Derive: (∃x)(∀y)Fxy

 1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
 2 (∃x)(∃y)Fxy Assumption

 3 (∃y)Fay A / ∃E

 4 Fab A / ∃E

 5 (∃z)Faz ⊃ (∀y)Fay 1 ∀E
 6 (∃z)Faz 4 ∃I
 7 (∀y)Fay 5, 6 ⊃E

G (∃x)(∀w)Fxw ∃I
G (∃x)(∀w)Fxw 3, 4–— ∃E
G (∃x)(∀w)Fxw 2, 3–— ∃E

Our current goal is ‘(∃x)(∀w)Fxw’. To obtain it, by Existential Introduction,
we need to fi rst derive a substitution instance of that sentence, say ‘(∀w)
Faw’. We have already derived ‘(∀y)Fay’. This is not the sentence we need,
because it contains the variable ‘y’ where we want ‘w’. But we can easily
obtain the substitution instance we want by using Universal Elimination
(with a new instantiating constant) followed by Universal Introduction using
the variable ‘y’ instead of the variable ‘w’. We do this at lines 8 and 9, com-
pleting the derivation:

Derive: (∃x)(∀y)Fxy

 1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
 2 (∃x)(∃y)Fxy Assumption

 3 (∃y)Fay A / ∃E

 4 Fab A / ∃E

 5 (∃z)Faz ⊃ (∀y)Fay 1 ∀E
 6 (∃z)Faz 4 ∃I
 7 (∀y)Fay 5, 6 ⊃E
 8 Fac 7 ∀E
 9 (∀w)Faw 8 ∀I
10 (∃x)(∀w)Fxw 9 ∃I
11 (∃x)(∀w)Fxw 3, 4–10 ∃E
12 (∃x)(∀w)Fxw 2, 3–11 ∃E

ber38413_ch10_474-544.indd Page 498 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 498 12/4/12 1:38 PM F-400F-400

As a fi nal example consider the following argument:

Assuming the predicate ‘loves’ is being used unambiguously, this argument is,
perhaps surprisingly, valid. We can reason informally as follows: Because Tom
loves Alice, Tom is a lover. And since everyone loves a lover, everyone loves
Tom. But then everyone is a lover, and since everyone loves a lover, everyone
loves everyone. Here is a symbolization of the argument in PL:

Everyone loves a lover.

Tom loves Alice.

Everyone loves everyone.

As in the last example, it appears that our ultimate goal will be obtained by
Universal Introduction, and indeed that our penultimate goal will also be
obtained by this rule. Our work would be over if we could proceed as follows:

(∀x)[(∃y)Lxy ⊃ (∀z)Lzx]

Lta

(∀x)(∀y)Lxy

But of course we cannot do this. Both line 3 and line 4 are in violation of the
restrictions on Universal Introduction. In each case the constant we are replac-
ing, fi rst ‘a’ and then ‘t’, occurs in an open assumption (at line 2). To use
Universal Introduction we need to obtain a sentence like ‘Lta’ but formed from
other constants, any other constants. We select ‘c’ and ‘d’:

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

3 (∀y)Lty 2 ∀I MISTAKE!
4 (∀x)(∀y)Lxy 3 ∀I MISTAKE!

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

G Lcd
G (∀y)Lcy — ∀I
G (∀x)(∀y)Lxy — ∀I

How might we obtain our current goal, ‘Lcd’? Recall the reasoning we did in
English: from Lta we can infer that Tom is a lover—and we mirror this inference

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 499

ber38413_ch10_474-544.indd Page 499 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 499 12/4/12 1:38 PM F-400F-400

500 PREDICATE LOGIC: DERIVATIONS

in PD by obtaining ‘(∃y)Lty’ by Existential Introduction. In English we reasoned
that if Tom is a lover, then everyone loves Tom. We can mirror this in PD by
applying Universal Elimination to line 1. And since we have established that
Tom is a lover, we can infer that everyone loves him. So we have:

It is because neither ‘c’ nor ‘d’ occur in an open assumption that we will be
able to derive our fi nal goal by two uses of Universal Introduction. But how
do we get, in PD, from line 5 to ‘Lcd’? From line 5 we can get ‘Ldt’ by Uni-
versal Elimination. But how does this help us get ‘Lcd’? One difference
between these two sentences is that ‘d’ occurs in the fi rst position after ‘L’
in the fi rst, and in the second position in the second. We also note that line
1, which is our symbolization of ‘Everyone loves a lover’ contains two occur-
rences of the two-place predicate ‘L’, with ‘x’ occurring in the fi rst position
after L in the fi rst occurrence, and in the second position in the second
occurrence. So perhaps we can use this sentence to move ‘d’ from the fi rst
position after L to the second position. (Remember that ‘Everyone loves a
lover’ does say that if someone loves then that person gets loved.) Following
this clue we proceed as follows:

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

3 (∃y)Lty 2 ∃I
4 (∃y)Lty ⊃ (∀z)Lzt 1 ∀E
5 (∀z)Lzt 3, 4 ⊃E

G Lcd
G (∀y)Lcy — ∀I
G (∀x)(∀y)Lxy — ∀I

Derive: (∀x)(∀y)Lxy

 1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
 2 Lta Assumption

 3 (∃y)Lty 2 ∃I
 4 (∃y)Lty ⊃ (∀z)Lzt 1 ∀E
 5 (∀z)Lzt 3, 4 ⊃E
 6 Ldt 5 ∀E
 7 (∃y)Ldy 6 ∃I
 8 (∃y)Ldy ⊃ (∀z)Lzd 1 ∀E
 9 (∀z)Lzd 7, 8 ⊃E
10 Lcd 9 ∀E
11 (∀y)Lcy 10 ∀I
12 (∀x)(∀y)Lxy 11 ∀I

Our derivation is now complete.

ber38413_ch10_474-544.indd Page 500 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 500 12/4/12 1:38 PM F-400F-400

THEOREMS

‘(∀z)[Fz ⊃ (Fz ∨ Gz)]’ is a theorem in PD. To prove that it is such we need to
derive it from the empty set, which means we will need a derivation that has
no primary assumptions. The most plausible strategy for obtaining this sentence
is Universal Introduction.

Derive: (∀z)[Fz ⊃ (Fz ∨ Gz)]

G Fb ⊃ (Fb ∨ Gb)
G (∀z)[Fz ⊃ (Fz ∨ Gz)] — ∀I

Our current goal is a material conditional and can be obtained by Conditional
Introduction, using Disjunction Introduction to derive ‘Fb ∨ Gb’ within the
Conditional Introduction subderivation:

We have met both of the restrictions on Universal Introduction. The instantiat-
ing constant ‘b’ does not occur in any assumption that is open at line 4 and
does not occur in the sentence derived on line 4 by Universal Introduction.

To prove the theorem ‘(∃x)Fx ⊃ (∃x)(Fx ∨ Gx)’ we will use Condi-
tional Introduction, Existential Elimination, and Existential Introduction as
well as Disjunction Introduction. The proof is straightforward:

Derive: (∀z)[Fz ⊃ (Fz ∨ Gz)]

1 Fb A / ⊃I

2 Fb ∨ Gb 2 ∨I
3 Fb ⊃ (Fb ∨ Gb) 1–2 ⊃I
4 (∀z)[Fz ⊃ (Fz ∨ Gz)] 4 ∀I

We used Conditional Introduction as our primary strategy because our ultimate
goal is a material conditional. We used Existential Elimination within that strategy
because the assumption that begins the Conditional Introduction subderivation is
an existentially quantifi ed sentence. And we used Existential Introduction at line 4,
within our Existential Elimination subderivation, to generate the consequent of the
goal conditional. The consequent does not contain the instantiating constant ‘a’
and can therefore be pulled out of the Existential Elimination subderivation.

Derive: (∃x)Fx ⊃ (∃x)(Fx ∨ Gx)

1 (∃x)Fx A / ⊃I

2 Fa A / ∃E

3 Fa ∨ Ga 2 ∨I
4 (∃x)(Fx ∨ Gx) 3 ∃I
5 (∃x)(Fx ∨ Gx) 1, 2–4 ∃E
6 (∃x)Fx ⊃ (∃x)(Fx ∨ Gx) 1–5 ⊃I

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 501

ber38413_ch10_474-544.indd Page 501 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 501 12/4/12 1:38 PM F-400F-400

502 PREDICATE LOGIC: DERIVATIONS

The third theorem we will prove is ‘(∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy’. This
is also a material conditional, and our primary strategy will again be Condi-
tional Introduction. The assumption of our Conditional Introduction subderi-
vation will be an existentially quantifi ed sentence, suggesting that we use Exis-
tential Elimination within our Conditional Introduction subderivation. And if
we can derive ‘(∃x)(∃y)Fxy’ within our Existential Elimination subderivation
we will be able to end that subderivation and complete our derivation:

Completing this derivation is now straightforward. We apply Universal Elimina-
tion to the sentence on line 2 to produce ‘Fab’ and then use Existential Intro-
duction twice to derive ‘(∃x)(∃y)Fxy’.

Derive: (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy

 1 (∃x)(∀y)Fxy Assumption

 2 (∀y)Fay A / ∃E

G (∃x)(∃y)Fxy
G (∃x)(∃y)Fxy 1, 2–— ∃E
G (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy 1–— ⊃I

We have met all the restrictions on Existential Elimination. The instantiating
constant ‘a’ does not occur in any assumption that is open as of line 6. The
constant ‘a’ also does not occur in the existentially quantifi ed sentence to which
we are applying Existential Elimination, and it does not occur in the sentence
derived at line 6 by Existential Elimination.

It is worth noting that since there are no restrictions on Existential
Introduction, we could have entered ‘Faa’ rather than ‘Fab’ at line 3 (there
are also no restrictions on Universal Elimination), and then applied Existential
Introduction twice.

The last theorem we will consider is the quantifi ed sentence ‘(∃x)
(Fx ⊃ (∀y)Fy)’. At fi rst glance it appears that we should use Existential Intro-
duction to derive this sentence from some substitution instance, for example,

Derive: (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy

1 (∃x)(∀y)Fxy Assumption

2 (∀y)Fay A / ∃E

3 Fab 2 ∀E
4 (∃y)Fay 3 ∃I
5 (∃x)(∃y)Fxy 4 ∃I
6 (∃x)(∃y)Fxy 1, 2–5 ∃E
7 (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy 1–6 ⊃I

ber38413_ch10_474-544.indd Page 502 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 502 12/4/12 1:38 PM F-400F-400

‘Fa ⊃ (∀y)Fy’ and so the latter sentence should be a subgoal. However, this
will not work! ‘Fa ⊃ (∀y)Fy’ is not quantifi cationally true and therefore can-
not be derived in PD from no assumptions. So we must choose another
strategy. Our primary strategy will be Negation Elimination and the proof
will be quite complicated:

We have selected Negation Elimination as our primary strategy because there is
no plausible alternative to that strategy. We have selected ‘(∃x)(Fx ⊃ (∀y)Fy)’
and ‘~ (∃x)(Fx ⊃ (∀y)Fy)’ as the contradictory sentences we will derive within
that strategy because the latter sentence is our assumption on line 1 and
therefore available for use. The question now is how to derive ‘(∃x)(Fx ⊃
(∀y)Fy)’. Since this is an existentially quantifi ed sentence we will attempt
to derive it by Existential Introduction: fi rst deriving the substitution instance
‘Fa ⊃ (∀y)Fy’ of that sentence (any other instantiating constant could be
used). The substitution instance should be derivable using Conditional
Introduction:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 ~ (∃x)(Fx ⊃(∀y)Fy) A / ~ E

G (∃x)(Fx ⊃ (∀y)Fy)
 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

Our new goal is ‘(∀y)Fy’, a universally quantifi ed sentence. We cannot obtain
it by applying Universal Introduction to the sentence on line 2, because ‘a’

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2 Fa A / ⊃I

G (∀y)Fy
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy) — ∃I
 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 503

ber38413_ch10_474-544.indd Page 503 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 503 12/4/12 1:38 PM F-400F-400

504 PREDICATE LOGIC: DERIVATIONS

here occurs in an open assumption. So we will try to obtain a different sub-
stitution instance of ‘(∀y)Fy’, ‘Fb’, and we will try to derive this substitution
instance using Negation Elimination:

 1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2 Fa A / ⊃I

 3 ~ Fb A / ~ E

G Fb
G (∀y)Fy — ∀I
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy)
G ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

We now have to decide on the sentence and its negation to be derived within
the Negation Elimination subderivation. Two negations are accessible at this
point: ‘~ Fb’ and ‘~ (∃x)(Fx ⊃ (∀y)Fy)’. We will make the latter sentence
and ‘(∃x)(Fx ⊃ (∀y)Fy)’ our goals as picking ‘Fb’ and ‘~ Fb’ as goals appears
to be unpromising (there is no obvious way to derive ‘Fb’ from the assump-
tions on lines 1–3). We plan to derive ‘(∃x)(Fx ⊃ (∀y)Fy)’ using Existential
Introduction:

 1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2 Fa A / ⊃I

 3 ~ Fb A / ~ E

G Fb ⊃ (∀y)Fy
G (∃x)(Fx ⊃ (∀y)Fy) — ∃I
 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G Fb
G (∀y)Fy — ∀I
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy)
 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

We have selected ‘b’ as the instantiating constant in our new goal because we
anticipate using Conditional Introduction to derive ‘Fb ⊃ (∀y)Fy’, and this use

ber38413_ch10_474-544.indd Page 504 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 504 12/4/12 1:38 PM F-400F-400

of ‘b’ will give us ‘Fb’ as an assumption, something that is likely to be useful
as we already have ‘~ Fb’ at line 3.

 1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2 Fa A / ⊃I

 3 ~ Fb A / ~ E

 4 Fb A / ⊃I

G (∀y)Fy
G Fb ⊃ (∀y)Fy
G (∃x)(Fx ⊃ (∀y)Fy) — ∃I
 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G Fb
G (∀y)Fy — ∀I
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy)
 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

Our new goal is ‘(∀y)Fy’ and since ‘Fb’ and ‘~ Fb’ are both accessible, we can
easily derive it using Negation Elimination, completing the derivation:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2 Fa A / ⊃I

 3 ~ Fb A / ~ I

 4 Fb A / ⊃I

 5 ~ (∀y)Fy A / ~ E

 6 Fb 4 R
 7 ~ Fb 3 R
 8 (∀y)Fy 5–7 ~ E
 9 Fb ⊃ (∀y)Fy 4–8 ⊃I
10 (∃x)(Fx ⊃ (∀y)Fy) 9 ∃I
11 ~ (∃x)(Fx ⊃ (∀y)Fy) l R
12 Fb 3–11 ~ E
13 (∀y)Fy 12 ∀I
14 Fa ⊃ (∀y)Fy 2–13 ⊃I
15 (∃x)(Fx ⊃ (∀y)Fy) 14 ∃I
16 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
17 (∃x)(Fx ⊃ (∀y)Fy) 1–16 ~ E

This is a complex derivation, as we warned it would be. In the end we used the
same pair of contradictory sentences in two Negation Elimination subderiva-
tions. This sometimes happens.

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 505

ber38413_ch10_474-544.indd Page 505 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 505 12/4/12 1:38 PM F-400F-400

506 PREDICATE LOGIC: DERIVATIONS

EQUIVALENCE

To show that sentences P and Q of PL are equivalent in PD we must derive
each from the unit set of the other. As our fi rst example we take the sentences
‘(∀x)(Fa ⊃ Fx)’ and ‘Fa ⊃ (∀x)Fx’. We begin by deriving the second of these
sentences from the fi rst, and since our goal sentence in this derivation is a
material conditional, we will use Conditional Introduction:

We cannot derive our present goal, ‘(∀x)Fx’, by simply applying Universal Intro-
duction to ‘Fa’ at line 2, for the sentence on line 2 is an open assumption and ‘a’
occurs in that sentence. We can rather try to derive a different substitution instance
of ‘(∀x)Fx’, say ‘Fb’, and then apply Universal Introduction. And this is easy to do
by applying Universal Elimination to the sentence on line 1 (being careful to use
an instantiating constant other than ‘a’), and then using Conditional Elimination:

Derive: Fa ⊃ (∀x)Fx

 1 (∀x)(Fa ⊃ Fx) Assumption

 2 Fa A / ⊃I

G (∀x)Fx
G Fa ⊃ (∀x)Fx 2–— ⊃I

We have met both restrictions on Universal Introduction at line 5: the instan-
tiating constant ‘b’ does not occur in any open assumption; nor does it occur
in the derived sentence ‘(∀x)Fx’.

We must now derive ‘(∀x)(Fa ⊃ Fx)’ from ‘Fa ⊃ (∀x)Fx’. A plausible
start is

Derive: Fa ⊃ (∀x)Fx

1 (∀x)(Fa ⊃ Fx) Assumption

2 Fa A / ⊃I

3 Fa ⊃ Fb 1 ∀E
4 Fb 2, 3 ⊃E
5 (∀x)Fx 4 ∀I
6 Fa ⊃ (∀x)Fx 2–5 ⊃I

Derive: (∀x)(Fa ⊃ Fx)

1 Fa ⊃ (∀x)Fx Assumption

2 Fa A / ⊃I

G Fb
G Fa ⊃ Fb 2–— ⊃I
G (∀x)(Fa ⊃ Fx) — ∀I

ber38413_ch10_474-544.indd Page 506 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 506 12/4/12 1:38 PM F-400F-400

We plan to derive the last sentence by Universal Introduction, and the substitu-
tion instance on the prior line by Conditional Introduction. And we can now
see how to complete the derivation. We can apply Conditional Elimination to
the sentences on lines 1 and 2 to derive ‘(∀x)Fx’, from which we can then
derive ‘Fb’:

Derive: (∀x)(Fa ⊃ Fx)

1 Fa ⊃ (∀x)Fx Assumption

2 Fa A / ⊃I

3 (∀x)Fx 1, 2 ⊃E
4 Fb 3 ∀E
5 Fa ⊃ Fb 2–4 ⊃I
6 (∀x)(Fa ⊃ Fx) 5 ∀I

Having derived each member of our pair of sentences from the other, we have
demonstrated that the sentences ‘(∀x)(Fa ⊃ Fx)’ and ‘Fa ⊃ (∀x)Fx’ are equiv-
alent in PD.

We will next show that ‘(∀x)Fx ⊃ Ga’ and ‘(∃x)(Fx ⊃ Ga)’ are equiva-
lent in PD. It is reasonably straightforward to derive ‘(∀x)Fx ⊃ Ga’ from ‘(∃x)
(Fx ⊃ Ga)’. We begin with

We will complete the derivation by using Existential Elimination—being careful
to use an instantiating constant other than ‘a’ (because ‘a’ occurs in ‘Ga’, the
sentence we plan to derive with Existential Elimination):

Derive: (∀x)Fx ⊃ Ga

 1 (∃x)(Fx ⊃ Ga) Assumption

 2 (∀x)Fx A / ⊃I

G Ga
G (∀x)Fx ⊃ Ga 2–— ⊃I

Derive: (∀x)Fx ⊃ Ga

1 (∃x)(Fx ⊃ Ga) Assumption

2 (∀x)Fx A / ⊃I

3 Fb ⊃ Ga A / ∃E

4 Fb 2 ∀E
5 Ga 3–4 ⊃E
6 Ga 1, 3–5 ∃E
7 (∀x)Fx ⊃ Ga 2–6 ⊃I

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 507

ber38413_ch10_474-544.indd Page 507 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 507 12/4/12 1:38 PM F-400F-400

508 PREDICATE LOGIC: DERIVATIONS

Our use of Existential Elimination at line 6 meets all three restrictions on that
rule: the instantiating constant ‘b’ does not occur in ‘(∃x)(Fx ⊃ Ga)’, does not
occur in any assumption that is open at line 6, and does not occur in the sen-
tence ‘Ga’ that we derived with Existential Elimination.

Deriving ‘(∃x)(Fx ⊃ Ga)’ from ‘(∀x)Fx ⊃ Ga’ is a somewhat more
challenging exercise. Since our primary goal is an existentially quantifi ed sen-
tence, both Existential Introduction and Negation Elimination suggest them-
selves as primary strategies. We have opted to use Negation Elimination, and
since the assumption that begins that strategy is a negation, we will make it and
the sentence of which it is a negation our goals within the Negation Elimina-
tion subderivation:

When two primary strategies suggest themselves, it is frequently useful to use
one as a secondary strategy within the other, primary strategy. Here we will
use Existential Introduction as a secondary strategy: We will try to obtain the
goal ‘(∃x)(Fx ⊃ Ga)’ by Existential Introduction, fi rst using Conditional Intro-
duction to derive an appropriate substitution instance of the goal sentence:

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga Assumption

 2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

G (∃x)(Fx ⊃ Ga)
 ~ (∃x)(Fx ⊃ Ga) 2 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 (∀x)Fx ⊃ Ga Assumption

 2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3 Fa A / ⊃I

G Ga
G Fa ⊃ Ga 3–— ⊃I
G (∃x)(Fx ⊃ Ga) — ∃I
 ~ (∃x)(Fx ⊃ Ga) 1 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E

ber38413_ch10_474-544.indd Page 508 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 508 12/4/12 1:38 PM F-400F-400

The current goal, ‘Ga’, can be derived by Conditional Elimination using the
sentence on line 1 if we can fi rst derive the antecedent ‘(∀x)Fx’ of that sen-
tence. It is not easy to see how the antecedent might be derived, but one
strategy is to try to fi rst derive a substitution instance in which the instantiating
constant does not occur in an open assumption. This rules out ‘Fa’. So we will
try to derive ‘Fb’, and since no more direct strategy suggests itself at this point,
we’ll try to derive ‘Fb’ by Negation Elimination:

Given ‘~ Fb’ at line 4 we can obtain ‘Fb ⊃ Ga’. We know we can do this because
we know that given the negation of the antecedent of any conditional we can
derive the conditional—as the following schema demonstrates:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 (∀x)Fx ⊃ Ga Assumption

 2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3 Fa A / ⊃I

 4 ~ Fb A / ~ E

G Fb 4–— ~ E
G (∀x)Fx — ∀I
G Ga 1, — ⊃E
G Fa ⊃ Ga 3–— ⊃I
G (∃x)(Fx ⊃ Ga) ∃I
 ~ (∃x)(Fx ⊃ Ga) 1 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E

Once we derive ‘Fb ⊃ Ga’ we can obtain ‘(∃x)(Fx ⊃ Ga)’ by Existential Intro-
duction. Because we already have the negation of that sentence at line 2 we
can see our way clear to deriving a sentence and its negation as follows:

n ~ P

n�1 P A / ⊃I

n�2 ~ Q A / ~ E

n�3 P n�1 R
n�4 ~ P n R
n�5 Q n�2�n�4 ~ E
n�6 P ⊃ Q n�1�n�5 ⊃I

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 509

ber38413_ch10_474-544.indd Page 509 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 509 12/4/12 1:38 PM F-400F-400

510 PREDICATE LOGIC: DERIVATIONS

We will conclude our discussion of Equivalence in PD by deriving each
of the following sentences from the unit set of the other:

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga Assumption

 2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3 Fa A / ⊃I

 4 ~ Fb A / ~ E

 5 Fb A / ⊃I

 6 ~ Ga A / ~ E

 7 Fb 5 R
 8 ~ Fb 4 R
 9 Ga 6–8 ~ E
10 Fb ⊃ Ga 5–9 ⊃I
11 (∃x)(Fx ⊃ Ga) 10 ∃I
12 ~ (∃x)(Fx ⊃ Ga) 2 R
13 Fb 4–12 ~ E
14 (∀x)Fx 13 ∀I
15 Ga 1, 14 ⊃E
16 Fa ⊃ Ga 3–15 ⊃I
17 (∃x)(Fx ⊃ Ga) 16 ∃I
18 ~ (∃x)(Fx ⊃ Ga) 2 R
19 (∃x)(Fx ⊃ Ga) 1–18 ~ E

Establishing that these sentences are equivalent in PD is substantially more dif-
fi cult than was establishing equivalence in our last example, in large part
because in these sentences the existentially quantifi ed formulas occur within the
scope of universal quantifi ers. We begin by deriving ‘(∀x)(∃y)(Fx ⊃ Gxy)’ from
{(∀x)[Fx ⊃ (∃y)Gxy]}. Since our one primary assumption will be a universally
quantifi ed sentence, as will our goal, it is plausible to expect that we will use
both Universal Elimination and Universal Introduction:

(∀x)[Fx ⊃ (∃y)Gxy] (∀x)(∃y)(Fx ⊃ Gxy)

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 Fa ⊃ (∃y)Gay 1 ∀E

G (∃y)(Fa ⊃ Gay)
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

ber38413_ch10_474-544.indd Page 510 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 510 12/4/12 1:38 PM F-400F-400

It is now tempting to make ‘Fa ⊃ Gab’ our next subgoal, to be derived using
Conditional Introduction. And if we can obtain ‘Fa ⊃ Gab’ we can go on to
derive ‘(∃y)(Fa ⊃ Gay)’ by Existential Introduction:

‘(∃y)Gay’ can be derived from lines 2 and 3 by Conditional Elimination. We
might then plan to use Existential Elimination to get from ‘(∃y)Gay’ to the
current goal sentence ‘Gab’. But we have to be careful here. If we want to
derive ‘Gab’ by Existential Elimination then the instantiating constant for Exis-
tential Elimination has to be a constant other than ‘b’.

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 Fa ⊃ (∃y)Gay 1 ∀E
 3 Fa A / ⊃I

G Gab
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 Fa ⊃ (∃y)Gay 1 ∀E
 3 Fa A / ⊃I

 4 (∃y)Gay 2, 3 ⊃E
 5 Gac A / ∃E

G Gab
G Gab 4, 5–— ∃E
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

But how do we get from ‘Gac’ to ‘Gab’? A negation strategy might work, but
it would be complicated as there are no negations among the accessible
sentences.

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 511

ber38413_ch10_474-544.indd Page 511 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 511 12/4/12 1:38 PM F-400F-400

512 PREDICATE LOGIC: DERIVATIONS

It is time to consider an alternative strategy. We will try to obtain our
penultimate goal, ‘(∃y)(Fa ⊃ Gay)’, by Negation Elimination rather than by
Existential Introduction:

It may appear that because ‘(∃y)(Fa ⊃ Gay)’ is still our goal we are making
no progress. But this is not so, for we now have an additional assumption to
work from. We will now proceed much as we did in our fi rst attempt at this
derivation:

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

G (∃y)(Fa ⊃ Gay) 15 ∃I
G ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–17 ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) 18 ∀I

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

 3 Fa A / ⊃I

 4 Fa ⊃ (∃y)Gay 1 ∀E

 5 (∃y)Gay 3, 4 ⊃E
 6 Gac A / ∃E

G Gab
G Gab 5, 6–— ∃E
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
G ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–— ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

Once again we want to get from ‘Gac’ to ‘Gab’. But this time we do have an
accessible negation, ‘~ (∃y)(Fa ⊃ Gay)’. So we will use a negation strategy,
assuming ‘~ Gab’ and seeking to derive ‘(∃y)(Fa ⊃ Gay)’ along with reiterating
its negation:

ber38413_ch10_474-544.indd Page 512 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 512 12/4/12 1:38 PM F-400F-400

What remains is to derive ‘(∃y)(Fa ⊃ Gay)’. This is easily done. We assume ‘Fa’,
derive ‘Gac’ by Reiteration, derive ‘Fa ⊃ Gac’ by Conditional Introduction, and
then ‘(∃y)(Fa ⊃ Gay)’ by Existential Introduction. The derivation is then complete:

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

 3 Fa A ⊃I

 4 Fa ⊃ (∃y)Gay 1 ∀E
 5 (∃y)Gay 3, 4 ⊃E
 6 Gac A / ∃E

 7 ~ Gab A ~ E

G (∃y)(Fa ⊃ Gay)
 ~ (∃y)(Fa ⊃ Gay) 2 R
G Gab 7–— ~ E
G Gab 5, 6–— ∃E
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
 ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–— ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

 3 Fa A ⊃I

 4 Fa ⊃ (∃y)Gay 1 ∀E
 5 (∃y)Gay 3, 4 ⊃E
 6 Gac A / ∃E

 7 ~ Gab A ~ E

 8 Fa A / ⊃I

 9 Gac 6 R
10 Fa ⊃ Gac 8–9 ⊃I
11 (∃y)(Fa ⊃ Gay) 10 ∃I
12 ~ (∃y)(Fa ⊃ Gay) 2 R
13 Gab 7–12 ~ E
14 Gab 5, 6–13 ∃E
15 Fa ⊃ Gab 3–14 ⊃I
16 (∃y)(Fa ⊃ Gay) 15 ∃I
17 ~ (∃y)(Fa ⊃ Gay) 2 R
18 (∃y)(Fa ⊃ Gay) 2–17 ~ E
19 (∀x)(∃y)(Fx ⊃ Gxy) 18 ∀I

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 513

ber38413_ch10_474-544.indd Page 513 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 513 12/4/12 1:38 PM F-400F-400

514 PREDICATE LOGIC: DERIVATIONS

The second assumption suggests using Existential Elimination, and we know it
is wise to do as much of the work of the derivation as possible within the Exis-
tential Elimination subderivation:

We must now derive ‘(∀x)[Fx ⊃ (∃y)Gxy]’ from ‘(∀x)(∃y)(Fx ⊃ Gxy)’.
This will be an easier task since we can derive ‘(∃y)(Fa ⊃ Gay)’ by Universal
Elimination and then do the bulk of the derivation within an Existential Elim-
ination subderivation:

The instantiating constant ‘b’ for our use of Existential Elimination does not occur
in the existentially quantifi ed sentence ‘(∃y)(Fa ⊃ Gay)’, in any assumption that is
open at line 8, or in the sentence ‘Fa ⊃ (∃y)Gay’ obtained by Existential Elimina-
tion. (In this case we could also have applied Universal Introduction within the
Existential Elimination subderivation and then moved ‘(∀x)[Fx ⊃ (∃y)Gxy]’ out of
that subderivation.) This completes our demonstration that ‘(∀x)[Fx ⊃ (∃y)Gxy]’
and ‘(∀x)(∃y)(Fx ⊃ Gxy)’ are equivalent in PD.

INCONSISTENCY

We next turn our attention to demonstrating that sets of sentences of PL are incon-
sistent in PD. Recall that a set of sentences is inconsistent in PD if we can derive both
a sentence Q and its negation ~ Q from the set. As our fi rst example we will show
that the set {(∀x)(Fx � Gx), (∃y)(Fy & ~ Gy)} is inconsistent in PD. Because this set
does not contain a negation, it is not obvious what our Q and ~ Q should be. We
will use the set member ‘(∀x)(Fx � Gx)’ as Q, making ~ Q ‘~ (∀x)(Fx � Gx)’:

Derive: (∀x)[Fx ⊃ (∃y)Gxy]

1 (∀x)(∃y)(Fx ⊃ Gxy) Assumption

2 (∃y)(Fa ⊃ Gay) 1 ∀E

3 Fa ⊃ Gab A / ∃E

4 Fa A ⊃I

5 Gab 3, 4 ⊃E
6 (∃y)Gay 5 ∃I
7 Fa ⊃ (∃y)Gay 4–6 ⊃I
8 Fa ⊃ (∃y)Gay 3, 4–7 ∃E
9 (∀x)[Fx ⊃ (∃y)Gxy] 8 ∀I

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

G ~ (∀x)(Fx � Gx)
G (∀x)(Fx � Gx) 1 R

ber38413_ch10_474-544.indd Page 514 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 514 12/4/12 1:38 PM F-400F-400

Our current goal is a negation, which we will try to derive using Negation Intro-
duction. We assume ‘(∀x)(Fx � Gx)’ even though that sentence is one of our primary
assumptions and hence already accessible. We assume it because Negation Introduction
requires that we assume the sentence whose negation we wish to derive:

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

 3 Fa & ~ Ga A / ∃E

G ~ (∀x)(Fx � Gx)
G ~ (∀x)(Fx � Gx) 2, 3–— ∃E
 (∀x)(Fx � Gx) 1 R

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

1 (∀x)(Fx � Gx) Assumption
2 (∃y)(Fy & ~ Gy) Assumption

3 Fa & ~ Ga A / ∃E

4 (∀x)(Fx � Gx) A / ~ I

G ~ (∀x)(Fx � Gx) 4–— ~ I
G ~ (∀x)(Fx � Gx) 2, 3–— ∃E
G (∀x)(Fx � Gx) 1 R

We are now fi nally in a position where we can work profi tably from the “top
down”. From line 4 we can derive ‘Fa � Ga’ by Biconditional Elimination; from
line 3 we can derive ‘Fa’; and then it is easy to derive both ‘Ga’ and ‘~ Ga’:

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

 3 Fa & ~ Ga A / ∃E

 4 (∀x)(Fx � Gx) A / ~ I

 5 Fa � Ga 4 ∀E
 6 Fa 3 &E
 7 Ga 5, 6 �E
 8 ~ Ga 3 &E
 9 ~ (∀x)(Fx � Gx) 4–8 ~ I
10 ~ (∀x)(Fx � Gx) 2, 3–9 ∃E
11 (∀x)(Fx � Gx) 1 R

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 515

ber38413_ch10_474-544.indd Page 515 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 515 12/4/12 1:38 PM F-400F-400

516 PREDICATE LOGIC: DERIVATIONS

Had we taken ‘(∃y)(Fy & ~ Gy)’ and ‘~ (∃y)(Fy & ~ Gy)’ as our Q and ~ Q we
would have produced the following very similar derivation:

We will next demonstrate that {(∀z)(Hz ⊃ (∃y)Gzy), (∃w)Hw, (∀x)
~ (∃y)Gxy} is inconsistent in PD. Though the set includes no negations, we can
immediately derive one, say ‘~ (∃y)Gay’, by applying Universal Elimination to
‘(∀x) ~ (∃y)Gxy’. So we will take ‘(∃y)Gay’ and ‘~ (∃y)Gay’ as our goals:

Derive: (∃y)(Fy & ~ Gy), ~ (∃y)(Fy & ~ Gy)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

 3 Fa & ~ Ga A / ∃E

 4 (∃y)(Fy & ~ Gy) A / ~ I

 5 Fa � Ga 1 ∀E
 6 Fa 3 &E
 7 Ga 5, 6 �E
 8 ~ Ga 3 &E
 9 ~ (∃y)(Fy & ~ Gy) 4–8 ~ I
10 ~ (∃y)(Fy & ~ Gy) 2, 3–9 ∃E
11 (∃y)(Fy & ~ Gy) 2 R

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

G (∃y)Gay
 ~ (∃y)Gay 3 ∀E

Our assumptions include the existentially quantifi ed sentence ‘(∃w)Hw’, so we
will try to derive ‘(∃y)Gay’ by Existential Elimination—which means we will
have to be careful to pick a constant other than ‘a’ as the instantiating constant
in our Existential Elimination assumption:

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

 4 Hb A / ∃E

G (∃y)Gay
G (∃y)Gay 2, 4–— ∃E
 ~ (∃y)Gay 3 ∀E

ber38413_ch10_474-544.indd Page 516 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 516 12/4/12 1:38 PM F-400F-400

There is a problem in the offi ng here. We used ‘b’ as the instantiating
constant at line 4 because ‘a’ occurs in the sentence we hope to obtain by
Existential Elimination, ‘(∃y)Gay’. This means that we will be able to obtain
‘(∃y)Gby’, but not ‘(∃y)Gay’ by applying Universal Elimination to line 1
(obtaining ‘Hb ⊃ (∃y)Gby’ and then doing Conditional Elimination). So we
need an alternative strategy for obtaining our current goal, ‘(∃y)Gay’. We
will use Negation Elimination:

We can now complete the derivation by deriving both ‘(∃y)Gby’ and ‘~ (∃y)Gby’
within the scope of the assumption on line 5, the fi rst by the steps mentioned
previously, the second by applying Universal Elimination to the sentence on
line 3.

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

 4 Hb A / ∃E

 5 ~ (∃y)Gay A / ~ E

G (∃y)Gay 5–— ~ E
G (∃y)Gay 2, 4–6 ∃E
 ~ (∃y)Gay 3 ∀E

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z) (Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

 4 Hb A / ∃E

 5 ~ (∃y)Gay A / ~ E

 6 Hb ⊃ (∃y)Gby 1 ∀E
 7 (∃y)Gby 4, 6 ⊃E
 8 ~ (∃y)Gby 3 ∀E
 9 (∃y)Gay 5–8 ~ E
10 (∃y)Gay 2, 4–9 ∃E
11 ~ (∃y)Gay 3 ∀E

The technique of using a negation strategy within an Existential Elim-
ination subderivation, as we have just done, is useful as a way of generating a
sentence that does not violate any of the restrictions on Existential Elimination.
It is useful whenever we can see that some sentence and its negation are deriv-
able within the Existential Elimination subderivation, but those sentences con-
tain a constant that keeps us from moving either out from the Existential
Elimination subderivation by Existential Elimination. In such a case we can

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 517

ber38413_ch10_474-544.indd Page 517 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 517 12/4/12 1:38 PM F-400F-400

518 PREDICATE LOGIC: DERIVATIONS

always derive a sentence that does not contain the Existential Elimination sub-
derivation’s instantiating constant. We can do this by assuming the negation of
the desired sentence and deriving the contradictory sentences within the nega-
tion elimination subderivation.

 10.2E EXERCISES

Note: Here, as always, the Student Solutions Manual contains answers to all unstarred
exercises. In addition, when an exercise is preceded by a number sign (#) the
Solutions Manual contains a detailed account of how the derivation given in
the Solutions Manual is constructed.

 1. Construct derivations that establish the validity of the following arguments:

 a. (∀y)[Fy ⊃ (Gy & Hy)]

 (∀x)(Fx ⊃ Hx)

 *b. (∀x)(Fx � Gx)
 (∃x)Fx

 (∃x)(Fx & Gx)

 #c. (∀y)[Gy ⊃ (Hy & Fy)]
 (∃x)Gx

 (∃z)Fz

 *d. (∀x)[Fx ⊃ (Gx & Hx)]
 (∃y)(Fy & Dy)

 (∃z)Gz

 e. (∃x)Fx ⊃ (∀x)Gx
 Fa
 (∀x)(Gx ⊃ Hx)

 (∀x)Hx

 *f. (∀y)[(Hy & Fy) ⊃ Gy]
 (∀z)Fz

 (∀x)(Hx ⊃ Gx)

 g. (∀x)Fx ∨ (∀x)Gx

 (∀x)(Fx ∨ Gx)

 *h. (∀x)(Dx � ~ Gx)
 (∀y)(Gy ⊃ Hy)
 (∃z) ~ Hz

 (∃z)Dz

 #i. (∀x)(Fx ⊃ Hx)
 (∀y)(Gy ⊃ Hy)

 (∀y)[(Fy ∨ Gy) ⊃ Hy]

 *j. (∃y)(Fy ∨ Gy)
 (∀x)(Fx ⊃ Hx)
 (∀x)(Gx ⊃ Hx)

 (∃z)Hz

 k. (∃x)Hx
 (∀x)(Hx ⊃ Rx)
 (∃x)Rx ⊃ (∀x)Gx

 (∀x)(Fx ⊃ Gx)

 *l. ~ (∃x)Fx � (∀y)Gy
 (∀y) ~ Fy

 (∃y)Gy

 m. (∀x)Fx ∨ (∀y) ~ Gy
 Fa ⊃ Hb
 ~ Gb ⊃ Jb

 (∃y)(Hy ∨ Jy)

 *n. Fa ∨ (∀x) ~ Fx
 (∃y)Fy

 Fa

ber38413_ch10_474-544.indd Page 518 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 518 12/4/12 1:38 PM F-400F-400

 2. Prove that the following sentences of PL are theorems of PD:
 a. Fa ⊃ (∃y)Fy
 *b. (∀x)Fx ⊃ (∃y)Fy
 c. (∀x)[Fx ⊃ (Gx ⊃ Fx)]
 *d. ~ Fa ⊃ ~ (∀x)Fx
 e. ~ (∃x)Fx ⊃ (∀x) ~ Fx
 *f. (∃x)(∃y)Fxy ⊃ (∃y)(∃x)Fyx
 g. Fa ∨ (∃y) ~ Fy
 *h. (∀x)(Hx ⊃ Ix) ⊃ [(∃x)Hx ⊃ (∃x)Ix]
 #i. [(∀x)Fx ∨ (∀x)Gx] ⊃ (∀x)(Fx ∨ Gx)
 *j. [(∀x)Fx & (∃y)Gy] ⊃ (∃x)(Fx & Gx)
 k. (∃x)(Fx & Gx) ⊃ [(∃x)Fx & (∃x)Gx]
 *l. [(∃x)Fx ∨ (∃x)Gx] ⊃ (∃x)(Fx ∨ Gx)
 m. (∀x)Hx � ~ (∃x) ~ Hx

 3. Construct derivations that establish that the following pairs of sentences are
equivalent in PD:

 a. (∀x)(Fx & Gx) (∀x)Fx & (∀x)Gx
 *b. (∀x)(Fx ⊃ Ga) (∃x)Fx ⊃ Ga
 c. (∀x)Fx ~ (∃x) ~ Fx
 *d. (∃y)(Fy & (∀x)Gx) (∃y)(∀x)(Fy & Gx)
 #e. (∃x)Fx ~ (∀x) ~ Fx
 *f. (∃x)(Fx & ~ Gx) ~ (∀x)(Fx ⊃ Gx)
 g. (∀z)(Hz ⊃ ~ Iz) ~ (∃y)(Hy & Iy)
 *h. (∃x)(Fa ⊃ Gx) Fa ⊃ (∃x)Gx
 i. (∀x)(∃y)(Fx ⊃ Gy) (∀x)(Fx ⊃ (∃y)Gy)

 4. Construct derivations that establish that the following sets are inconsistent in PD:
 a. {(∀x)(Fx � ~ Fx)}
 *b. {(∀x)Hx, (∀y) ~ (Hy ∨ Gyy)}
 #c. {~ (∀x)Fx, ~ (∃x) ~ Fx}
 *d. {~ (∀x) ~ Fx, ~ (∃x)Fx}
 e. {(∀x)(Fx ⊃ Gx), (∃x)Fx, ~ (∃x)Gx}
 *f. {(∀z) ~ Fz, (∃z)Fz}
 g. {(∀x)Fx, (∃y) ~ Fy}
 *h. {(∃y)(Hy & Jy), (∀x) ~ Jx}
 i. {(∀x)(Hx � ~ Gx), (∃x)Hx, (∀x)Gx}
 *j. {(∀z)(Hz ⊃ Iz), (∃y)(Hy & ~ Iy)}
 k. {(∀z)[Rz ⊃ (Tz & ~ Mz)], (∃y)(Ry & My)}
 *l. {(∀x)(Fx ⊃ Gx), (∀x)(Fx ⊃ ~ Gx), (∃x)Fx}

 5. Construct derivations that establish the following:
 a. {(∃y)(∀x)Fxy} � (∀x)(∃y)Fxy
 *b. {(∀z)(Gz ⊃ (∃x)Fxz), (∀x)Gx} � (∀z)(∃x)Fxz
 c. {(∃x)Fxxx} � (∃x)(∃y)(∃z)Fxyz
 *d. {(∀x)(∀y)(Bx ⊃ Txy} � (∀x)(∀y)[(Bx & Ny) ⊃ Txy]
 e. {(∀x)(Fx ⊃ (∃y)Gxy), (∃x)Fx} � (∃x)(∃y)Gyx
 *f. {(∀x)(∃y)Gxy, (∀x)(∀y)(Hxy ⊃ ~ Gxy)} � (∀x)(∃z) ~ Hxz
 g. {(∀x)(∀y)(Hxy ⊃ ~ Hyx), (∃x)(∃y)Hxy} � (∃x)(∃y) ~ Hyx
 *h. {(∀x)(∀y)Fxy ∨ (∀x)(∀y)Gxy} � (∀x)(∀y)(Fxy ∨ Gxy)
 i. {~ (∃x)(∃y)Rxy, (∀x)(∀y)(~ Hxy � Rxy)} � (∀x)(∀y)Hxy
 *j. {(∀x)(∀y)(Fxy � ~ Gyx), (∃z)(∃w)Gzw} � (∃x)(∃y) ~ Fxy

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 519

ber38413_ch10_474-544.indd Page 519 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 519 12/4/12 1:38 PM F-400F-400

520 PREDICATE LOGIC: DERIVATIONS

 6. Construct derivations that establish the validity of the following arguments:

 a. (∀x)(Fx ⊃ Gba)

 (∃x)Fx

 (∃y)Gya

 *b. (∀x)(Hx ⊃ (∀y)Rxyb)

 (∀x)(∀z)(Razx ⊃ Sxzz)

 Ha ⊃ (∃x)Sxcc

 c. (∃x)(∃y)(Fxy ∨ Fyx)

 (∃x)(∃y)Fxy

 *d. (∀x)(Fxa ⊃ Fax)

 (∃x)(Hx & ~ Fax)

 ~ (∀y)(Hy ⊃ Fya)

 e. (∀x)(∀y)[(∃z)(Fyz & ~ Fzx) ⊃ Gxy]

 ~ (∃x)Gxx

 (∀z)(Faz ⊃ Fza)

 *f. (∀x)(∀y)(Dxy ⊃ Cxy)

 (∀x)(∃y)Dxy

 (∀x)(∀y)(Cxy ⊃ Cyx)

 (∃x)(∃y)(Cxy & Cyx)

 g. (∀x)(Fx ⊃ (∃y)Gxy

 (∀x)(∀y) ~ Gxy

 (∀x) ~ Fx

 *h. (∀x)(Fx ⊃ (∃y)Gxy)

 (∀x)(∀y)(Gxy ⊃ Hxy)

 ~ (∃x)(∃y)Hxy

 ~ (∃x)Fx

 7. Prove that the following sentences of PL are theorems of PD:
 a. (∀x)(∃z)(Fxz ⊃ Fzx)
 *b. (∀x)Fxx ⊃ (∀x)(∃y)Fxy
 c. (∀x)(∀y)Gxy ⊃ (∀z)Gzz
 *d. (∃x)Fxx ⊃ (∃x)(∃y)Fxy
 e. (∀x)Lxx ⊃ (∃x)(∃y)(Lxy & Lyx)
 *f. (∃x)(∀y)Lxy ⊃ (∃x)Lxx
 #g. (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy
 *h. (∀x)(Fx ⊃ (∃y)Gya) ⊃ (Fb ⊃ (∃y)Gya)
 i. (∃x)(∃y)(Lxy � Lyx)
 *j. (∃x)(∀y)Hxy ⊃ (∀y)(∃x)Hxy
 k. (∀x)(∀y)(∀z)Gxyz ⊃ (∀x)(∀y)(∀z)(Gxyz ⊃ Gzyx)
 *l. (∀x)(Fx ⊃ (∃y)Gyx) ⊃ ((∃x)Fx ⊃ (∃x)(∃y)Gxy)
 m. (∀x)(∀y)(Fxy � Fyx) ⊃ ~ (∃x)(∃y)(Fxy & ~ Fyx)
 *n. (∃x)(Fx ⊃ (∀y)Fy)

 8. Construct derivations that establish that the following pairs of sentences are
equivalent in PD:

 a. (∀x)(Fx ⊃ (∃y)Gya) (∃x)Fx ⊃ (∃y)Gya
 *b. (∀x)(Fx ⊃ (∀y)Gy) (∀x)(∀y)(Fx ⊃ Gy)
 #c. (∃x)[Fx ⊃ (∀y)Hxy] (∃x)(∀y)(Fx ⊃ Hxy)
 *d. (∀x)(∀y)(Fxy ⊃ Gy) (∀y)[(∃x)Fxy ⊃ Gy]
 e. (∀x)(∀y)(Fxy � ~ Gyx) (∀x)(∀y) ~ (Fxy � Gyx)

 9. Construct derivations that establish that the following sets are inconsistent in PD:
 a. {(∀x)(∀y)[(Ex & Ey) ⊃ Txy], (Ea & Eb) & ~ Tab}
 *b. {(∀x)(∃y)Lyx, ~ (∃x)Lxb}

ber38413_ch10_474-544.indd Page 520 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 520 12/4/12 1:38 PM F-400F-400

10.3 THE DERIVATION SYSTEM PD� 521

 c. {~ (∃x)Fxx, (∃x)(∀y)Fxy}
 *d. {(∀x)(∀y)(Fxy ⊃ Fyx), Fab, ~ (∃z)Fza}
 e. {(∀x)(∃y)Lxy, (∀y) ~ Lay}
 *f. {(∃x)(∀y)Gxy, ~ (∀y)(∃x)Gxy}
 g. {(∀x)[Hx ⊃ (∃y)Lyx], (∃x) ~ (∃y)Lyx, (∀x)Hx}
 *h. {~ (∃x)Fxx, (∀x)[(∃y)Fxy ⊃ Fxx], (∃x)(∃y)Fxy}
 #i. {(∀x)(∃y)Fxy, (∃z) ~ (∃w)Fzw}
 *j. {(∀x)(∀y)(Gxy � Gyx), (∃x)(∃y)(Gxy & ~ Gyx)}
 k. {(∀x)(∀y)(Fxy ∨ Gxy), (∃x)(∃y)(~ Fxy & ~ Gxy)}
 *l. {(∀x)(Fx ⊃ [(∃y)Gy ⊃ (∀y)Gy]), (∃x)(Fx & Gx), (∃y) ~ Gy}

 10.3 THE DERIVATION SYSTEM PD�

PD� is a derivation system that includes all the rules of PD, the rules that dis-
tinguish SD� from SD, and one additional rule of replacement. PD� is no
stronger than PD; however, derivations in PD� are often shorter than the cor-
responding derivations in PD. The rules of replacement in PD� apply to sub-
formulas of sentences as well as to complete sentences. In the following exam-
ple each of the replacement rules has been applied to a subformula of the
sentence on the previous line:

1 (∀x)[(Fx & Hx) ⊃ (∃y)Nxy] Assumption

2 (∀x)[~ (Fx & Hx) ∨ (∃y)Nxy] 1 Impl
3 (∀x)[~ (Fx & Hx) ∨ ~ ~ (∃y)Nxy] 2 DN
4 (∀x) ~ [(Fx & Hx) & ~ (∃y)Nxy] 3 DeM
5 (∀x) ~ [(Hx & Fx) & ~ (∃y)Nxy] 4 Com

Here Implication was applied to the subformula ‘(Fx & Hx) ⊃ (∃y)Nxy’ of the
sentence on line 1 to produce the subformula ‘~ (Fx & Hx) ∨ (∃y)Nxy’ of the
sentence on line 2. Double Negation was applied to the subformula ‘(∃y)Nxy’ of
the sentence on line 2, to produce the subformula ‘~ ~ (∃y)Nxy’ of the sentence
on line 3. De Morgan was applied to the subformula ‘~ (Fx & Hx) ∨ ~ ~ (∃y)
Nxy’ of the sentence on line 3 to produce the subformula ‘~ [(Fx & Hx) &
~ (∃y)Nxy]’ of the sentence on line 4. Finally, Commutation was applied to
the subformula ‘Fx & Hx’ of the sentence on line 4 to produce the ‘Hx &
Fx’ of the sentence on line 5.

In applying rules of replacement in PD� it is important to correctly
identify subformulas of sentences. Consider the following:

Line 2 is a mistake because the immediate subformula of the sentence on line
1 is not of the form P ∨ (Q ∨ R). Rather, it is of the form P ∨ (∃x)(Q ∨ R).

1 (∀x)[Lx ∨ (∃y)(Bxy ∨ Jxy)] Assumption

2 (∀x)[(Lx ∨ (∃y)Bxy) ∨ Jxy] 1 Assoc MISTAKE!

ber38413_ch10_474-544.indd Page 521 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 521 12/4/12 1:38 PM F-400F-400

522 PREDICATE LOGIC: DERIVATIONS

As with all rules of replacement, Quantifi er Negation can be applied to subfor-
mulas within a sentence, as well as to an entire sentence. All these are proper
uses of Quantifi er Negation:

The defi nitions of the basic concepts of PD� strictly parallel the defi ni-
tions of the basic concepts of PD, in all cases replacing ‘PD’ with ‘PD�’. Conse-
quently the tests for the various syntactic properties are carried out in the same
way. The important difference between PD and PD� is that PD, with fewer rules,
provides theoretical elegance and PD�, with more rules, provides practical ease.

In Section 10.2 we proved that ‘(∃x)(Fx ⊃ (∀y)Fy)’ is a theorem in PD.
Our derivation was 17 lines long. We repeat it here.

1 ~ (∃y) ~ (∀x)(Fx ⊃ (∃z) ~ Gxy) Assumption

2 (∀y) ~ ~ (∀x)(Fx ⊃ (∃z) ~ Gxy) 1 QN
3 (∀y) ~ (∃x) ~ (Fx ⊃ (∃z) ~ Gxy) 2 QN
4 (∀y) ~ (∃x) ~ (Fx ⊃ ~ (∀z)Gxy) 3 QN

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2 Fa A / ⊃I

 3 ~ Fb A / ~ I

 4 Fb A / ⊃I

 5 ~ (∀y)Fy A / ~ E

 6 Fb 4 R
 7 ~ Fb 3 R
 8 (∀y)Fy 5–7 ~ E
 9 Fb ⊃ (∀y)Fy 4–8 ⊃I
10 (∃x)(Fx ⊃ (∀y)Fy) 9 ∃I
11 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
12 Fb 3–11 ~ E
13 (∀y)Fy 12 ∀I
14 Fa ⊃ (∀y)Fy 2–13 ⊃I
15 (∃x)(Fx ⊃ (∀y)Fy) 14 ∃I
16 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
17 (∃x)(Fx ⊃ (∀y)Fy) 1–16 ~ E

In addition to the rules of replacement of SD�, PD� contains Quantifi er
Negation. Where P is an open sentence of PL in which x occurs free, the rule is

Quantifi er Negation (QN)

 ~(∀x)P �� (∃x) ~ P
 ~(∃x)P �� (∀x) ~ P

ber38413_ch10_474-544.indd Page 522 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 522 12/4/12 1:38 PM F-400F-400

We can show that this sentence is a theorem in PD� in just 10 lines:

10.3 THE DERIVATION SYSTEM PD� 523

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2 (∀x) ~ (Fx ⊃ (∀y)Fy) 1 QN
 3 ~ (Fa ⊃ (∀y)Fy) 2 ∀E
 4 ~ (~ Fa ∨ (∀y)Fy) 3 Impl
 5 ~ ~ Fa & ~ (∀y)Fy 4 DeM
 6 ~ ~ Fa 5 &E
 7 Fa 6 DN
 8 ~ (∀y)Fy 5 &E
 9 (∀y)Fy 7 ∀I
10 (∃x)(Fx ⊃ (∀y)Fy) 1–9 ~ E

In Section 10.2 it took us 19 lines to derive ‘(∃x)(Fx ⊃ Ga)’ from
{(∀x)Fx ⊃ Ga}. We repeat our derivation here:

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga Assumption

 2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3 Fa A / ⊃I

 4 ~ Fb A / ~ E

 5 Fb A / ⊃I

 6 ~ Ga A / ~ E

 7 Fb 5 R
 8 ~ Fb 4 R
 9 Ga 6–8 ~ E
10 Fb ⊃ Ga 5–9 ⊃I
11 (∃x)(Fx ⊃ Ga) 10 ∃I
12 ~ (∃x)(Fx ⊃ Ga) 2 R
13 Fb 4–12 ~ E
14 (∀x)Fx 13 ∀I
15 Ga 1, 14 ⊃E
16 Fa ⊃ Ga 3–15 ⊃I
17 (∃x)(Fx ⊃ Ga) 16 ∃I
18 ~ (∃x)(Fx ⊃ Ga) 1 R
19 (∃x)(Fx ⊃ Ga) 1–18 ~ E

ber38413_ch10_474-544.indd Page 523 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 523 12/4/12 1:38 PM F-400F-400

524 PREDICATE LOGIC: DERIVATIONS

We can derive ‘(∃x)(Fx ⊃ Ga)’ from {(∀x)Fx ⊃ Ga} in just 12 lines in PD�:

 10.3E EXERCISES

 1. Show that each of the following derivability claims holds in PD�.
 a. {~ (∀y)(Fy & Gy)} � (∃y)(~ Fy ∨ ~ Gy)
 *b. {(∀w)(Lw ⊃ Mw), (∀y)(My ⊃ Ny)} � (∀w)(Lw ⊃ Nw)
 c. {(∃z)(Gz & Az), (∀y)(Cy ⊃ ~ Gy)} � (∃z)(Az & ~ Cz)
 *d. {~ (∃x)(~ Rx & Sxx), Sjj} � Rj
 e. {(∀x)[(~ Cxb ∨ Hx) ⊃ Lxx], (∃y) ~ Lyy} � (∃x)Cxb
 *f. {(∀x)Fx, (∀z)Hz} � ~ (∃y)(~ Fy ∨ ~ Hy)

 2. Show that each of the following arguments is valid in PD�.

 a. (∀x) ~ Jx

 (∃y)(Hby ∨ Ryy) ⊃ (∃x)Jx

 (∀y) ~ (Hby ∨ Ryy)

 *b. ~ (∃x)(∀y)(Pxy & ~ Qxy)

 (∀x)(∃y)(Pxy ⊃ Qxy)

 c. (∀x) ~ ((∀y)Hyx ∨ Tx)

 ~ (∃y)(Ty ∨ (∃x) ~ Hxy)

 (∀x)(∀y)Hxy & (∀x) ~ Tx

 *d. (∀z)(Lz � Hz)

 (∀x) ~ (Hx ∨ ~ Bx)

 ~ Lb

 e. (∀z)[Kzz ⊃ (Mz & Nz)]

 (∃z) ~ Nz

 (∃x) ~ Kxx

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga Assumption

 2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3 (∀x) ~ (Fx ⊃ Ga) 2 QN
 4 ~ (Fb ⊃ Ga) 3 ∀E
 5 ~ (~ Fb ∨ Ga) 4 Impl
 6 ~ ~ Fb & ~ Ga 5 DeM
 7 ~ ~ Fb 6 &E
 8 Fb 7 DN
 9 (∀x)Fx 8 ∀I
10 Ga 1, 9 ⊃E
11 ~ Ga 6 &E
12 (∃x)(Fx ⊃ Ga) 2–11 ~ E

ber38413_ch10_474-544.indd Page 524 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 524 12/4/12 1:38 PM F-400F-400

 *f. (∃x)[~ Bxm & (∀y)(Cy ⊃ ~ Gxy)]

 (∀z)[~ (∀y)(Wy ⊃ Gzy) ⊃ Bzm]

 (∀x)(Cx ⊃ ~ Wx)

 g. (∃z)Qz ⊃ (∀w)(Lww ⊃ ~ Hw)

 (∃x)Bx ⊃ (∀y)(Ay ⊃ Hy)

 (∃w)(Qw & Bw) ⊃ (∀y)(Lyy ⊃ ~ Ay)

 *h. (∀y)(Kby ⊃ ~ Hy)

 (∀x)[(∃y)(Kby & Qxy) ⊃ (∃z)(~ Hz & Qxz)]

 i. ~ (∀x)(~ Gx ∨ ~ Hx) ⊃ (∀x)[Cx & (∀y)(Ly ⊃ Axy)]

 (∃x)[Hx & (∀y)(Ly ⊃ Axy)] ⊃ (∀x)(Fx & (∀y)Bxy)

 ~ (∀x)(∀y)Bxy ⊃ (∀x)(~ Gx ∨ ~ Hx)

 3. Show that each of the following sentences is a theorem in PD�.
 a. (∀x)(Ax ⊃ Bx) ⊃ (∀x)(Bx ∨ ~ Ax)
 *b. (∀x)(Ax ⊃ (Ax ⊃ Bx)) ⊃ (∀x)(Ax ⊃ Bx)
 c. ~ (∃x)(Ax ∨ Bx) ⊃ (∀x) ~ Ax
 *d. (∀x)(Ax ⊃ Bx) ∨ (∃x)Ax
 e. ((∃x)Ax ⊃ (∃x)Bx) ⊃ (∃x)(Ax ⊃ Bx)
 *f. (∀x)(∃y)(Ax ∨ By) � (∃y)(∀x)(Ax ∨ By)

 4. Show that the members of each of the following pairs of sentences are equiva-
lent in PD�.

 a. ~ (∀x)(Ax ⊃ Bx) (∃x)(Ax & ~ Bx)
 *b. (∃x)(∃y)Axy ⊃ Aab (∃x)(∃y)Axy � Aab
 c. ~ (∀x) ~ [(Ax & Bx) ⊃ Cx] (∃x)[~ Ax ∨ (~ Cx ⊃ ~ Bx)]
 *d. ~ (∀x)(∃y)[(Ax & Bx) ∨ Cy] (∃x)(∀y)[~ (Cy ∨ Ax) ∨ ~ (Cy ∨ Bx)]
 e. (∀x)(Ax � Bx) ~ (∃x)[(~ Ax ∨ ~ Bx) & (Ax ∨ Bx)]
 *f. (∀x)(Ax & (∃y) ~ Bxy) ~ (∃x)[~ Ax ∨ (∀y)(Bxy & Bxy)]

 5. Show that each of the following sets of sentences is inconsistent in PD�.
 a. {[(∀x)(Mx � Jx) & ~ Mc] & (∀x)Jx}
 *b. {~ Fa, ~ (∃x)(~ Fx ∨ ~ Fx)}
 c. {(∀x)(∀y)Lxy ⊃ ~ (∃z)Tz, (∀x)(∀y)Lxy ⊃ ((∃w)Cww ∨ (∃z)Tz),
 (~ (∀x)(∀y)Lxy ∨ (∀z)Bzzk) & (~ (∀z)Bzzk ∨ ~ (∃w)Cww), (∀x)(∀y)Lxy}
 *d. {(∃x)(∀y)(Hxy ⊃ (∀w)Jww), (∃x) ~ Jxx & ~ (∃x) ~ Hxm}
 e. {(∀x)(∀y)(Gxy ⊃ Hc), (∃x)Gix & (∀x)(∀y)(∀z)Lxyz, ~ Lcib ∨ ~ (Hc ∨ Hc)}
 *f. {(∀x)[(Sx & Bxx) ⊃ Kax], (∀x)(Hx ⊃ Bxx), (∃x)(Sx & Hx),
 (∀x) ~ (Kax & Hx)}

 6. a. Show that Universal Introduction and Universal Elimination are eliminable
in PD� by developing routines that can be used in place of these rules to
obtain the same results. (Hint: Consider using Quantifi er Negation, Existen-
tial Introduction, and Existential Elimination.)

 *b. Show that Existential Introduction and Existential Elimination are elimi-
nable in PD� by developing routines that can be used in place of these
rules to obtain the same results. (Hint: Consider using Quantifi er Negation,
Universal Introduction, and Universal Elimination.)

10.3 THE DERIVATION SYSTEM PD� 525

ber38413_ch10_474-544.indd Page 525 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 525 12/4/12 1:38 PM F-400F-400

526 PREDICATE LOGIC: DERIVATIONS

Identity Introduction is unlike other introduction rules in that it appeals to no
previous line or lines of the derivation. Rather, it allows sentences of the spec-
ifi ed form to be entered on any line of any derivation, no matter what sen-
tences, if any, occur earlier in the derivation.1 Identity Introduction is truth-
preserving because every sentence that can be introduced by it, that is every
sentence of the form (∀x)x � x, is quantifi cationally true. These sentences
simply say of each thing that it is identical to itself. Here is a very simple deri-
vation of a theorem using the rule Identity Introduction:

 10.4 THE DERIVATION SYSTEM PDE

The symbolic language PLE extends PL to include sentences that contain func-
tors and the identity predicate. Accordingly we need to extend the derivation
system PD developed earlier in this chapter to allow for derivations that include
these new sentences of PLE. We shall do so by adding an introduction rule and
an elimination rule for the identity predicate, and then modifying the quanti-
fi er rules so as to allow for sentences containing functors. The resulting extended
predicate derivation system is called PDE.

The introduction rule for ‘�’ is

Identity Introduction (�I)

� (∀x)x � x

Derive: a � a

1 (∀y)y � y �I
2 a � a 1 ∀E

Notice that the sentence on line 1 is not an assumption.
The elimination rule for “�” is

Identity Elimination (�E)

 t1 � t2 t1 � t2
 P or P

� P(t1//t2) � P(t2//t1)

where t1 and t2 are closed terms.

The notation

P(t1//t2)

is read ‘P with one or more occurrences of t2 replaced by t1’. Similarly P(t2//t1)
is read ‘P with one or more occurrences of t1 replaced by t2’. Recall that the
closed terms of PLE are the individual constants together with complex terms

1Metaformulas (such as ‘(∀x)x�x’) that specify sentences that can be introduced without reference to previous
sentences occurring in a derivation are usually called axiom schemas. An axiom schema is a metaformula such
that every formula having its form may be entered in a derivation. Some derivation systems rely primarily on
axiom schemas; these are called axiomatic systems.

ber38413_ch10_474-544.indd Page 526 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 526 12/4/12 1:38 PM F-400F-400

10.4 THE DERIVATION SYSTEM PDE 527

such as ‘f(a,b)’ and ‘f(g(a,b),c)’ that contain no variables. Identity Elimination
permits the replacement of one closed term with another in a sentence only if
those closed terms designate the same thing (t1 � t2 says that t1 and t2 do
designate the same thing). The following simple examples illustrate the use of
this rule:

Derive: Hda

1 c � d Assumption
2 Hca Assumption

3 Hda 1, 2 �E

Derive: (∀x)(Fxh ⊃ Ghx)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Ghy) 1, 2 �E
4 Fah ⊃ Gha 3 ∀E
5 (∀x)(Fxh ⊃ Ghx) 4 ∀I

The following three derivations are very similar but not identical:

In the fi rst derivation we replaced, at line 3, both occurrences of ‘e’ in line 2
with ‘h’. In the second derivation we replaced, at line 3, only the second occur-
rence of ‘e’ in line 2 with ‘h’. And in the third derivation we replaced, at line 3,
only the fi rst occurrence of ‘e’ in line 2 with ‘h’. All of these are appropriate
uses of Identity Elimination, as are the following:

Derive: (∀x)(Fxe ⊃ Ghx)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fye ⊃ Ghy) 1, 2 �E
4 Fae ⊃ Gha 3 ∀E
5 (∀x)(Fxe ⊃ Ghx) 4 ∀I

Derive: (∀x)(Fxh ⊃ Gex)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Gey) 1, 2 �E
4 Fah ⊃ Gea 3 ∀E
5 (∀x)(Fxh ⊃ Gex) 4 ∀I

Derive: Hc

1 (∀x)Hf(a,x) Assumption
2 c � f(a,b) Assumption

3 Hf(a,b) 1 ∀E
4 Hc 2, 3 �E

ber38413_ch10_474-544.indd Page 527 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 527 12/4/12 1:38 PM F-400F-400

528 PREDICATE LOGIC: DERIVATIONS

But these additional sentences do not advance us toward our goal of ‘Wab’.
There are alternative ways of deriving ‘Wab’. Here is one:

Derive: Wab

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a � b Assumption

4 Hab ⊃ Wab 1, 3 �E
5 Wab 2, 4 ⊃E

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a � b Assumption

4 Hab ⊃ Wab 1, 3 �E
5 Hbb ⊃ Wbb 1, 3 �E
6 Haa ⊃ Wbb 1, 3 �E
7 Hbb ⊃ Waa 1, 3 �E
8 Hba ⊃ Wba 1, 3 �E

Note that from lines 1 through 3 we can obtain, by Identity Elimination, not
just ‘Hab ⊃ Wab’ but a host of additional sentences, including those on lines
5 through 8 below:

Consider next these derivations:

Derive: Wab

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a � b Assumption

4 Haa 2, 3 �E
5 Waa 1, 4 ⊃E
6 Wab 3, 5 �E

Derive: Had

1 c � d Assumption
2 Hac Assumption

3 Had 1, 2 �E

Derive: (∀x)(Fxh ⊃ Ghx)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Ghy) 1, 2 �E
4 Fah ⊃ Gha 3 ∀E
5 (∀x)(Fxh ⊃ Ghx) 4 ∀I

ber38413_ch10_474-544.indd Page 528 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 528 12/4/12 1:38 PM F-400F-400

Identity Elimination allows us, given a sentence of the form t1 � t2, to replace
any occurrence of t1 with t2 in any sentence that contains t1, and vice versa.
In our example we have the identity sentence ‘a � b’ and that very sentence
contains ‘a’, so we can replace the ‘a’ in ‘a � b’ with ‘b’, and we do so at
line 3.

10.4 THE DERIVATION SYSTEM PDE 529

Derive: Hc

1 (∀x)Hf(a,x) Assumption
2 c � f(a,b) Assumption

3 Hf(a,b) 1 ∀E
4 Hc 2, 3 �E

Derive: (a � b & b � c) ⊃ a � c

1 a � b & b � c A / ⊃I

2 a � b 1 &E
3 b � c 1 &E
4 a � c 2, 3 �E
5 (a � b & b � c) ⊃ a � c 1–4 ⊃I

The sentence ‘(a � b & b � c) ⊃ a � c’ says that if a is identical to
b, and b is identical to c, then a is identical to c. As expected, it is a theorem
of PDE. Here is a proof:

In considering this example one might well ask whether the justifi cation for
line 4 indicates that we have replaced ‘b’ in line 3 with ‘a’, based on the iden-
tity at line 2, or that we replaced ‘b’ in line 2 with ‘c’ based on the identity at
line 3. Fortunately, both replacements are allowed so the justifi cation can be
understood either way.

As we have already seen, sentences of the form t1 � t1 are normally
obtained by Identity Introduction, as in

1 b � b ⊃ Fb Assumption

2 (∀x)x � x �I
3 b � b 2 ∀E
4 Fb 1, 3 ⊃E

1 b � b ⊃ Fb Assumption
2 a � b Assumption

3 b � b 2, 2 �E
4 Fb 1, 3 ⊃E

In special circumstances we can obtain a sentence of the form a � a by Identity
Elimination. This happens when the a of a � a already occurs in an accessible
identity sentence. Here is an example:

ber38413_ch10_474-544.indd Page 529 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 529 12/4/12 1:38 PM F-400F-400

530 PREDICATE LOGIC: DERIVATIONS

As we saw in Chapter 7, the identity predicate is useful in symbolizing
sentences containing defi nite descriptions. Consider the argument:

The Roman general who defeated Pompey conquered Gaul.

Julius Caesar is a Roman general, and he defeated Pompey.

Julius Caesar conquered Gaul.

This argument can be symbolized in PLE as:

This argument is valid, for if there is one and only one thing that is a Roman
general and defeated Pompey, and if Julius Caesar is a Roman general who
defeated Pompey, then Caesar is the Roman general who defeated Pompey,
and is therefore someone who conquered Gaul. We can show this argument
is valid in PDE:

(∃x)[((Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y � x]) & Cxg]

Rj & Djp

Cjg

Here is another argument that involves a defi nite description.

Derive: Cjg
 1 (∃x) [((Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y � x]) & Cxg] Assumption
 2 Rj & Djp Assumption

 3 ((Ra & Dap) & (∀y)[(Ry & Dyp) ⊃ y � a]) & Cag A / ∃E

 4 (Ra & Dap) & (∀y)[(Ry & Dyp) ⊃ y � a] 3 &E
 5 (∀y)[(Ry & Dyp) ⊃ y � a] 4 &E
 6 (Rj & Djp) ⊃ j � a 5 ∀E
 7 j � a 2, 6 ⊃E
 8 Cag 3 &E
 9 Cjg 7, 8 �E
10 Cjg 1, 3–9 ∃E

The primary author of the Declaration of Independence was a slave owner.

Thomas Jefferson was the primary author of the Declaration of Independence.

Thomas Jefferson was a slave owner.

The conclusion of this argument can be symbolized as ‘Ot’ where ‘Ox’ is
interpreted as ‘x owns at least one slave’ and ‘t’ designates Thomas Jefferson.
To symbolize the premises we need a way of saying there was one and
only one primary author of the Declaration of Independence. We can do
so as follows:

(∃x)[Px & (∀z)(Pz ⊃ z � x)]

ber38413_ch10_474-544.indd Page 530 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 530 12/4/12 1:38 PM F-400F-400

We are here using ‘Px’ for ‘x is a primary author of the Declaration of Inde-
pendence’. This sentence of PL can be read as ‘There is at least one thing x
that is a primary author of the Declaration of Independence and each thing z
that is a primary author of the Declaration of Independence is identical to x.’
The full argument can now be symbolized as:

10.4 THE DERIVATION SYSTEM PDE 531

We can construct a derivation that establishes that the above argument is valid
in PDE. Here is a start:

(∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox)

Pt & (∀z)(Pz ⊃ z � t)

Ot

Our intent is to derive the fi nal goal using Existential Elimination. If we can
derive ‘Ot’ within the Existential Elimination subderivation we will be able to
move it out of that subderivation because ‘t’ is not the instantiating constant
in our assumption at line 3 (it is for this reason that we picked a constant other
than ‘t’ as our instantiating constant at line 3). ‘Oa’ can be derived immediately
from line 3 by Conjunction Elimination. What remains is to get to a point
where we can use Identity Elimination to infer ‘Ot’ from ‘Oa’ and an appropri-
ate identity sentence, either ‘a � t’ or ‘t � a’.

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox) Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3 [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

G Ot
G Ot 1, 2–— ∃E

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox) Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3 [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

 4 Oa 3 &E

G a � t
G Ot 4, — �E
G Ot 1, 2–— ∃E

ber38413_ch10_474-544.indd Page 531 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 531 12/4/12 1:38 PM F-400F-400

532 PREDICATE LOGIC: DERIVATIONS

Identity sentences are obtainable both from line 2 and from line 3. This suggests
two strategies, and both will work. First we will try to obtain ‘a � t’. We start by
obtaining ‘(∀z)(Pz ⊃ z � t)’ from line 2 by Conjuction Elimination and then
‘Pa ⊃ a � t’ by Universal Elimination. And ‘Pa’ is available from line 3 by two
uses of Conjunction Elimination. This will allow us to complete the derivation:

We could also have completed our derivation by deriving the identity sentence
‘t � a’ as follows:

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x) & Ox) Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3 [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

 4 Oa 3 &E
 5 (∀z)(Pz ⊃ z � t) 2 &E
 6 Pa ⊃ a � t 5 ∀E
 7 Pa & (∀z)(Pz ⊃ z � a) 3 &E
 8 Pa 7 &E
 9 a � t 6, 8 ⊃E
10 Ot 4, 9 �E
11 Ot 1, 3–10 ∃E

When we formulated Identity Elimination we did so in a way that allows
for the presence of complex terms in PDE. Two of our quantifi er rules, Exis-
tential Introduction and Universal Elimination, need to be modifi ed so that
they too allow for the presence of complex terms. The other rules of PD func-
tion without modifi cation as part of PDE. We recast Existential Introduction
and Universal Elimination as follows:

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3 [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

 4 Oa 3 &E
 5 Pa & (∀z)(Pz ⊃ z � a) 3 &E
 6 (∀z)(Pz ⊃ z � a) 5 &E
 7 Pt ⊃ t � a 6 ∀E
 8 Pt 2 &E
 9 t � a 7, 8 ⊃E
10 Ot 4, 9 �E
11 Ot 1, 3–10 ∃E

where t is any closed term

Existential Introduction (∃I)

 P(t/x)

� (∃x)P

ber38413_ch10_474-544.indd Page 532 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 532 12/4/12 1:38 PM F-400F-400

10.4 THE DERIVATION SYSTEM PDE 533

Consider the following simple derivations:

Universal Elimination (∀E)

 (∀x)P

� P(t/x)

where t is any closed term

In the fi rst derivation ‘Fa’ is the substitution instance associated with both the
use of Universal Elimination and the use of Existential Introduction. In the
terminology of previous sections, ‘a’ is the instantiating constant for these uses
of the two rules. In the second derivation ‘Fg(a)’ is the substitution instance
associated with both the use of Universal Elimination and the use of Existen-
tial Introduction. However, the instantiating term in the use of Universal
Elimination is ‘g(a)’ (we have replaced ‘y’ with ‘g(a)’) whereas the instantiat-
ing term in the use of Existential Introduction is ‘a’, not ‘g(a)’ (we replaced
the constant ‘a’ with the variable ‘z’). Since the individual term used to form
substitution instances associated with the quantifi er rules is sometimes an indi-
vidual constant and sometimes a closed complex term, we will hereafter speak,
with reference to substitution instances and uses of Existential Introduction
and Universal Elimination, of the instantiating term rather than the instantiat-
ing constant.

But we will not modify Existential Elimination and Universal Introduc-
tion so as to allow substitution instances used in these rules to be formed from
complex terms and so we will continue to talk, with reference to these latter
rules, only of the instantiating constant. To understand why we will not modify
Universal Introduction to allow for complex instantiating terms, consider the
following attempt at a derivation:

Derive: (∃z)Fz

1 (∀y)Fy Assumption

2 Fa 1 ∀E
3 (∃z)Fz 2 ∃I

Derive: (∃z)Fg(z)

1 (∀y)Fy Assumption

2 Fg(a) 1 ∀E
3 (∃z)Fg(z) 2 ∃I

Derive: (∀x)Ex

1 (∀x)Ed(x) Assumption

2 Ed(a) 1 ∀E
3 (∀x)Ex 2 ∀I MISTAKE!

ber38413_ch10_474-544.indd Page 533 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 533 12/4/12 1:38 PM F-400F-400

534 PREDICATE LOGIC: DERIVATIONS

If this were a legitimate derivation in PDE then the following argument would
be valid in PDE:

(∀x)Ed(x)

(∀x)Ex

We do not want this argument to be valid in PDE. If our UD is the set of
positive integers and we interpret ‘Ex’ as ‘x is even’ and ‘d(x)’ as ‘x times 2’,
the premise says that each positive integer is such that 2 times that integer is
even, which is true. The conclusion says that each positive integer is even, which
is false. The problem is in the attempted inference of line 3 from line 2. The
expression ‘d(a)’ cannot designate an arbitrarily selected member of the UD;
rather it can refer only to a member of the UD that is the value of the function
d for some member a of the UD. On the interpretation given previously, for
example, ‘d(a)’ can only refer to even numbers.

For similar reasons, we continue to require that in using Existential
Elimination the instantiating term must be an individual constant, not a closed
complex term. Here is a failed derivation that would be allowed if we dropped
this requirement:

To see why we do not want this derivation to go through suppose we again
use the set of positive integers as our UD and interpret ‘Ox’ as ‘x is odd’
and ‘d(x)’ as ‘x times 2’. Then the primary assumption says that there is a
positive integer that is odd, which is true. The sentence on line 4 says there
is an integer that is 2 times some positive integer and that is odd, and this
is false. The problem is that the assumption on line 2 contains information
about the individual that is assumed to have property O—namely that it is
the value of the function d for some member of the UD, while the existen-
tially quantifi ed sentence on line 1 does not contain this information. The
requirement that the assumption for an Existential Elimination subderiva-
tion be a substitution instance formed from a constant guarantees that the
assumption does not contain information that is absent from the existentially
quantifi ed sentence. Hence we continue to require that in using Existential
Elimination the assumed substitution instance must be formed using an indi-
vidual constant.

Having said that, it is important to note that while for Universal Intro-
duction and Existential Elimination the instantiating term must be a constant,

Derive: (∃x)Od(x)

1 (∃x)Ox Assumption

2 Od(a) A / ∃E MISTAKE!

3 (∃x)Od(x) 2 ∃I
4 (∃x)Od(x) 1, 2–3 ∃E MISTAKE!

ber38413_ch10_474-544.indd Page 534 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 534 12/4/12 1:38 PM F-400F-400

the substitution instances associated with these rules may contain complex
terms. For example, the following is a correctly done derivation:

10.4 THE DERIVATION SYSTEM PDE 535

Here ‘a’ is the instantiating constant for the use of Universal Introduction: In
moving from line 2 to line 3 we replaced ‘a’ with ‘y’. But ‘d(a)’ is the instan-
tiating term associated with Universal Elimination. In moving from line 1 to
line 2 we replace ‘x’ with ‘d(a)’. So ‘Ed(a)’ is a substitution instance of ‘(∀x)
Ex’ because it is the result of replacing every occurrence of ‘x’ in ‘Ex’ with
‘d(a)’ and ‘Ed(a)’ is a substitution instance of ‘(∀y)Ed(y)’ because it is the
result of replacing every occurrence of ‘y’ in ‘Ed(y)’ with ‘a’.

And the following is an allowed use of Existential Elimination:

Derive: (∀y)Ed(y)

1 (∀x)Ex Assumption

2 Ed(a) 1 ∀∃
3 (∀y)Ed(y) 2 ∀I

Derive:

1 (∃x)Fg(x) Assumption

2 Fg(b) A / ∃E

3 (∃z)Fz 2 ∃I
4 (∃z)Fz 1, 2–3 ∃E

Here ‘Fg(b)’ is a substitution instance of ‘(∃x)Fg(x)’ and also a substi-
tution instance of ‘(∃z)Fz’. In its role as a substitution instance of ‘(∃x)Fg(x)’,
the instantiating term is ‘b’; in its role as a substitution instance of ‘(∃z)Fz’,
‘g(b)’ is the instantiating term.

Here are the quantifi er rules, modifi ed as appropriate for the system PDE.

Universal Elimination (∀E)

 (∀x)P

� P(t/x)

Existential Introduction (∃I)

 P(t/x)

� (∃x)P

where t is a closed term

Existential Elimination (∃E)

 (∃x)P
 P(a/x)

 Q
� Q

provided that:
 (i) a does not occur in an open

assumption.
 (ii) a does not occur in (∃x)P.
 (iii) a does not occur in Q.

Universal Introduction (∀I)

 P(a/x)

� (∀x)P

provided that:
 (i) a does not occur in an open

assumption.
 (ii) a does not occur in (∀x)P.

where a is an individual constant.

ber38413_ch10_474-544.indd Page 535 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 535 12/4/12 1:38 PM F-400F-400

536 PREDICATE LOGIC: DERIVATIONS

The defi nitions of the syntactic properties of sentences and sets of
sentences in PDE (equivalence, validity, etc.) are all carried over from PD, sub-
stituting ‘PDE’ for ‘PD’ in each of the defi nitions.

In the rest of this section we will illustrate the use of the quantifi er
rules, as modifi ed for PDE, by doing a series of derivations that establish various
syntactic properties of sentences and sets of sentences of PLE.

ARGUMENTS

We begin by showing that the following argument is valid in PDE.

(∀x)(∀y)(Fx ⊃ Gxy)
(∃x)Ff(x)

(∃x)(∃y)Gxy

Derive: (∃x)(∃y)Gxy

 1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
 2 (∃x)Ff(x) Assumption

 3 Ff(a) A / ∃E

G (∃x)(∃y)Gxy
G (∃x)(∃y)Gxy 2, 3–— ∃E

Derive: (∃x)(∃y)Gxy

 1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
 2 (∃x)Ff(x) Assumption

 3 Ff(a) A / ∃E

 4 (∀y)(Ff(a) ⊃ Gf(a)y) 1 ∀E
 5 Ff(a) ⊃ Gf(a)b 4 ∀E

G (∃x)(∃y)Gxy
G (∃x)(∃y)Gxy 2, 3–— 3E

Since the second premise is an existentially quantifi ed sentence we will use
Existential Elimination as our primary strategy:

Two applications of Universal Elimination produce a material conditional that
has ‘Ff(a)’ as its antecedent:

ber38413_ch10_474-544.indd Page 536 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 536 12/4/12 1:38 PM F-400F-400

We can derive ‘Gf(a)b’ from lines 3 and 5 by Conditional Elimination, and
then we can derive our current goal with two applications of Existential
Introduction:

10.4 THE DERIVATION SYSTEM PDE 537

Both Universal Elimination and Existential Introduction allow the associated
substitution instance to be formed from a closed complex term, as we have
done here (the substitution instance on line 4 of the universally quantifi ed
sentence on line 1 is formed using the complex term ‘f(a)’, as is the substitu-
tion instance on line 7 of the existentially quantifi ed sentence on line 8).

We next show that the following argument is valid in PDE:

Derive: (∃x)(∃y)Gxy

1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
2 (∃x)Ff(x) Assumption

3 Ff(a) A / ∃E

4 (∀y)(Ff(a) ⊃ Gf(a)y) 1 ∀E
5 Ff(a) ⊃ Gf(a)b 4 ∀E
6 Gf(a)b 3, 5 ⊃E
7 (∃y)Gf(a)y 6 ∃I
8 (∃x)(∃y)Gxy 7 ∃I
9 (∃x)(∃y)Gxy 2, 3–8 ∃E

We will proceed much as in the previous example, using Existential Elimination
as our primary strategy. But this example also requires the use of Identity
Elimination:

a � g(b)
(∀x)(Fxa ⊃ (∀y)Gyx)
(∃y)Fyg(b)

(∃x)(∀y)Gyx

At line 6 we replaced ‘g(b)’ in ‘Fcg(b)’ with ‘a’.

Derive: (∃x)(∀y)Gyx

1 a � g(b) Assumption
2 (∀x)(Fxa ⊃ (∀y)Gyx) Assumption
3 (∃y)Fyg(b) Assumption

4 Fcg(b) A / ∃E

5 Fca ⊃ (∀y)Gyc 2 ∀E
6 Fca 1, 4 �E
7 (∀y)Gya 5, 6 ⊃E
8 (∃x)(∀y)Gyx 7 ∃I
9 (∃x)(∀y)Gyx 3, 4–8 ∃E

ber38413_ch10_474-544.indd Page 537 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 537 12/4/12 1:38 PM F-400F-400

538 PREDICATE LOGIC: DERIVATIONS

THEOREMS

The sentence ‘(∀z)(∀y)(z � y ⊃ y � z)’ says of each pair of things that if the
fi rst member of the pair is identical to the second, then the second is identical
to the fi rst. Our derivation will end with two uses of Universal Introduction:

Derive: (∀z)(∀y)(z � y ⊃ y � z)

G b � c ⊃ c � b
G (∀y)(b � y ⊃ y � b) — ∀I
G (∀z)(∀y)(z � y ⊃ y � z) — ∀I

It is important that we use two different constants to form the goal at the third
line from the bottom. If we had picked ‘b � b ⊃ b � b’ as our goal we would
not be able to derive ‘(∀y)(b � y ⊃ y � b)’ by Universal Introduction, as the
second restriction on that rule prohibits the instantiating term from occurring
in the sentence that is derived by the rule. We will use Conditional Introduc-
tion to derive the goal ‘b � c ⊃ c � b’:

Derive: (∀z)(∀y)(z � y ⊃ y � z)

 1 b � c A / ⊃I

G c � b
G b � c ⊃ c � b 1–— ⊃I
G (∀y)(b � y ⊃ y � b) — ∀I
G (∀z)(∀y)(z � y ⊃ y � z) — ∀I

We can fi nish the derivation by using Identity Introduction to derive ‘(∀y)y � y’
(or any other sentence of this form), then deriving either ‘b � b’ or ‘c �
‘c’—it doesn’t matter which—by Universal Elimination and then using Identity
Elimination to derive ‘c � b’:

Derive: (∀z)(∀y)(z � y ⊃ y � z)

1 b � c A / ⊃I

2 (∀y)y � y �I
3 c � c 2 ∀E
4 c � b 1, 3 �E
5 b � c ⊃ c � b 1–4 ⊃I
6 (∀y)(b � y ⊃ y � b) 5 ∀I
7 (∀z)(∀y)(z � y ⊃ y � z) 6 ∀I

Once we have ‘c � c’ at line 3 we can use Identity Elimination, replacing the
second occurrence of ‘c’ in ‘c � c’ with ‘b’, based on the identity at line 1.

ber38413_ch10_474-544.indd Page 538 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 538 12/4/12 1:38 PM F-400F-400

10.4 THE DERIVATION SYSTEM PDE 539

The sentence ‘(∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y]’ is also a
theorem of PDE. We will work from the bottom up, anticipating three applica-
tions of Universal Introduction:

Our current goal is a material conditional, so we will try to obtain it by Condi-
tional Introduction, assuming ‘(a � f(c) & b � f(c))’ and deriving ‘a � b’. The
latter can be derived using Conjunction Elimination and Identity Elimination:

Derive: (∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y]

 1

G [(a � f(c) & b � f(c)) ⊃ a � b]
G (∀z)[(a � f(z) & b � f(z)) ⊃ a � b] — ∀I
G (∀y)(∀z)[(a � f(z) & y � f(z)) ⊃ a � y] — ∀I
G (∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y] — ∀I

INCONSISTENCY

The set {(∀x)(Fx ∨ (∃y)Gxy), ~ Fg(a,b), g(a,b) � c, ~ (∃y)Gcy} is inconsistent
in PDE. To show this we need to derive a sentence Q and its negation ~ Q. We
will use ‘~ Fg(a,b)’ as ~ Q and we will use Disjunction Elimination as our pri-
mary strategy:

1 (a � f(c) & b � f(c)) A/ ⊃ I

2 a � f(c) 1 &E
3 b � f(c) 1 &E
4 a � b 2, 3 �E
5 [(a � f(c) & b � f(c)) ⊃ a � b] 1–4 ⊃E
6 (∀z)[(a � f(z) & b � f(z)) ⊃ a � b] 5 ∀I
7 (∀y)(∀z)[(a � f(z) & y � f(z)) ⊃ a � y] 6 ∀I
8 (∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y] 7 ∀I

Derive: Fg(a,b), ~ Fg(a,b)

1 (∀x)(Fx ∨ (∃y)Gxy) Assumption
2 ~ Fg(a,b) Assumption
3 g(a,b) � c Assumption
4 ~ (∃y)Gcy Assumption

5 Fc ∨ (∃y)Gcy 1 ∀E
6 Fc A / ∨E

7 Fg(a,b) 3, 6 �E

8 (∃y)Gcy A / ∨E

G Fg(a,b)
G Fg(a,b) 5, 6–7, 8–— ∨E
 ~ Fg(a,b) 2 R

ber38413_ch10_474-544.indd Page 539 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 539 12/4/12 1:38 PM F-400F-400

540 PREDICATE LOGIC: DERIVATIONS

Our remaining task is to derive ‘Fg(a,b)’. Doing so is not diffi cult because both
‘~ (∃y)Gcy’ and ‘(∃y)Gcy’ are available to us, at lines 4 and 8, respectively. So
we will use Negation Elimination to complete the derivation:

Derive: Fg(a,b), ~ Fg(a,b)

 1 (∀y)(Fx ∨ (∃y)Gxy) Assumption
 2 ~ Fg(a,b) Assumption
 3 g(a,b) � c Assumption
 4 ~ (∃y)Gcy Assumption

 5 Fc ∨ (∃y)Gcy 1 ∀E
 6 Fc A / ∨E

 7 Fg(a,b) 3, 6 �E

 8 (∃y)Gcy A / ∨E

 9 ~ Fg(a,b) A / ~ E

10 (∃y)Gcy 8 R
11 ~ (∃y)Gcy 4 R
12 Fg(a,b) 9–11 ~ E
13 Fg(a,b) 5, 6–7, 8–12 ∨E
14 ~ Fg(a,b) 2 R

There is an important difference between PD� and our latest system,
PDE. Although both are extensions of PD in the sense that each adds new rules
to PD, PD� is not stronger than PD. Everything derivable in PD� is derivable
in PD. However, PDE, with two new identity rules and modifi cations of two of
PD’s quantifi er rules, allows us to derive results in PDE that are not derivable
in PD. The previous examples in this section involving the identity predicate
and complex terms illustrate this.

However, it should be clear that we can augment the rules of PDE with
the additional rules of PD� to form a derivation system PDE� that is equivalent
to PDE. Here is a short derivation in PDE�:

Derive: ~ (∃x)f(x) � x

1 (∀x)(∀y)(f(x) � y ⊃ ~ f(y) � x) Assumption

2 f(a) � a A / ~ I

3 (∀y)(f(a) � y ⊃ ~ f(y) � a) 1 ∀E
4 f(a) � a ⊃ ~ f(a) � a) 3 ∀E
5 ~ f(a) � a 2, 4 ⊃E
6 f(a) � a 2 R
7 ~ f(a) � a 2–6 ~ I
8 (∀x) ~ f(x) � x 7 ∀I
9 ~ (∃x)f(x) � x 8 QN

ber38413_ch10_474-544.indd Page 540 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 540 12/4/12 1:38 PM F-400F-400

 10.4E EXERCISES

 1. Show that each of the following is a theorem in PDE.
 a. a � b ⊃ b � a
 *b. (a � b & b � c) ⊃ a � c
 c. (~ a � b & b � c) ⊃ ~ a � c
 *d. ~ a � b � ~ b � a
 e. ~ a � c ⊃ (~ a � b ∨ ~ b � c)

 2. Show that each of the following is valid in PDE.

 a. a � b & ~ Bab

 ~ (∀x)Bxx

 *b. Ge ⊃ d � e

 Ge ⊃ He

 Ge ⊃ Hd

 c. (∀z)[Gz ⊃ (∀y)(Ky ⊃ Hzy)]

 (Ki & Gj) & i � j

 Hii

 *d. (∃x)(Hx & Mx)

 Ms & ~ Hs

 (∃x)[(Hx & Mx) & ~ x � s]

 e. a � b

 Ka ∨ ~ Kb

 3. Show that each of the following is a theorem in PDE.
 a. (∀x)(x � x ∨ ~ x � x)
 *b. (∀x)(∀y)(x � x & y � y)
 c. (∀x)(∀y)(x � y � y � x)
 *d. (∀x)(∀y)(∀z)[(x � y & y � z) ⊃ x � z]
 e. ~ (∃x) ~ x � x

 4. Symbolize each of the following arguments in PLE and show that each argu-
ment is valid in PDE.

 a. The number 2 is not identical to 4. The numbers 2 and 4 are both even num-
bers. Therefore there are at least two different even numbers.

 *b. Hyde killed some innocent person. But Jekyll is Hyde. Jekyll is a doctor. Hence
some doctor killed some innocent person.

 c. Shakespeare didn’t admire himself, but the queen admired Bacon. Thus
Shakespeare isn’t Bacon since Bacon admired everybody who was admired by
somebody.

 *d. Rebecca loves those and only those who love her. The brother of Charlie loves
Rebecca. Sam is Charlie’s brother. So Sam and Rebecca love each other.

10.4 THE DERIVATION SYSTEM PDE 541

ber38413_ch10_474-544.indd Page 541 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 541 12/4/12 1:38 PM F-400F-400

542 PREDICATE LOGIC: DERIVATIONS

 e. Somebody robbed Peter and paid Paul. Peter didn’t rob himself. Paul didn’t pay
himself. Therefore the person who robbed Peter and paid Paul was neither Peter
nor Paul.

 5. Which of the following illustrate mistakes in PDE? Explain what each mistake is.

 a. 1 (∃x)Sx Assumption

 2 Sg(f) A / ∃E

 3 (∃x)Sg(x) 2 ∃I
 4 (∃x)Sg(x) 1, 2–3 ∃E

 *b. 1 (∃x)Sg(x,x) Assumption

 2 Sg(i,i) A / ∃E

 3 (∃x)Sg(i,x) 2 ∃I
 4 (∃x)Sg(i,x) 1, 2–3 ∃E

 c. 1 (∃x)Hxg(x) Assumption

 2 Heg(e) A / ∃E

 3 (∃y)Hyg(y) 2 ∃I
 4 (∃y)Hyg(y) 1, 2–3 ∃E

 *d. 1 (∀x)Rf(x) Assumption

 2 Rf(a) 1 ∀E
 3 (∀z)Rf(z) 2 ∀I

 e. 1 (∀x)Lxxx Assumption

 2 Lf(a,a)a 1 ∀E
 3 (∀x)Lf(x,x)x 2 ∀I

 *f. 1 (∀x)Mx Assumption

 2 Mf(f(a)) 1 ∀E
 3 (∃x)Mf(x) 2 ∃I

 g. 1 (∀x)Rf(x,x) Assumption

 2 Rf(c,c) 1 ∀E
 3 (∀y)Ry 2 ∀I

 *h. 1 (∀x)Jx Assumption

 2 Jf(f(a)) 1 ∀E
 3 (∃y)Jf(f(y)) 2 ∃I

ber38413_ch10_474-544.indd Page 542 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 542 12/4/12 1:38 PM F-400F-400

 6. Show that each of the following is a theorem in PDE.
 a. (∀x)(∃y)f(x) � y
 *b. (∀x)(∀y)(∀z)[(f(x) � g(x,y) & g(x,y) � h(x,y,z)) ⊃ f(x) � h(x,y,z)]
 c. (∀x)Ff(x) ⊃ (∀x)Ff(g(x))
 *d. (∀x)[~ f(x) � x ⊃ (∀y)(f(x) � y ⊃ ~ x � y)]
 e. (∀x)(f(f(x)) � x ⊃ f(f(f(f(x)))) � x)
 *f. (∀x)(∀y)(∀z)[(f(g(x)) � y & f(y) � z) ⊃ f(f(g(x))) � z]
 g. (∀x)(∀y)[(f(x) � y & f(y) � x) ⊃ x � f(f(x))]

 7. Show that each of the following is valid in PDE.

 a. (∀x)(Bx ⊃ Gxf(x))

 (∀x)Bf(x)

 (∀x)Gf(x)f(f(x))

 *b. (∀x)(Kx ∨ Hg(x))

 (∀x)(Kg(x) ∨ Hg(g(x)))

 c. (∀x)(∀y)(f(x) � y ⊃ Myxc)

 ~ Mbac & ~ Mabc

 ~ f(a) � b

 *d. ~ (∃x)Rx

 (∀x) ~ Rf(x,g(x))

 e. (∃x)(∀y)(∀z)Lxyz

 (∃x)Lxf(x)g(x)

 *f. (∀x)[~ Lxf(x) ∨ (∃y)Ng(y)]

 (∃x)Lf(x)f(f(x)) ⊃ (∃x)Ng(y)

 g. (∀x)[Zx ⊃ (∀y)(~ Dxy � Hf(f(y)))]

 (∀x)(Zx & ~ Hx)

 (∀x)Df(x)f(x)

 *h. (∀x)(∀y)(∃z)Sf(x)yz

 (∀x)(∀y)(∀z)(Sxyz ⊃ ~ (Cxyz ∨ Mzyx))

 (∃x)(∃y) ~ (∀z)Mzg(y)f(g(x))

 i. 1 (∀x)Jx Assumption

 2 Jf(g(a,b)) 1 ∀E
 3 (∃x)Jf(g(x,b)) 2 ∃I

 *j. 1 (∀x)Lx Assumption

 2 Lf(a,a) 1 ∀E
 3 (∀x)Lf(a,x) 2 ∀I

10.4 THE DERIVATION SYSTEM PDE 543

ber38413_ch10_474-544.indd Page 543 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 543 12/4/12 1:38 PM F-400F-400

544 PREDICATE LOGIC: DERIVATIONS

GLOSSARY2

DERIVABILITY IN PD: A sentence P of PL is derivable in PD from a set � of sentences
of PL if and only if there is a derivation in PD in which all the primary assump-
tions are members of � and P occurs within the scope of only those assumptions.

VALIDITY IN PD: An argument of PL is valid in PD if and only if the conclusion of
the argument is derivable in PD from the set consisting of the premises. An argu-
ment of PL is invalid in PD if and only if it is not valid in PD.

THEOREM IN PD: A sentence P of PL is a theorem in PD if and only if P is derivable
in PD from the empty set.

EQUIVALENCE IN PD: Sentences P and Q of PL are equivalent in PD if and only if Q
is derivable in PD from {P} and P is derivable in PD from {Q}.

INCONSISTENCY IN PD: A set � of sentences of PL is inconsistent in PD if and only
if there is a sentence P of PL such that both P and ~ P are derivable in PD from
�. A set � of sentences of PL is consistent in PD if and only if it is not inconsist-
ent in PD.

2Similar defi nitions hold for the derivation systems PD�, PDE, and PDE�.

ber38413_ch10_474-544.indd Page 544 12/4/12 1:38 PM ber38413_ch10_474-544.indd Page 544 12/4/12 1:38 PM F-400F-400

11.1 SEMANTIC PRELIMINARIES FOR PL 545

Chapter 11

11.1 SEMANTIC PRELIMINARIES FOR PL

PREDICATE LOGIC:
METATHEORY

In this chapter, we shall establish four major results: the soundness and com-
pleteness of the natural deduction systems PD, PD�, and PDE, and the sound-
ness and completeness of the truth-tree method developed in Chapter 9. The
results we establish are part of the metatheory of predicate logic.

In our proofs of the adequacy of the natural deduction systems and the
tree method, we shall use some fundamental semantic results that may seem
obvious but that nevertheless must be proved. The purpose of this section is
to establish these results. The reader may skim over this section on the fi rst
reading without working through all the proofs but should keep in mind that
later metatheoretic proofs depend on the results presented here.

Given any formula P, variable x, and constant a, let P(a/x) be the
formula that results from replacing every free occurrence of x in P with a. Our
fi rst result establishes that every variable assignment dI treats P(a/x) exactly as

Section 11.1 presents a variety of semantic results that will be used to prove
important metatheorems for PL, while Section 11.2 does the same for PLE. Sec-
tion 11.3 proves that the derivation systems PD, PD�, and PDE are sound for
predicate logic, and Section 11.4 proves that these systems are complete. Section
11.5 proves that the tree method is sound for predicate logic, while Section 11.6
proves that it is complete.

ber38413_ch11_545-612.indd Page 545 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 545 12/6/12 2:27 PM F-400F-400

546 PREDICATE LOGIC: METATHEORY

dI[I(a)/x] treats P. If dI satisfi es P(a/x), then the variable assignment that is
just like dI except that it assigns the denotation of a to x will satisfy P, and vice
versa. This should not be surprising, for if x is used to refer to exactly the same
thing as a, we would expect P and P(a/x) to behave the same way.

11.1.1: Let P be a formula of PL, let P(a/x) be the formula that
results from replacing every free occurrence of x in P with an
 individual constant a, let I be an interpretation, and let dI be a
 variable assignment for I. Then dI satisfi es P(a/x) on I if and only
if dI[I(a)/x] satisfi es P on I.

To prove the result, we shall use mathematical induction on the number of
occurrences of logical operators—truth-functional connectives and quantifi ers—
that occur in P.

Basis clause: If P is a formula that contains zero occurrences of logical
operators, then dI satisfi es P(a/x) if and only if dI[I(a)/x] satisfi es P.
Proof of basis clause: If P contains zero occurrences of logical operators,
then P is either a sentence letter or a formula of the form At1 . . . tn,
where A is a predicate and t1, . . . , tn are individual constants or variables.
If P is a sentence letter, then P(a/x) is simply P—a sentence letter
alone does not contain any variables to be replaced. dI satisfi es P(a/x),
then, if and only if I(P) � T. And dI[I(a)/x] satisfi es P if and only if
I(P) � T. So dI satisfi es P(a/x) if and only if dI[I(a)/x] satisfi es P.

If P has the form At1 . . . tn, then P(a/x) is At1� . . . tn�, where ti�
is a if ti is x and ti� is just ti otherwise. By the defi nition of satisfaction,

• dI satisfi es At1� . . . tn� if and only if �denI,dI
(t1�), denI,dI

(t2�),
. . . , denI,dI

(tn�)� ∈I(A).
 (Recall from Chapter 8 that if ti is a variable, denI,dI

(ti) �
dI(ti), and if ti is an individual constant, denI,dI

(ti) � I(ti).)
• dI[I(a)/x] satisfi es At1 . . . tn if and only if �denI,dI[I(a)/x] (t1),

denI,dI[I(a)/x](t2), . . . , denI,dI[I(a)/x](tn)� ∈ I(A).

But now we note that

• The n-tuples �denI,dI
(t1�), denI,dI

(t2�), . . . , denI,dI
(tn�)� and

�denI,dI[I(a)/x](t1), denI,dI[I(a)/x](t2), . . . , denI,dI[I(a)/x](tn)�
are identical.

Consider: If ti is a constant, then ti� is ti and so denI,dI
(ti�) � I(ti) and denI,dI[I(a)/x]

(ti) � I(ti). If ti is any variable other than x, then ti� is ti and so denI,dI
(ti�) � dI(ti)

� dI[I(a)/x](ti) � denI,dI[I(a)/x](ti)—the assignment of I(a) to x in the variable
assignment does not affect the value assigned to ti in this case. If ti is the variable
x, then the variant ensures that the denotations of x and a coincide: ti� is a and
denI,dI

(a) � I(a) � dI[I(a)/x](x) � denI,dI[I(a)/x](x).

ber38413_ch11_545-612.indd Page 546 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 546 12/6/12 2:27 PM F-400F-400

11.1 SEMANTIC PRELIMINARIES FOR PL 547

We conclude that dI satisfi es At1� . . . tn� if and only if dI[I(a)/x] satis-
fi es At1 . . . tn.

The basis clause—in particular, the case where an atomic formula has
the form At1 . . . tn—is the crux of our proof. It will be straightforward to show
that the addition of connectives and quantifi ers to build larger formulas does
not change matters. The inductive step in the proof of 11.1.1 is

Inductive step: If every formula P with k or fewer occurrences of logical
operators is such that dI satisfi es P(a/x) if and only if dI[I(a)/x] satis-
fi es P, then the same is true of every formula P with k � 1 occurrences
of logical operators.
Proof of inductive step: Letting k be an arbitrary positive integer, we
assume that the inductive hypothesis holds—that our claim is true of
every formula with k or fewer occurrences of logical operators. To show
that it follows that the claim is also true of every formula P with k � 1
occurrences of logical operators, we consider each form that P may have.

Case 1: P has the form ~ Q. Then P(a/x) is ~ Q(a/x), the
negation of Q(a/x) (that is, any replacements of x that were made
had to be made within Q).

• By the defi nition of satisfaction, dI satisfi es ~ Q(a/x) if
and only if it does not satisfy Q(a/x).

• Because Q(a/x) contains fewer than k � 1 occurrences of
logical operators, it follows from the inductive hypothesis
that d fails to satisfy Q(a/x) if and only if dI[I(a)/x] fails
to satisfy Q.

• By the defi nition of satisfaction, dI[I(a)/x] fails to satisfy
Q if and only if dI[I(a)/x] does satisfy ~ Q.

Therefore, dI satisfi es ~ Q(a/x) if and only if dI[I(a)/x] satisfi es ~ Q.

Case 2: P has the form Q & R. Then P(a/x) is Q(a/x) & R(a/x),

that is, all replacements of x occurred within Q and R.

• By the defi nition of satisfaction, dI satisfi es Q(a/x) &
R(a/x) if and only if dI satisfi es Q(a/x) and dI satisfi es
R(a/x).

• Both conjuncts contain fewer than k � 1 occurrences of
logical operators, so, by the inductive hypothesis, dI satis-
fi es Q(a/x) if and only if dI[I(a)/x] satisfi es Q, and dI
satisfi es R(a/x) if and only if dI[I(a)/x] satisfi es R.

• By the defi nition of satisfaction, dI[I(a)/x] satisfi es both Q
and R if and only if dI[I(a)/x] satisfi es Q & R.

ber38413_ch11_545-612.indd Page 547 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 547 12/6/12 2:27 PM F-400F-400

548 PREDICATE LOGIC: METATHEORY

Therefore, dI satisfi es Q(a/x) & R(a/x) if and only if dI[I(a)/x] satis-
fi es Q & R.

Cases 3–5: The proofs for the cases in which P has one of the
forms Q ∨ R, Q ⊃ R, and Q � R are similar to that of Case 2 and are
left as exercises.

Case 6: P has the form (∀y)Q. We must consider two possibili-
ties. If y is distinct from the variable x that a is replacing in (∀y)Q,
then P(a/x) is (∀y)Q(a/x)—all replacements of x are made within Q.

• By the defi nition of satisfaction, dI satisfi es (∀y)Q(a/x)
if and only if for every member u of the UD, dI[u/y]
 satisfi es Q(a/x).

• Because Q contains fewer than k � 1 occurrences of logi-
cal operators, it follows from the inductive hypothesis that
for every member u of the UD, dI[u/y] satisfi es Q(a/x) if
and only if dI[u/y, I(a)/x] satisfi es Q.

• Each variant dI[u/y, I(a)/x] is identical to dI[I(a)/x, u/y]
because x and y are distinct variables, and therefore neither
of the assignments within the brackets can override the other.

• So every member u of the UD is such that dI[u/y, I(a)/x]
satisfi es Q if and only if dI[I(a)/x, u/y] satisfi es Q.

• By the defi nition of satisfaction, every member u of the
UD is such that dI[I(a)/x, u/y]satisfi es Q if and only if
dI[I(a)/x] satisfi es (∀y)Q.

Therefore, in the case where y is distinct from the variable x that a is
replacing, dI satisfi es (∀y)Q(a/x) if and only if dI[I(a)/x] satisfi es (∀y)Q.

If P is (∀x)Q, where x is the variable that a is replacing, then
P(a/x) is also (∀x)Q. Because a replaces only free occurrences of x in
P and x does not occur free in P, no replacements are made within Q.

• By the defi nition of satisfaction, dI satisfi es (∀x)Q (which
is our P(a/x)) if and only if every member u of the UD is
such that dI[u/x] satisfi es Q.

• dI[I(a)/x] satisfi es (∀x)Q (which is our P) if and only every
member u of the UD is such that dI[I(a)/x, u/x] satisfi es Q.

• What is dI[I(a)/x, u/x]? This variable assignment is just
d[u/x]—the fi rst assignment made to x within the brack-
ets is overridden by the second.

• So every member u of the UD is such that dI[I(a)/x, u/x]
satisfi es Q if and only if every member u of the UD is such
that d[u/x] satisfi es Q.

Therefore, dI[I(a)/x] satisfi es (∀x)Q if and only if dI satisfi es (∀x)Q.

ber38413_ch11_545-612.indd Page 548 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 548 12/6/12 2:27 PM F-400F-400

11.1 SEMANTIC PRELIMINARIES FOR PL 549

Case 7: P has the form (∃y)Q. Again we consider two possibili-
ties. If y is distinct from the variable x that a is replacing, then P(a/x)
is (∃y)Q(a/x).

• By the defi nition of satisfaction, dI satisfi es (∃y)Q(a/x) if
and only if at least one member u of the UD is such that
dI[u/y] satisfi es Q(a/x).

• Because Q(a/x) contains fewer than k � 1 occurrences of
logical operators, it follows from the inductive hypothesis
that dI[u/y] satisfi es Q(a/x) if and only if dI[u/y, I(a)/x]
satisfi es Q.

• Because y and x are different variables, dI[u/y, I(a)/x] is
the same variable assignment as dI[I(a)/x, u/y].

• So dI[u/y, I(a)/x] satisfi es Q(a/x) if and only if
dI[I(a)/x, u/y] satisfi es Q.

• By the defi nition of satisfaction, dI[I(a)/x, u/y] satisfi es Q
if and only if dI[I(a)/x] satisfi es (∃y)Q.

It follows that in the case where y and x are different variables, dI satis-
fi es (∃y)Q(a/x) if and only if dI[I(a)/x] satisfi es (∃y)Q.

If P is (∃x)Q, where x is the variable that a is replacing, then
P(a/x) is (∃x)Q—no replacements are made within Q because x is not
free in (∃x)Q. So we must show in this case that dI[I(a)/x] satisfi es
(∃x)Q if and only if dI satisfi es (∃x)Q.

• By the defi nition of satisfaction, dI[I(a)/x] satisfi es (∃x)
Q if and only if at least one member u of the UD is such
that dI[I(a)/x, u/x] satisfi es Q.

• d[I(a)/x, u/x] is just d[u/x]—the second assignment to x
overrides the fi rst.

• So dI[I(a)/x, u/x] satisfi es Q if and only if dI[u/x] satisfi es Q.
• By the defi nition of satisfaction, dI[u/x] satisfi es Q if and

only if dI satisfi es (∃x)Q.

Therefore, dI[I(a)/x] satisfi es (∃x)Q if and only if dI satisfi es (∃x)Q.
That establishes the inductive step, so result 11.1.1 is also established—

every formula P is such that dI satisfi es P(a/x) on I if and only if dI[I(a)/x]
satisfi es P on I.

The next result will enable us to prove a claim that was made in
 Chapter 8: that for any interpretation and any sentence of PL, either all vari-
able assignments satisfy the sentence or none do. We used this claim in defi ning
truth and falsehood for sentences: A sentence is true on an interpretation if it is
satisfi ed by all variable assignments and false if it is satisfi ed by none. The reason
this claim turns out to be true is that there are no free variables in sentences.
Result 11.1.2 assures us that only the values that a variable assignment assigns

ber38413_ch11_545-612.indd Page 549 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 549 12/6/12 2:27 PM F-400F-400

550 PREDICATE LOGIC: METATHEORY

to the variables that are free in a formula play a role in determining whether
the formula is satisfi ed:

11.1.2: Let I be an interpretation, dI a variable assignment for I,
and P a formula of PL. Then dI satisfi es P on I if and only if every
variable assignment that assigns the same values to the free variables
in P as dI satisfi es P.

Proof: Let I be an interpretation, dI a variable assignment for I, and P
a formula of PL. We shall prove 11.1.2 by mathematical induction on
the number of occurrences of logical operators in P.
Basis clause: If P is a formula that contains zero occurrences of logical
operators, then dI satisfi es P if and only if every variable assignment
that assigns the same values to the free variables in P as dI satisfi es P.
Proof of basis clause: If P contains zero occurrences of logical opera-
tors, then P is either a sentence letter or a formula of the form At1 . . . tn.
If P is a sentence letter, then any variable assignment satisfi es P on I
if and only if I(P) � T. Therefore dI satisfi es P if and only if every
 variable assignment that assigns the same values to the free variables
in P as dI (that is, every variable assignment) satisfi es P.

If P has the form At1 . . . tn, then by the defi nition of satisfaction,

• dI satisfi es P if and only if �denI,dI
(t1), denI,dI

(t2), . . . ,
denI,dI

(tn)� ∈I(A).

And where dI� is a variable assignment that assigns the same values to
the free variables in P as dI,

• dI� satisfi es P if and only if �denI,dI�(t1), denI,dI�(t2), . . . ,
denI,dI�(tn)� ∈I(A).

But now we note that

• the n-tuples �denI,dI
(t1), denI,dI

(t2), . . . , denI,dI
(tn)� and

�denI,dI�(t1), denI,dI�(t2), . . . , denI,dI�(tn)� are identical.

For if ti is a constant, then denI,dI
(ti) � denI,dI�(ti) � I(ti). And if ti

is a variable, then ti is free in At1 . . . tn and, by our assumption, dI
and dI� assign the same value to ti. Hence, we conclude that dI satisfi es
At1 . . . tn if and only if every variable assignment dI� that assigns the
same values to the free variables in At1 . . . tn as dI satisfi es At1 . . . tn.
Inductive step: If every sentence P that has k or fewer occurrences of
logical operators is such that dI satisfi es P on I if and only if every vari-
able assignment that assigns the same values to the free variables in P
as dI satisfi es P, then the same is true of every sentence P that contains
k � 1 occurrences of logical operators.

ber38413_ch11_545-612.indd Page 550 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 550 12/6/12 2:27 PM F-400F-400

11.1 SEMANTIC PRELIMINARIES FOR PL 551

Proof of inductive step: Assume that, for an arbitrary positive integer
k, the inductive hypothesis is true. We shall show that on this assump-
tion our claim must also be true of every sentence P that contains
k � 1 occurrences of logical operators. Let I be an interpretation and
d a variable assignment for I. We consider each form that P may have.

Case 1: P has the form ~ Q.

• By the defi nition of satisfaction, dI satisfi es ~ Q if and only
if dI fails to satisfy Q.

• Because Q contains fewer than k � 1 occurrences of logi-
cal operators, it follows from the inductive hypothesis that
dI fails to satisfy Q if and only if every variable assignment
that assigns the same values to the free variables in Q fails
to satisfy Q.

• By the defi nition of satisfaction, every variable assignment that
assigns the same values to the free variables in Q as d fails to
satisfy Q if and only if every such assignment does satisfy ~ Q.

• The variable assignments that assign the same values to
the free variables in Q as d are the variable assignments
that assign the same values to the free variables of ~ Q as
d, because Q and ~ Q contain the same free variables.

Therefore, dI satisfi es ~ Q if and only if every variable assign-
ment that assigns the same values to the free variables in ~ Q
satisfi es ~ Q.

Case 2: P has the form Q ∨ R.

• By the defi nition of satisfaction, dI satisfi es Q ∨ R if and
only if either dI satisfi es Q or dI satisfi es R.

• Because Q and R each contain fewer than k � 1 occurrences
of logical operators, it follows by the inductive hypothesis
that dI satisfi es Q if and only if every variable assignment that
assigns the same values to the free variables in Q satisfi es Q,
and dI satisfi es R if and only if every variable assignment that
assigns the same values to the free variables in R satisfi es R.

• Therefore, dI satisfi es Q ∨ R if and only if either every
 variable assignment that assigns the same values to the free
 variables in Q satisfi es Q or every variable assignment that
assigns the same values to the free variables in R satisfi es R.

• We note that every variable that is free in Q is also free in
Q ∨ R, so every variable assignment that assigns the same
values as dI to the free variables in Q ∨ R is a variable assign-
ment that assigns the same values as dI to the free variables in
Q; and the same is true of R. (The converses do not hold.)

ber38413_ch11_545-612.indd Page 551 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 551 12/6/12 2:27 PM F-400F-400

552 PREDICATE LOGIC: METATHEORY

We conclude that dI satisfi es Q ∨ R if and only if every variable assign-
ment that assigns the same values as dI to the free variables in Q ∨ R
satisfi es Q ∨ R.

Cases 3–5: P has one of the forms Q & R, Q ⊃ R, or Q � R.
These cases are left as an exercise.

Case 6: P has the form (∀x)Q.

• By the defi nition of satisfaction, dI satisfi es (∀x)Q if and
only if every member u of the UD is such that dI[u/x]
 satisfi es Q.

• Because Q contains fewer than k � 1 occurrences of con-
nectives, it follows from the inductive hypothesis that every
member u of the UD is such that dI[u/x] satisfi es Q if
and only if every variable assignment that assigns the same
values to the free variables in Q as dI[u/x] satisfi es Q.

• It follows that d satisfi es (∀x)Q if and only if every mem-
ber u of the UD is such that every variable assignment
that assigns the same values to the free variables in Q as
dI[u/x] satisfi es Q.

• Because the variables other than x that are free in Q are
also free in (∀x)Q, every variable assignment that assigns
the same values to the free variables in Q as dI[u/x] is
a variant dI�[u/x] of a variable assignment dI� that assigns
the same values to the free variables in (∀x)Q as dI, and
vice versa.

• So dI satisfi es (∀x)Q if and only if every member u of
the UD is such that every variant dI�[u/x] of any variable
assignment dI� that assigns the same values to the free
 variables in (∀x)Q as dI satisfi es Q.

It follows by the defi nition of satisfaction that dI satisfi es (∀x)Q if and
only if every variable assignment that assigns the same values to the
free variables in (∀x)Q satisfi es (∀x)Q.

Case 7: P has the form (∃x)Q. This case is left as an exercise.

It follows immediately from 11.1.2 that

11.1.3: For any interpretation I and sentence P of PL, either every
variable assignment for I satisfi es P or no variable assignment for I
satisfi es P.

Proof: Let dI be any variable assignment. Because P is a sentence and
hence contains no free variables, every variable assignment for I assigns
the same values to the free variables in P as does dI. By result 11.1.2,

ber38413_ch11_545-612.indd Page 552 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 552 12/6/12 2:27 PM F-400F-400

11.1 SEMANTIC PRELIMINARIES FOR PL 553

then, dI satisfi es P if and only if every variable assignment satisfi es P.
Therefore either every variable assignment satisfi es P or none does.

Each of the following results, which can be established using results
11.1.1–11.1.3, states something that we would hope to be true of quantifi ed
sentences of PL.

11.1.4: For any universally quantifi ed sentence (∀x)P of PL, {(∀x)P}
quantifi cationally entails every substitution instance of (∀x)P.

Proof: Let (∀x)P be any universally quantifi ed sentence, let P(a/x)
be a substitution instance of (∀x)P, and let I be an interpretation on
which (∀x)P is true. Then, by 11.1.3, every variable assignment satisfi es
(∀x)P, and so, for every variable assignment dI and every member u of
the UD, dI[u/x] satisfi es P. In particular, for every variable assignment
dI the variant dI[I(a)/x] must satisfy P. By 11.1.1, then, every variable
assignment dI satisfi es P(a/x), so P(a/x) is also true on I.

11.1.5: Every substitution instance P(a/x) of an existentially quanti-
fi ed sentence (∃x)P is such that {P(a/x)} (∃x)P.

Proof: See Exercise 3.

11.1.4 and 11.1.5 are results that were used to motivate informally two
of the quantifi er rules in Chapter 10, Universal Elimination and Existential
Introduction, and they will play a role in our proof of the soundness of PD.
We also want to ensure that the motivations for Universal Introduction and
Existential Elimination were correct. We’ll fi rst establish two further results
that we shall need:

11.1.6: Let I and I� be interpretations that have the same UD and that
agree on the assignments made to each individual constant, predicate,
and sentence letter in a formula P (that is, I and I� assign the same
values to those symbols). Then each variable assignment dI satisfi es P
on interpretation I if and only if dI satisfi es P on interpretation I�.

In stating result 11.1.6, we have made use of the fact that if two interpretations
have the same UD, then every variable assignment for one interpretation is a
variable assignment for the other. The result should sound obvious: If two inter-
pretations with identical universes of discourse treat the nonlogical symbols of P
in the same way, and if the free variables are interpreted the same way on the
two interpretations, then P says the same thing on both interpretations, and the
values that I and I� assign to other symbols of PL have no bearing on what P says.

Proof of 11.1.6: Let P be a formula of PL and let I and I� be interpreta-
tions that have the same UD and that agree on the values assigned to

ber38413_ch11_545-612.indd Page 553 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 553 12/6/12 2:27 PM F-400F-400

554 PREDICATE LOGIC: METATHEORY

each nonlogical symbol in P. We shall prove, by mathematical induc-
tion on the number of occurrences of logical operators in P, that a
variable assignment satisfi es P on interpretation I if and only if it satis-
fi es P on interpretation I�.

Basis clause: If P contains zero occurrences of logical operators, then a
variable assignment dI satisfi es P on I if and only if it satisfi es P on I�.
Proof of basis clause: If P is a sentence letter, then dI satisfi es P on I
if and only if I(P) � T, and it satisfi es P on I� if and only if I�(P) �
T. By our assumption, I(P) � I�(P), so dI satisfi es P on I if and only
if dI satisfi es P on I�.

If P is an atomic formula At1 . . . tn,

• By the defi nition of satisfaction, dI satisfi es P on I if
and only if �denI,dI

(t1), denI,dI
(t2), . . . , denI,dI

(tn)� ∈
I(A), and dI satisfi es P on I� if and only if �denI�,dI

(t1),
denI�,dI

(t2)� . . . �denI�,dI
(tn)� ∈ I_(A).

• We note that �denI,dI
(t1), denI,dI

(t2), . . . , denI,dI
 (tn)�

and �denI�,dI
(t1), denI�,dI

(t2), . . . , denI�,dI
 (tn)� are identi-

cal. This is because if ti is a constant, then denI,dI
(t1)�I(ti),

denI�,dI
(t1) � I�(ti), and I�(ti) � I(ti) since by assumption, I

and I� assign the same values to the nonlogical symbols in
P; and if ti is a variable, then denI,dI

(ti)� dI(ti) � denI�,dI
(ti).

• Moreover, I(A) � I�(A), by stipulation.
• It follows that �denI,dI

(t1), denI,dI
(t2), . . . , denI,dI

(tn)� ∈
I(A) if and only if �denI�,dI

(t1), denI�,dI
(t2), . . . ,

denI�,dI
 (tn)� ∈ I�(A).

Therefore, dI satisfi es At1 . . . tn on I if and only if it does so on I�.

Inductive step: If every formula P that has k or fewer occurrences of logical
operators is such that a variable assignment satisfi es P on I if and only if it
satisfi es P on I�, then the same is true of every formula P that has k � 1 occur-
rences of logical operators.

Proof of inductive step: We consider the forms that P may have.

Case 1: P has the form ~ Q.

• By the defi nition of satisfaction, a variable assignment dI
 satisfi es ~ Q on I if and only if it fails to satisfy Q on I.

• Because Q contains fewer than k � 1 occurrences of logical
operators, it follows from the inductive hypothesis that a vari-
able assignment fails to satisfy Q on I if and only if it fails to
satisfy Q on I�.

• A variable assignment fails to satisfy Q on I� if and only if it
does satisfy ~ Q on I�.

ber38413_ch11_545-612.indd Page 554 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 554 12/6/12 2:27 PM F-400F-400

11.1 SEMANTIC PRELIMINARIES FOR PL 555

 Therefore, a variable assignment satisfi es ~ Q on I if and only if it
satisfi es ~ Q on I�.

Case 2: P has the form Q & R.

• By the defi nition of satisfaction, a variable assignment
 satisfi es Q & R on I if and only if it satisfi es both Q and R
on I.

• Q and R each contain k or fewer occurrences of logical
operators, and so by the inductive hypothesis, a variable
assignment satisfi es both Q and R on I if and only if it
 satisfi es both Q and R on I�.

• A variable assignment satisfi es both Q and R on I� if and
only if it satisfi es Q & R on I�.

 Therefore, a variable assignment satisfi es Q & R on I if and only if it
satisfi es Q & R on I�.

Cases 3–5: P has the form Q ∨ R, Q ⊃ R, or Q � R. We omit
proofs for these cases as they are strictly analogous to Case 2.

Case 6: P has the form (∀x)Q.

• By the defi nition of satisfaction, a variable assignment dI
satisfi es (∀x)Q on I if and only if every member u of I’s
UD is such that dI[u/x] satisfi es Q on I.

• dI satisfi es (∀x)Q on I� if and only if every member u of
I�’s UD (which is the same as I’s UD) is such that dI[u/x]
satisfi es Q on I�.

• Because Q contains fewer than k � 1 occurrences of logi-
cal operators, it follows from the inductive hypothesis that
every member u of the common UD is such that dI[u/x]
satisfi es Q on I if and only if dI[u/x] satisfi es Q on I�.

 Therefore, a variable assignment satisfi es (∀x)Q on I if and only if it
satisfi es (∀x)Q on I�.

Case 7: P has the form (∃x)Q. This case is similar to Case 6.

That completes the proof of the inductive step, and we may now conclude that
11.1.6 is true.

Result 11.1.7 follows as an immediate consequence of 11.1.6:

11.1.7: Let I and I� be interpretations that have the same UD and that
agree on the assignments made to each individual constant, predicate,
and sentence letter in a sentence P. Then P is true on I if and only if P
is true on I�.

ber38413_ch11_545-612.indd Page 555 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 555 12/6/12 2:27 PM F-400F-400

556 PREDICATE LOGIC: METATHEORY

Proof: Let I and I� be as specifi ed for a sentence P. If P is true on I, then,
by 11.1.2, P is satisfi ed by every variable assignment on I. By 11.1.6, this
is the case if and only if P is satisfi ed by every variable assignment on I�,
that is, if and only if P is true on I�.

With results 11.1.6 and 11.1.7 at hand, we may now show that our
motivations for the rules Universal Introduction and Existential Elimination
are correct.

11.1.8: Let a be a constant that does not occur in (∀x)P or in any
 member of the set �. Then if � P(a/x), � (∀x)P.

11.1.9: Let a be a constant that does not occur in the sentences (∃x)P
and Q and that does not occur in any member of the set �. If � (∃x)P
and � ∪ {P(a/x)} Q, then � Q as well.

We shall prove 11.1.8 here; 11.1.9 is left as an exercise.

Proof of 11.1.8: Assume that � P(a/x), where a does not occur in (∀x)
P or in any member of �. We shall assume, contrary to what we want to
show, that � does not quantifi cationally entail (∀x)P—that there is at
least one interpretation, call it I, on which every member of � is true and
(∀x)P is false. We shall use I as the basis for constructing an interpreta-
tion I� on which every member of � is true and the substitution instance
P(a/x) is false, contradicting our original assumption. Having done so,
we may conclude that if � does quantifi cationally entail P(a/x), it must
also quantifi cationally entail (∀x)P.

So assume that I is an interpretation on which every member
of � is true and on which (∀x)P is false. Because (∀x)P is false, there is
no variable assignment for I that satisfi es (∀x)P. That is, for every vari-
able assignment dI, there is at least one member u of the UD such that
dI[u/x] does not satisfy P. Choose one of these members, calling it u,
and let I� be the interpretation that is just like I except that it assigns u to
a (all other assignments made by I remain the same). It is now straight-
forward to show that every member of � is true on I� and P(a/x) is false.
That every member of � is true on I� follows from 11.1.7 because I and
I� assign the same values to all the nonlogical symbols of PL other than a,
and, by stipulation, a does not occur in any member of �.

On our assumption that d[u/x] does not satisfy P on I, it fol-
lows from 11.1.6 that d[u/x] does not satisfy P on I�. By the way we have
constructed I�, u is I�(a) and so dI[u/x] is dI[I�(a)/x]. Result 11.1.1 tells
us that dI[I�(a)/x] satisfi es P on I� if and only if dI satisfi es P(a/x) on I�.
So, because dI[I�(a)/x] does not satisfy P on I�, dI does not satisfy P(a/x)
on I�. By 11.1.3, then, no variable assignment satisfi es P(a/x) on I�, and
it is therefore false on this interpretation. But this contradicts our fi rst
assumption, that � P(a/x), and so we conclude that if � P(a/x), then
� (∀x)P as well.

ber38413_ch11_545-612.indd Page 556 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 556 12/6/12 2:27 PM F-400F-400

11.1 SEMANTIC PRELIMINARIES FOR PL 557

Result 11.1.8 tells us that the rule Universal Introduction is indeed truth-
preserving.

We shall state four more semantic results that will be needed in the sec-
tions that follow and that the reader should now be able to prove. The proofs
are left as exercises. The fi rst result relies on 11.1.6 and 11.1.7, much as the
proofs of 11.1.8 and 11.1.9 do.

11.1.10: If a does not occur in any member of the set � ∪ {(∃x)P}
and if the set is quantifi cationally consistent, then the set
� ∪ {(∃x)P, P(a/x)} is also quantifi cationally consistent.

Results 11.1.11 and 11.1.12 concern interpretations of a special sort: interpreta-
tions on which every member of the UD has a name.

11.1.11: Let I be an interpretation on which each member of the UD is
assigned to at least one individual constant. Then, if every substitution
instance of (∀x)P is true on I, so is (∀x)P.

11.1.12: Let I be an interpretation on which each member of the UD is
assigned to at least one individual constant. Then, if every substitution
instance of (∃x)P is false on I, so is (∃x)P.

Result 11.1.13 says that, if we rename the individual designated by some
individual constant in a sentence P with a constant that does not already occur in
P, then, for any interpretation on which P is true, there is a closely related inter-
pretation (one that refl ects the renaming) on which the new sentence is true:

11.1.13: Let P be a sentence of PL, let b be an individual constant that
does not occur in P, and let P(b/a) be the sentence that results from
replacing every occurrence of the individual constant a in P with b.
Then if P is true on an interpretation I, P(b/a) is true on the interpre-
tation I� that is just like I except that it assigns I(a) to b (I�(b) � I(a)).

 11.1E EXERCISES

 *1. Prove Cases 3–5 in the proof of result 11.1.1.

 *2. Prove Cases 3–5 and 7 in the proof of result 11.1.2.

 *3. Prove result 11.1.5.

 *4. Prove result 11.1.9.

 5. Prove result 11.1.10.

 6. Prove result 11.1.11.

 *7. Prove result 11.1.12.

 *8. Prove result 11.1.13.

ber38413_ch11_545-612.indd Page 557 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 557 12/6/12 2:27 PM F-400F-400

558 PREDICATE LOGIC: METATHEORY

 11.2 SEMANTIC PRELIMINARIES FOR PLE

When we turn to the metatheory for PLE, we shall need versions of Section
11.1’s semantic results that apply to sentences containing the identity operator
and complex terms. In this section we discuss the changes that must be made
in the statement of the semantic results and in their proofs.

Starting with 11.1.1, we note that we must generalize the result to read:

Let P be a formula of PLE, let P(t/x) be the formula that results from
replacing every free occurrence of x in P with a closed term t, let I be
an interpretation, let dI be a variable assignment for I, and let dI� �
dI[denI,dI

(t)/x] (that is, dI� is just like dI except that it assigns to x what-
ever dI and I assign to t). Then dI satisfi es P(t/x) on I if and only if dI�
satisfi es P on I.

To modify the proof of 11.1.1, we fi rst establish a result concerning complex
terms:

11.2.1: Let t be a complex term of PLE, let t(c/x) be the term that
results from replacing every occurrence of the variable x in t with a
closed term c, let I be an interpretation, let dI be a variable assignment
for I, and let dI� � dI[denI,dI

(c)/x]. Then denI,dI�(t) � denI,dI
(t(c/x)).

The result states that, if the sole difference between two complex terms t1 and
t2 is that one contains the closed term c where the other contains the variable
x, then t1 and t2 denote the same individual if x and c do. We shall prove
11.2.1 by mathematical induction on the number of occurrences of functors
in the term.

Basis clause: If a complex term t contains one functor, then
denI,dI�(t) � denI,dI

(t(c/x)).

Proof of basis clause: If a complex term t contains one functor, then
t is f(t1, . . . , tn) where f is a functor, each ti is either a variable or a
 constant, and t(c/x) is f(t1�, . . . , tn�) where ti� is ti if ti is not x, and ti�
is c if ti is x.

As in the proof of the basis clause of 11.1.1, we note that if ti is a con-
stant or variable other than x, denI,dI�(ti) � denI,dI

(ti)—since dI� does
not differ from dI in a way that affects the denotation of these terms.
If ti is x, then ti� is c, and by the defi nition of how dI� was constructed,
denI,dI�(x) � denI,dI

(c). So we know that �denI,dI�(t1), denI,dI�(t2), . . . ,
denI,dI�(tn)� and �denI,dI

(t1�), denI,dI
(t2�), . . . , denI,dI�(tn�)� are identi-

cal. Therefore the n�1-tuple �denI,dI�(t1), denI,dI�(t2), . . . , denI,dI�(tn),
u� ∈I(f) if and only if �denI,dI

(t1�), denI,dI
(t2�), . . . , denI,dI

(tn�),
u� ∈I(f), so denI,dI�(f(t1, . . . , tn)) � denI,dI

(f(t1�, . . . , tn�)).

ber38413_ch11_545-612.indd Page 558 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 558 12/6/12 2:27 PM F-400F-400

11.2 SEMANTIC PRELIMINARIES FOR PLE 559

Inductive step: If every complex term t that contains k or fewer functors
is such that denI,dI

(t) � denI,dI�(t(c/x)), then the same is true of every
complex term that contains k � 1 functors.

Proof of inductive step: We assume that the inductive hypothesis holds—
that the claim is true of every complex term that contains k or fewer func-
tors, for some arbitrary positive integer k. We must show that the claim is
also true of every complex term that contains k � 1 functors. If t contains
k � 1 functors, then t is f(t1, . . . , tn), where each ti has k or fewer functors,
and t(c/x) is f(t1�, . . . , tn�), where each ti� is ti(c/x). So each ti falls un-
der the inductive hypothesis; that is, denI,dI�(ti) � denI,dI

(ti(tc/x)), and so
�denI,dI�(t1), denI,dI�(t2), . . . , denI,dI�(tn)� and �denI,dI

(t1�), denI,dI
(t2�),

. . . , denI,dI
(tn�)� are identical. Therefore, �denI,dI�(t1), denI,dI�(t2),

. . . , denI,dI�(tn), u� ∈ I(f) if and only if �denI,dI
(t1�), denI,dI

(t2�), . . . ,
denI,dI

(tn�), u� ∈ I(f), so denI,dI�(f(t1, . . . , tn)) � denI,dI
(f(t1�, . . . , tn�)).

With result 11.2.1 in hand, we can modify the basis clause of result
11.1.1 as follows:

Basis clause: If P is a formula that contains zero occurrences of logical
operators, then dI satisfi es P(t/x) if and only if dI� satisfi es P.

Proof of basis clause: The proof is identical to the proof of 11.1.1, except
that we must change the second part of the basis clause so that it covers
complex terms and we must also consider atomic identity formulas.

If P has the form At1 . . . tn, then P(t/x) is At1� . . . tn�, where ti� is t
if ti is x and ti� is just ti otherwise. By the defi nition of satisfaction,

• dI satisfi es At1� . . . tn� if and only if �denI,dI
(t1�), denI,dI

(t2�),
. . . , denI,dI

(tn�)� ∈ I(A).
• dI� satisfi es At1 . . . tn if and only if �denI,dI�(t1), denI,dI�(t2),

 . . . , denI,dI�(tn)� ∈ I(A).

But now we note that

• �denI,dI
(t1�), denI,dI

(t2�), . . . , denI,dI
(tn�)� and

�denI,dI�(t1), denI,dI�(t2), . . . , denI,dI�(tn)� are identical.

Consider: If ti is a constant, then ti� is ti and so denI,dI
(ti�) � I(ti) �

denI,dI�(ti). If ti is a variable other than x, then ti� is ti and so denI,dI
(ti�)

� dI(ti) � dI�(ti) � denI,dI�(ti)—the variation in the variable assignment
does not affect the value assigned to ti in this case. If ti is the variable x,
then ti� is t and denI,dI

(t) � denI,dI�(x). (The variant dI� was defi ned in a
way that ensures that the denotations of x and of t coincide.) And if ti is a
complex term, it follows from 11.2.1 that denI,dI

(ti�) � denI,dI�(ti).
Because the n-tuples are the same, we conclude that dI satisfi es

At1� . . . tn� if and only if dI� satisfi es At1 . . . tn.

ber38413_ch11_545-612.indd Page 559 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 559 12/6/12 2:27 PM F-400F-400

560 PREDICATE LOGIC: METATHEORY

We must also add a new case to the proof of the basis clause, to cover formu-
las of the form t1 � t2. We leave this as an exercise. The rest of the proof of
11.1.1 remains the same, except that we replace dI[I(a)/x] with dI� (which is
shorthand for dI[denI,dI

(tc)/x]) throughout.
The proof of 11.1.2 is modifi ed in a similar way. First, we need to prove

11.2.2: Let I be an interpretation, dI a variable assignment for I, and t a
complex term of PLE. Then, for any variable assignment dI� that assigns
the same values to the variables in t as dI, denI,dI�(t) � denI,dI

(t).

Proof: See Exercise 2.

With this result at hand, the basis clause in the proof of 11.1.2 can now be
modifi ed to include atomic formulas containing complex terms and also to
include formulas of the form t1 � t2. Both modifi cations are left as exercises.

The proof of result 11.1.6 can be similarly modifi ed, once we have
established

11.2.3: Let t be a complex term of PLE and let I and I� be interpreta-
tions that have the same UD and that agree on the values assigned
to each individual constant and functor in t. Then, for any variable
 assignment dI, denI,dI

(t) � denI�,dI
(t).

Proof: See Exercise 11.2.3.

Result 11.1.6 must itself be changed to say:

Let I and I� be interpretations that have the same UD and that agree
on the assignments made to each individual constant, functor, predi-
cate, and sentence letter in a formula P. Then each variable assign-
ment dI satisfi es P on interpretation I if and only if dI satisfi es P on
interpretation I�.

The basis clause must be modifi ed to cover formulas containing complex terms,
as well as formulas of the form t1 � t2. This is left as an exercise.

The proofs of results 11.1.3–11.1.5 and 11.1.7–11.1.13 for PLE are the
same as for PL, except for the following changes:

1. The proofs must use the modifi ed versions of 11.1.1, 11.1.2, and
11.1.6 in order to apply to PLE.

2. Where ‘a’ and ‘P(a/x)’ are used in results 11.1.4 and 11.1.5 to
refer to substitution instances of P, we need to use ‘t’ and ‘P(t/x)’
instead to allow for instantiation with arbitrary closed terms.

3. In 11.1.7, I and I� must also agree on the assignments made to
each functor.

ber38413_ch11_545-612.indd Page 560 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 560 12/6/12 2:27 PM F-400F-400

11.3 THE SOUNDNESS OF PD, PD+, AND PDE 561

4. Results 1.1.11 and 1.1.12 are true for PLE in two senses: We can
change ‘every substitution instance’ to ‘every substitution instance
in which the instantiating individual term is a constant’, or we
can leave the phrase as it is, to include substitution instances with
instantiation by all closed terms, complex ones as well as constants.

Finally we shall need two additional semantic results for PLE:

11.2.4: For any closed terms t1 and t2, if P is a sentence that contains t1,
then {t1 � t2, P} P(t2//t1), and if P is a sentence that contains t2, then
{t1 � t2, P} P(t1//t2).

Proof: See Exercise 11.2.4.

11.2.5: If a quantifi cationally consistent set � contains a sentence with
a complex term f(a1, . . . , an), where a1, . . . , an are constants, and the
constant b does not occur in �, then the set � ∪ {b � f(a1, . . . , an)}
is also quantifi cationally consistent.

Proof: See Exercise 11.2.5.

 11.2E EXERCISES

 *1. Show the changes that must be made in the basis clauses of the proofs of the
following results so that they cover formulas containing complex terms and
formulas of the form t1 � t2:

 a. Result 11.1.1
 b. Result 11.1.2
 c. Result 11.1.6

 *2. Prove result 11.2.2.

 *3. Prove result 11.2.3.

 4. Prove result 11.2.4.

 *5. Prove result 11.2.5.

 11.3 THE SOUNDNESS OF PD, PD�, AND PDE

We shall now establish the soundness of our natural deduction systems. A natural
deduction system is said to be sound for predicate logic if every rule in that
 system is truth-preserving. The Soundness Metatheorem for PD is

Metatheorem 11.3.1: For any set � of sentences of PL and any sentence P of
PL, if � � P in PD, then � P.

ber38413_ch11_545-612.indd Page 561 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 561 12/6/12 2:27 PM F-400F-400

562 PREDICATE LOGIC: METATHEORY

(As in Chapter 6, we shall drop ‘in PD’ when we use the single turnstile in this
chapter, and we shall use the double turnstile to signify quantifi cational entailment.)
We shall prove metatheorem 11.3.1 by mathematical induction and in outline,
the proof will be like the proof that we presented in Chapter 6 establishing the
soundness of SD for sentential logic. In fact, much of the proof in Chapter 6 can
be used here—for in Chapter 6 we showed that the rules for the truth- functional
connectives are all sound for sentential logic, and with a change from talk of
truth-value assignments to talk of interpretations, those rules are established to be
sound for predicate logic in the same way. The bulk of the proof will therefore
concentrate on the rules for quantifi er introduction and elimination.

In our proof we shall use several semantic results that were presented
in Section 11.1 along with the following result:

11.3.2: If � P and �* is a superset of �, then �* P.

Proof: If every member of �* is true on an interpretation I, then every
member of its subset � is true on I, and if � P, then P is also true on I.
Hence �* P.

Letting Pi be the sentence at position i in a derivation and letting �i be the set
of assumptions that are open at position i (and hence within whose scope Pi
lies), the proof of Metatheorem 11.3.1 by mathematical induction is

Basis clause: �1 P1.
Inductive step: If �i Pi for every position i in a derivation such that i � k,
then �k�1 Pk�1.

Conclusion: Every sentence in a derivation is quantifi cationally entailed
by the set of open assumptions in whose scope it lies.

Proof of basis clause: The fi rst sentence in any derivation in PD is an
 assumption, and it lies in its own scope. �1 is just {P1}, and it is trivial that
{P1} P1.

Proof of inductive step: We assume the inductive hypothesis for
an arbitrary position k, that is, for every position i such that i � k,
�i Pi. We must show that the same holds for position k � 1. We shall
show this by considering the justifi cations that might be used for the
sentence at position k � 1.

Cases 1–12: Pk�1 is justifi ed by one of the rules of SD. For each
of these cases, use the corresponding case from the proof of the sound-
ness of SD in Section 6.3, changing talk of truth-value assignments to
talk of interpretations, and talk of truth-functional concepts (inconsist-
ency and so on) to talk of quantifi cational concepts.

ber38413_ch11_545-612.indd Page 562 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 562 12/6/12 2:27 PM F-400F-400

11.3 THE SOUNDNESS OF PD, PD+, AND PDE 563

Case 13: Pk�1 is justifi ed by Universal Elimination. Then Pk�1
is a sentence Q(a/x) derived as follows:

 h (∀x)Q

 k � 1 Q(a�x) h ∀E

where every assumption that is open at position h is also open at po-
sition k � 1, so �h is a subset of �k�1. By the inductive hypothesis,
�h (∀x)Q. It follows, by 11.3.2, that the superset �k�1 (∀x)Q. By
11.1.4, which says that a universally quantifi ed sentence quantifi cation-
ally entails every one of its substitution instances, {(∀x)Q} Q(a/x). So
�k�1 Q(a/x) as well.

Case 14: Pk�1 is justifi ed by Existential Introduction. Then
Pk�1 is a sentence (∃x)Q derived as follows:

 h Q(a�x)

 k � 1 (∃x)Q h ∃I

where every assumption that is open at position h is also open at
 position k � 1. So �h is a subset of �k�1. By the inductive hypothesis,
�h Q(a/x) and so, by 11.3.2, �k�1 Q(a/x). By 11.1.5, {Q(a/x)} (∃x)Q,
so �k�1 (∃x)Q as well.

Case 15: Pk�1 is justifi ed by Universal Introduction. Then Pk�1
is a sentence (∀x)Q derived as follows:

 h Q(a�x)

 k � 1 (∀x)Q h ∀I

where every assumption that is open at position h is also open at posi-
tion k � 1—so �h is a subset of �k�1—and in addition, a does not occur
in (∀x)Q or in any member of �k�1 because the rule ∀I stipulates this.
By the inductive hypothesis, �h Q(a/x). Because �h is a subset of �k�1,
it follows from 11.3.2 that �k�1 Q(a/x). And because a does not occur
in (∀x)Q or in any member of �k�1, it follows from 11.1.8, which we
repeat here, that �k�1 (∀x)Q as well:

11.1.8: Let a be a constant that does not occur in (∀x)P or in any
 member of the set �. Then if � P(a/x), � (∀x)P.

ber38413_ch11_545-612.indd Page 563 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 563 12/6/12 2:27 PM F-400F-400

564 PREDICATE LOGIC: METATHEORY

Case 16: Pk�1 is justifi ed by Existential Elimination. Then Pk�1
is derived as follows:

 h (∃x)Q

 j Q(a�x)

 m Pk�1

 k � 1 Pk�1 h, j–m ∃E

where every member of �h is a member of �k�1 and every member of
�m except Q(a/x) is a member of �k�1 (if any other assumptions in �m
were closed prior to position k � 1, then the subderivation j–m would
not be accessible at position k � 1). Because every member of �m except
Q(a/x) is a member of �k�1, �m is a subset of �k�1 ∪ {Q(a/x)}. More-
over, a does not occur in (∃x)Q, Pk�1, or any member of �k�1 because
the rule ∃E stipulates this. By the inductive hypothesis, �h (∃x)Q, and
so because �h is a subset of �k�1, it follows from 11.3.2 that �k�1 (∃x)Q.
Also by the inductive hypothesis, �m Pk�1, and so, because �m is a subset
of �k�1 ∪ {Q(a/x)}, it follows from 11.3.2 that �k�1 ∪ {Q(a/x)} Pk�1.
Because a does not occur in (∃x)Q, Pk�1, or any member of �k�1, it
 follows that �k�1 Pk�1, by 11.1.9, which we repeat here:

11.1.9: Let a be a constant that does not occur in the sentences (∃x)P
and Q and that does not occur in any member of the set �. If � (∃x)P
and � ∪ {P(a/x)} Q, then � Q as well.

This completes the proof of the inductive step; all of the derivation
rules of PD are truth-preserving. Note that, in establishing that the two quanti-
fi er rules ∀I and ∃E are truth-preserving, we made essential use of the restric-
tions that those rules place on the instantiating constant a—the restrictions
were included in those rules to ensure that they would be truth-preserving.
Having established that the inductive step is true, we may conclude that every
sentence in a derivation of PD is quantifi cationally entailed by the set of open
assumptions in whose scope it lies. Therefore, we have established Metatheorem
11.3.1: if � � P in PD, then � P.

The proof that PD� is sound for predicate logic involves the additional
steps of showing that the rules of replacement of SD�, the three derived rules
of SD�, and the rule Quantifi er Negation are all truth-preserving. The steps in
the soundness proof for SD� can be converted into steps showing that the rules
are truth-preserving for quantifi cational logic, by talking of interpretations and
variable assignments rather than truth-value assignments. We leave the proof
that Quantifi er Negation is truth-preserving as an exercise.

Finally, we can prove that PDE is sound for predicate logic with iden-
tity and functions by extending the inductive step of the proof for PD to cover
Identity Introduction and Identity Elimination and by making one change in

ber38413_ch11_545-612.indd Page 564 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 564 12/6/12 2:27 PM F-400F-400

11.3 THE SOUNDNESS OF PD, PD+, AND PDE 565

the basis clause of the soundness proof. We note that, since we have shown in
Section 11.2 that all of the semantic results in Section 11.1 can be extended
to predicate logic with identity and functions, a soundness proof for PDE can
refer to all of those results. In particular, even though the rules ∀E and ∃I
have been changed for PDE, the proof for Cases 13 and 14 in the inductive
step of the soundness proof for PD will remain the same except that in place of
the substitution instance Q(a/x) we now have a substitution instance Q(t/x),
where t is any closed term.

In the basis clause for PD, we said that the fi rst sentence in a derivation
is an assumption. This is not always the case in PDE; the fi rst sentence can be
an assumption, but it can also be a sentence of the form (∀x)x � x, introduced
by Identity Introduction. So the proof of the basis clause will look like this:

The fi rst sentence in a derivation in PDE is either an assumption or a
sentence introduced by Identity Introduction. If the fi rst sentence is an
assumption, then it lies in its own scope. In this case �1 is just {P1}, and it
is trivial that {P1} P1.

If the fi rst sentence is introduced by Identity Introduction, then
�1 is empty—there are no assumptions, and hence no open assumptions,
at that point. And ∅ truth-functionally entails every sentence of the form
(∀x)x � x, because every such sentence is quantifi cationally true. This
was proved in Exercise 8.7.10a.

We add the following two cases to the proof of the inductive step for PD:

Case 17: Pk�1 is introduced by Identity Introduction. Then
Pk�1 is a sentence of the form (∀x)x � x derived as follows:

k � 1 (∀x)x � x �I

Because ∅ quantifi cationally entails every sentence of the form (∀x)x � x
and ∅ is a subset of �k�1, it follows by 11.3.2 that �k�1 (∀x)x � x.

Case 18: Pk�1 is introduced by Identity Elimination. Then Pk�1
is derived as follows:

 h t1 � t2 h t1 � t2
 j P j P
 k � 1 P(t1//t2) h, j �E

or
 k � 1 P(t2//t1) h, j �E

where both �h and �j are subsets of �k�1 (because the sentences at posi-
tions h and j are accessible at position k � 1). By the inductive hypoth-
esis, �h t1 � t2 and �j P. Because these are both subsets of �k�1, it
follows by 11.3.2 that �k�1 t1 � t2 and �k�1 P. It follows from 11.2.4,
which we repeat here:

ber38413_ch11_545-612.indd Page 565 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 565 12/6/12 2:27 PM F-400F-400

566 PREDICATE LOGIC: METATHEORY

11.2.4: For any closed terms t1 and t2, if P is a sentence that contains t1,
then {t1 � t2, P} P(t2//t1), and if P is a sentence that contains t2, then
{t1 � t2, P} P(t1//t2).

that �k�1 Pk�1 as well.

These changes establish that PDE is sound for predicate logic with
identity and functions.

 11.3E EXERCISES

 1. Using Metatheorem 11.3.1, prove the following:
 a. Every argument of PL that is valid in PD is quantifi cationally valid.
 b. Every sentence of PL that is a theorem in PD is quantifi cationally true.
 *c. Every pair of sentences P and Q of PL that are equivalent in PD are quantifi -

cationally equivalent.

 2. Prove the following (to be used in Exercise 3) by mathematical induction:

 11.3.4. Let P be a formula of PL and Q a subformula of P. Let [P](Q1//Q)
be a sentence that is the result of replacing one or more occurrences of Q in
P with a formula Q1. If Q and Q1 contain the same nonlogical symbols and
variables, and if Q and Q1 are satisfi ed by exactly the same variable assignments
on any interpretation, then the same is true of P and [P](Q1//Q).

 3. Using 11.3.4, show how we can establish, as a step in an inductive proof of the
soundness of PD�, that Quantifi er Negation is truth-preserving for predicate logic.

 *4.a. Suppose that we changed the rule ∀I by eliminating the restriction that the
instantiating constant a in the sentence P(a/x) to which ∀I applies must not
occur in any open assumption. Explain why PD would not be sound for predi-
cate logic in this case.

 b. Suppose that we changed the rule ∃E by eliminating the restriction that the
instantiating constant a in the assumption P(a/x) must not occur in the sen-
tence Q that is derived. Explain why PD would not be sound for predicate logic
in this case.

 11.4 THE COMPLETENESS OF PD, PD�, AND PDE

In this section we shall prove that our natural deduction systems are complete
for predicate logic. A natural deduction system is complete for predicate logic
if, whenever a sentence is quantifi cationally entailed by a set of sentences, there
is at least one derivation of the sentence from members of that set in the natu-
ral deduction system. Metatheorem 11.4.1 is the Completeness Metatheorem for PD:

Metatheorem 11.4.1: For any set � of sentences of PL and any sentence P of
PL, if � P, then � � P in PD.

ber38413_ch11_545-612.indd Page 566 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 566 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 567

Our proof will be analogous to the proof of the completeness of SD for
sentential logic in Chapter 6. As in Chapter 6, the Completeness Metatheorem for
predicate logic follows almost immediately from the following result:

11.4.2: For any set of sentences of PL, if � is consistent in PD then � is
quantifi cationally consistent.

To see how Metatheorem 11.4.1 follows, assume that, for some set � and sen-
tence P, � P (this is the antecedent of the metatheorem). Then the set �
∪ {~ P} is quantifi cationally inconsistent (see Exercise 11.4.1). It follows, from
Lemma 11.4.2, that � ∪ {~ P} is also inconsistent in PD. And from this it follows
that � P in PD (see Exercise 11.4.2).

So the bulk of this section is devoted to proving result 11.4.2.
The major steps in the proof of the analogous result in Chapter 6

involved showing that every set of sentences that is consistent in SD is a subset
of a set of sentences that is maximally consistent in SD and showing that every
set of sentences that is maximally consistent in SD is also truth-functionally
consistent. In addition to maximal consistency in PD, which is defi ned as

A set � of sentences of PL is maximally consistent in PD if and only if � is
consistent in PD and for every sentence P of PD that is not a member of
�, � ∪ {P} is inconsistent in PD,

we shall rely on an additional property that sets of sentences of PL can have,
the property of ∃-completeness (read as existential completeness):

A set � of sentences of PL is ∃-complete if and only if, for each sentence in
� that has the form (∃x)P, at least one substitution instance of (∃x)P is
also a member of �.

We will be showing that every set of sentences of PL that is both maximally
consistent in PD and ∃-complete is also quantifi cationally consistent. However,
we will not show that every set of sentences that is consistent in PD is a subset
of a set that is both maximally consistent in PD and ∃-complete, for there is
a complication. To build a set that has these properties, we need to add the
substitution instances required by the property of ∃-completeness, and for this
we need to be sure that infi nitely many individual constants that do not already
occur in the set we are working with are available for the substitution instances.
We shall ensure that infi nitely many such constants are available by proving
11.4.2 through the following steps:

Step 1 in proof of 11.4.2: We shall prove in result 11.4.3 that, for any set
� that is consistent in PD, if we double the subscript of every individual
constant in � (so that every resulting subscript will be even), then the
resulting set �e is also consistent in PD. We call such a set an ‘evenly
subscripted set’.

ber38413_ch11_545-612.indd Page 567 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 567 12/6/12 2:27 PM F-400F-400

568 PREDICATE LOGIC: METATHEORY

Step 2 in proof of 11.4.2: We shall then show that, because there are
infi nitely many individual constants (namely, all the oddly subscripted
constants) that do not occur in the sentences of any evenly subscripted
set, every evenly subscripted set � that is consistent in PD is a subset of
a set that is maximally consistent in PD and that is ∃-complete. This will be
established as result 11.4.4.
Step 3 in proof of 11.4.2: We shall next show that there is a straightfor-
ward way to construct a model for every set that is maximally consistent
in PD and that is ∃-complete, from which it follows that every such set
is quantifi cationally consistent. This will be established as result 11.4.7.
It follows from this result that the evenly subscripted set from which we
built the maximally consistent set in Step 2 must be quantifi cationally
consistent.
Step 4 in proof of 11.4.2: Finally we shall show, in result 11.4.8, that
the set � that we began with must be quantifi cationally consistent
as well.

We begin with 11.4.3, which establishes Step 1:

11.4.3: Let � be a set of sentences of PL and let �e be the set that
results from doubling the subscript of every individual constant that
occurs in any member of �. Then if � is consistent in PD, �e is also
consistent in PD.

Proof: Assume that � is consistent in PD and that, contrary to what we
wish to prove, �e is inconsistent in PD. Then there is a derivation of
the sort

1 P1
2 P2
. .
n Pn

. .
k Q
. .
p ∼ Q

where P1, P2, . . . , Pn are members of �e. We shall convert this derivation
into a derivation that shows that � is inconsistent in PD, contradicting
our fi rst assumption. Our strategy, not surprisingly, will be to halve the
subscript of every evenly subscripted individual constant occurring in
the derivation, thus converting each of P1, P2, . . . , Pn back to a member
of the original set �. There is a complication, though—in so doing we
may end up with a sequence in which either an ∃E restriction or an a ∀I

ber38413_ch11_545-612.indd Page 568 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 568 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 569

restriction is violated. For example, let us suppose that � is {(∃x)Px,
(∀x)(Px ⊃ Qa1), ~ Qa1}. This set is clearly inconsistent. �e is the set
{(∃x)Px, (∀x)(Px ⊃ Qa2), ~ Qa2}. Now suppose that we show that �e is
inconsistent in PD by producing the following derivation:

1 (∃x)Px Assumption
2 (∀x)(Px ⊃ Qa2) Assumption
3 ~ Qa2 Assumption

4 Pa1 A / ∃E

5 Pa1 ⊃ Qa2 2 ∀E
6 Qa2 4, 5 ⊃E
7 Qa2 1, 4–6 ∃E
8 ~ Qa2 3 R

Halving each of the even subscripts in this derivation produces the fol-
lowing, which violates two of the ∃E restrictions because ‘a1’ now occurs
in the primary (thus undischarged) assumption on line 3 and also in the
sentence that is justifi ed by E on line 7:

1 (∃x)Px Assumption
2 (∀x)(Px ⊃ Qa1) Assumption
3 ~ Qa1 Assumption

4 Pa1 A / ∃E

5 Pa1 ⊃ Qa1 2 ∀E
6 Qa1 4, 5 ⊃E
7 Qa1 1, 4–6 ∃E MISTAKE!
8 ~ Qa1 3 R

We therefore fi rst take a precaution to ensure that this will not happen.
Let a1, . . . , am be the distinct constants that are used as instan-

tiating constants for ∃E and ∀I in the derivation of Q and ~ Q from
�e � {P1, . . . , Pn}, and let b1, . . . , bm be distinct constants that have
odd subscripts that are larger than the subscript of any constant occur-
ring in the derivation. (Because every derivation is a fi nite sequence,
we know that among the constants occurring in our derivation, there is
one that has the largest subscript—and, whatever this largest subscript
may be, there are infi nitely many odd numbers that are larger.) We
replace each sentence R in the original derivation with a sentence R*
that is the result of fi rst replacing each occurrence of ai in R, 1 � i � m,
with bi, and then halving every even subscript in a constant in the result-
ing sentence.

ber38413_ch11_545-612.indd Page 569 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 569 12/6/12 2:27 PM F-400F-400

570 PREDICATE LOGIC: METATHEORY

To continue with our example, we fi rst replace the instantiating constant
‘a1’ in the previous (good) derivation with ‘a3’:

1 (∃x)Px Assumption
2 (∀x)(Px ⊃ Qa2) Assumption
3 ~ Qa2 Assumption

4 Pa3 A / ∃E

5 Pa3 ⊃ Qa2 2 ∀E
7 Qa2 4, 5 ⊃E
8 Qa2 1, 4–5 ∃E
9 ~ Qa2 3 R

Then we halve the even subscripts:

1 (∃x)Px Assumption
2 (∀x)(Px ⊃ Qa1) Assumption
3 ~ Qa1 Assumption

4 Pa3 A / ∃E

5 Pa3 ⊃ Qa1 2 ∀E
7 Qa1 4, 5 ⊃E
8 Qa1 1, 4–5 ∃E
9 ~ Qa1 3 R

Here we have eliminated the violation of the ∃E restriction.
We claim that the resulting sequence will always be a legitimate

derivation in PD of Q* and ~ Q* from members of the set �. First note
that every new primary assumption Pi* is identical to the primary as-
sumption Pi in the dervation showing that �e is inconsistent in PD. This
is because none of a1, . . . , am can occur in a primary assumption of that
derivation (lest an instantiating constant restriction be violated). So P*
is just Pi with all its individual constant subscripts halved—that is, a mem-
ber of the original set � from which �e was constructed. It remains to be
shown that the resulting sequence counts as a derivation in PD—that
every sentence following the primary assumptions in that sequence can
be justifi ed. This is left as an exercise.

Step 2 in our proof of Lemma 11.4.2 is to establish the result

11.4.4: If � is an evenly subscripted set of sentences that is consistent in
PD, then � is a subset of at least one set of sentences that is both maxi-
mally consistent in PD and ∃-complete.

ber38413_ch11_545-612.indd Page 570 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 570 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 571

We shall establish 11.4.4 by showing how, beginning with �, to construct a super-
set that has the two properties. We assume that the sentences of PL have been
enumerated, that is, that they have been placed in a one-to-one correspondence
with the positive integers so that there is a fi rst sentence, a second sentence, a
third sentence, and so on. The enumeration can be done analogously to the
enumeration of the sentences of SL in Section 6.4; we leave proof of this as an
exercise (Exercise 11.4.4). We shall now build a sequence of sets �1, �2, �3, . . .
where �1 is an evenly subscripted set � that is consistent in PD, by considering
each sentence in the enumeration, adding the sentence if it can consistently be
added, and, if the added sentence is existentially quantifi ed, adding one of its
substitution instances as well. The sequence is constructed as follows:

1. �1 is �.
2. �i�1 is

 (i) �i ∪ {Pi}, if �i ∪ {Pi} is consistent in PD and Pi does not have
the form (∃x)P, or

 (ii) �i ∪ {Pi, Pi*}, if � ∪ {Pi} is consistent in PD and Pi has the form
(∃x)Q, where Pi* is a substitution instance Q(a/x) of (∃x)
Q and a is the alphabetically earliest constant1 that does not
 occur in Pi or in any sentence in �i, or

(iii) �i, if �i ∪ {Pi} is inconsistent in PD.

As an example of (ii), if �i is the set {(∀x)(Fxa ⊃ Gx), ~ Hc ∨ (∃y)Jyy} and Pi
is ‘(∃z)(Kz & (∀y)Fzy)’, then �i ∪ {Pi} is quantifi cationally consistent, and so Pi
will be added to the set—but we must add a substitution instance of Pi as well.
The alphabetically earliest constant that does not occur in Pi or in any mem-
ber of �i is ‘b’, and so this will be the instantiating constant. �i�1 is therefore

{(∀x)(Fxa ⊃ Gx), ~ Hc ∨ (∃y)Jyy, (∃z)(Kz & (∀y)Fzy), Kb & (∀y)Fby}

The reason for using an instantiating constant that does not already occur in �i
will become clear shortly when we prove that each set in the sequence is consist-
ent in PD. Here it is important to note that we can always meet the requirement
in condition (ii)—that a be a new constant—because for any set in the sequence,
there is always at least one individual constant that does not already occur in that
set. This is because the set that we started with is evenly subscripted, and so we
know that infi nitely many oddly subscripted individual constants do not occur in �.

Because the sequence �1, �2, �3, . . . is infi nitely long, there is no last
member in the set. We want a set that contains all the sentences in these sets,
so we let �* be the set that contains every sentence that occurs in some set in
the infi nite sequence �1, �2, �3, . . . We shall show that �* is both maximally
consistent in PD and ∃-complete. To show that �* is maximally consistent in

1This is an extended sense of 'alphabetical order' in which the nonsubscripted constants occur fi rst, in ordinary
alphabetical order, followed by the constants subscripted with '1'—in ordinary alphabetical order—and so on.

ber38413_ch11_545-612.indd Page 571 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 571 12/6/12 2:27 PM F-400F-400

572 PREDICATE LOGIC: METATHEORY

PD, we fi rst prove that each set �i in the sequence is consistent in PD, using
mathematical induction.

Basis clause: �1 is consistent in PD.
Proof of basis clause: By defi nition, �1 is �, a set that is consistent in PD.
Inductive step: If for every i � k, �i is consistent in PD, then �k�1 is
 consistent in PD.
Proof of inductive step: If �k�1 is formed in accordance with condi-
tion (i), then �k�1 is obviously consistent in PD. If �k�1 is formed in
accordance with condition (ii), then we need to show that it follows
that �i ∪ {Pi, Pi*}, which is what �k�1 was defi ned to be in this case, is
also consistent in PD. Because the instantiating constant in Pi* does
not occur in any member of �i ∪ {Pi}, the consistency of �k�1 follows
immediately from result 11.1.10, which we repeat here:

11.1.10: If a does not occur in any member of the set � ∪ {(∃x)P} and if
the set is quantifi cationally consistent, then the set � ∪ {(∃x)P, P(a/x)}
is also quantifi cationally consistent.

Finally, if �k�1 is formed in accordance with condition (iii), then �k�1 is
�k, and by the inductive hypothesis, �k is consistent in PD. So, no matter
which condition was applied in its construction, �k�1 is consistent in PD.

We conclude that every set in the sequence �1, �2, �3, . . . is consistent in PD.
We now need to show that the set �*, which contains all the sentences

that occur in any set in the sequence, is itself consistent in PD. We shall show this
by assuming that it is not consistent in PD and deriving a contradiction. So assume
that �* is not consistent in PD. Then there is a fi nite nonempty subset �� of �*
that is inconsistent in PD (the proof is analogous to that in the proof of 6.4.6).
Because �� is fi nite, some sentence in ��, say, Pj, occurs later in our enumeration
of the sentences of PL than any other sentence in ��. Every member of �� is thus a
member of �j�1, by the way we constructed the sets in the sequence. (If the ith sen-
tence is added to one of the sets, it is added by the time that �i�1 is constructed.)
It follows that �j�1 is also inconsistent in PD (the proof is analogous to the proof
of 6.4.7). But we have just proved that every set in the sequence is consistent in
PD, so we conclude that, contrary to our assumption, �* is also consistent in PD.

That �* is maximally consistent in PD is proved in exactly the man-
ner that the parallel result in Section 6.4 was proved—for any sentence Pk, if
�* ∪ {Pk} is consistent in PD, then the subset �k of �* is such that �k ∪ {Pk}
is consistent in PD, and so by the construction of the sequence of sets, Pk is a
member of �k�1 and hence of �*.

Finally, the proof that �* is ∃-complete is left as an exercise. This com-
pletes the proof of result 11.4.4—every evenly subscripted set � of sentences
of PL that is consistent in PD is a subset of at least one set of sentences that is
both maximally consistent in PD and ∃-complete.

ber38413_ch11_545-612.indd Page 572 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 572 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 573

We now turn to Step 3 in our proof of result 11.4.2. We must prove that
every set � that is both maximally consistent in PD and ∃-complete is consistent
in PD. To do this we shall use the following preliminary results:

11.4.5: If � � P and � is a subset of a set �* that is maximally consistent
in PD, then P ∈ �*.

Proof: See Exercise 11.4.9.

11.4.6: Every set �* of sentences that is both maximally consistent in
PD and ∃-complete has the following properties:

a. P ∈ �* if and only if ~ P ∉ �*.
b. P & Q ∈ �* if and only if P ∈ �* and Q ∈ �*.
c. P ∨ Q ∈ �* if and only if either P ∈ �* or Q ∈ �*.
d. P ⊃ Q ∈ �* if and only if either P ∉ �* or Q ∈ �*.
e. P � Q ∈ �* if and only if either P ∈ �* and Q ∈ �* or

P ∉ �* and Q ∉ �*.
f. (∀x)P ∈ �* if and only if, for every individual constant a,

P(a/x) ∈ �*.
g. (∃x)P ∈ �* if and only if, for at least one individual constant

a, P(a/x) ∈ �*.

Proof: The proofs that (a)–(e) hold for sets of sentences that are maxi-
mally consistent in PD and ∃-complete parallel exactly the correspond-
ing proofs in Section 6.4, using result 11.4.5 instead of 6.4.5.

Proof of (f): Assume that (∀x)P ∈ �*. For any substitution instance
P(a/x) of (∀x)P, {(∀x)P} � P(a/x)(by ∀E); so, by 11.4.5, every substi-
tution instance is a member of �* as well. Now assume that (∀x)P ∉ �*.
Then ~ (∀x)P ∈ �*, by (a). The following derivation shows that {~ (∀x)
P} � (∃x) ~ P:

1 ∼ (∀x)P Assumption

2 ∼ (∃x) ∼ P A /∼ E

3 ∼ P(a�x) A /∼ E

4 (∃x) ∼ P 3 ∃I
5 ∼ (∃x) ∼ P 2 R

6 P(a�x) 3–5 ∼ E
7 (∀x)P 6 ∀I
8 ∼ (∀x)P 1 R

9 (∃x) ∼ P 2–8 ∼ E

ber38413_ch11_545-612.indd Page 573 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 573 12/6/12 2:27 PM F-400F-400

574 PREDICATE LOGIC: METATHEORY

(We assume that the constant a does not occur in P.) Therefore, by
11.4.5, (∃x) ~ P is also a member of �*. Because �* is ∃-complete, some
substitution instance ~ P(a/x) of (∃x) ~ P is a member of �* as well, and
it therefore follows from (a) that P(a/x) ∉ �*. So, if (∀x)P ∉ �*, then
there is at least one substitution instance of (∀x)P that is not a mem-
ber of �*.

Proof of (g): Assume that (∃x)P ∈ �*. Then, because �* is ∃-complete,
at least one substitution instance of (∃x)P is also a member of �*. Now
assume that (∃x)P ∉ �*. If some substitution instance P(a/x) of (∃x)
P is a member of �*, then because {P(a/x)} � (∃x)P (by ∃I), it follows
from 11.4.5 that, contrary to our assumption, (∃x)P is also a member
of �*. So, if (∃x)P ∉ �*, then none of its substitution instances is a
member of �*.

We can now complete the proof of Step 3 by establishing the result

11.4.7: Every set of sentences of PL that is both maximally consistent in
PD and ∃-complete is quantifi cationally consistent.

We shall prove this by showing how to construct a model for any set �* that is
both maximally consistent in PD and ∃-complete, that is, an interpretation I* on
which every member of �* is true. We begin by associating with each individual
constant a distinct positive integer—the positive integer i will be associated with
the alphabetically ith constant. The number 1 will be associated with ‘a’, 2 with
‘b’, . . . , 22 with ‘v’, 23 with ‘a1’, and so on. I* is then defi ned as follows:

 1. The UD is the set of positive integers.
 2. For each sentence letter P, I*(P) � T if and only if P ∈ �*.
 3. For each individual constant a, I*(a) is the positive integer associ-

ated with a.
 4. For each n-place predicate A, I*(A) includes all and only those

n-tuples 〈I*(a1), . . . , I*(an)〉 such that Aa1 . . . an ∈ �*.

The major feature of this interpretation is that, for each atomic sentence P of
PL, P will be true on I* if and only if P ∈ �*. That is why we defi ned condi-
tion 4 (as well as condition 2) as we did. And to be sure that condition 4 can
be met, we must have condition 3, which ensures that each individual con-
stant designates a different member of the UD. This is necessary because, for
example, if ‘Fa’ is a member of �* and ‘Fb’ is not a member, then if ‘a’ and
‘b’ designated the same integer—say, 1—condition 4 would require that the
1-tuple 〈1〉 both be and not be a member of I*(F). (In addition, condition 3
ensures that every member of the UD is named by a constant, which we shall
shortly see is also important when we look at the truth-values that quantifi ed
sentences receive on I*.)

ber38413_ch11_545-612.indd Page 574 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 574 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 575

We complete the proof of 11.4.7 by establishing, by mathematical
induction on the number of occurrences of logical operators in sentences of
PL, that each sentence P of PL is true on I* if and only if P ∈ �*.

Basis clause: Each sentence P that contains zero occurrences of logical
operators is true on I* if and only if P ∈ �*.
Proof of basis clause: Either P is a sentence letter or P has the form
Aa1 . . . an. If P is a sentence letter, then, by part 2 of the defi nition of I*,
it follows that P is true on I* if and only if P ∈ �*.

If P has the form Aa1 . . . an, then P is true on I* if and only if
〈I*(a1), . . . , I*(an)〉 ∈ I*(A). Part 4 of the defi nition of I* stipulates that
〈I*(a1), . . . , I*(an)〉 ∈ I*(A) if and only if Aa1 . . . an ∈ �*. So in this case
as well, P is true on I* if and only if P ∈ �*.
Inductive step: If each sentence P with k or fewer occurrences of logical
operators is true on I* if and only if P ∈ �*, then the same is true of each
sentence P with k � 1 occurrences of logical operators.

Proof of inductive step: We assume that, for an arbitrary positive integer
k, the inductive hypothesis is true. We must show that on this assump-
tion it follows that any sentence P that has k � 1 occurrences of logical
operators is such that P is true on I* if and only if P ∈ �*. We consider
the forms that the sentence P may have.

Cases 1–5: P has one of the forms ~ Q, Q & R, Q ∨ R, Q ⊃ R, or
Q � R. The proofs for these fi ve cases are analogous to the proofs for the
parallel cases for SL in Section 6.4, so we omit them here.

Case 6: P has the form (∀x)Q. Assume that (∀x)Q is true on I*.
Then every substitution instance Q(a/x) of (∀x)Q is true on I* because,
by 11.1.4, {(∀x)Q} quantifi cationally entails every one of its substitution
instances. Each substitution instance contains fewer than k � 1 occur-
rences of connectives, and so, by the inductive hypothesis, each substitu-
tion instance is a member of �* since it is true on I*. It follows from part
(f) of 11.4.6 that (∀x)Q is also a member of �*.

Now assume that (∀x)Q is false on I*. In this case we shall make
use of result 11.1.11, which we repeat here:

11.1.11: Let I be an interpretation on which each member of the UD is
assigned to at least one individual constant. Then, if every substitution
instance of (∀x)P is true on I, so is (∀x)P.

I* is an interpretation of the type specifi ed in 11.1.11: Every positive
integer in the UD is designated by the individual constant with which
we have associated that integer. It follows, then, that if (∀x)Q is false
on I*, at least one of its substitution instances Q(a/x) must also be false
on I*. Because Q(a/x) contains fewer than k � 1 occurrences of logical

ber38413_ch11_545-612.indd Page 575 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 575 12/6/12 2:27 PM F-400F-400

576 PREDICATE LOGIC: METATHEORY

 operators, it follows from the inductive hypothesis that Q(a/x) ∉ �*.
And so, by part (f) of 11.4.6, (∀x)Q ∉ �*.

Case 7: P has the form (∃x)Q. Assume that (∃x)Q is true on
I*. Then it follows from 11.1.12, which we repeat here, that at least one
substitution instance Q(a/x) of (∃x)Q is true on I*:

11.1.12: Let I be an interpretation on which each member of the UD is
assigned to at least one individual constant. Then, if every substitution
instance of (∃x)P is false on I, so is (∃x)P.

Because the substitution instance Q(a/x) contains fewer than k � 1
 occurrences of logical operators, it follows from the inductive hypothesis
that Q(a/x) ∈ �*. So, by part (g) of 11.4.6, (∃x)Q ∈ �*.

Now assume that (∃x)Q is false on I*. Because each substitution
instance Q(a/x) is such that {Q(a/x)} (∃x)Q (this is result 11.1.5), it
follows that every substitution instance Q(a/x) is also false on I*. Each
of these substitution instances contains fewer than k � 1 occurrences of
logical operators, and so it follows from the inductive hypothesis that no
substitution instance of (∃x)Q is a member of �*. Finally, by part (g) of
11.4.6, it follows that (∃x)Q ∉ �*.

That completes the proof of the inductive step, and we may now conclude that
each sentence P of PL is true on I* if and only if P ∈ �*. So I* is a model of
�*, and �* is quantifi cationally consistent. Result 11.4.7 is therefore true: Every
set that is both maximally consistent in PD and ∃-complete is quantifi cationally
consistent. Results 11.4.4 and 11.4.7 together establish that every evenly sub-
scripted set of sentences of PL that is consistent in PD is also quantifi cationally
consistent.

Step 4 of the proof of result 11.4.2 is established by result 11.4.8:

11.4.8: Let � be a set of sentences of PL and let �e be the set that
results from doubling the subscript of every individual constant that
occurs in any member of �. Then, if �e is quantifi cationally consistent,
� is quantifi cationally consistent as well.

Proof: See Exercise 11.4.8.

We have now completed the four steps in the proof of result 11.4.2,
so we may conclude that if a set � of sentences of PL is quantifi cationally
inconsistent, then � is also inconsistent in PD. And this establishes the com-
pleteness of PD for predicate logic. If � P, then � ∪ {~ P} is quantifi cation-
ally inconsistent. By 11.4.2, � ∪ {~ P} is also inconsistent in PD, and hence
� � P in PD.

Because PD is complete for predicate logic, so is PD�. Every rule of PD is
a rule of PD�, and so every derivation in PD is a derivation in PD�. So, if � P,
then � � P in PD� because we know, by Metatheorem 11.4.1, that � � P in PD.

ber38413_ch11_545-612.indd Page 576 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 576 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 577

We also want to be sure that PDE is complete for predicate logic with
identity and functions. The completeness proof for PDE is similar to the com-
pleteness proof for PD, but there are some important changes. Results 11.4.3
and 11.4.8 must now take into account sentences containing the identity predi-
cate and complex terms; the necessary changes are left as an exercise. Maxi-
mal consistency is defi ned for PDE as it was for PD, while the defi nition of
∃-completeness must be modifi ed slightly:

A set � of sentences of PLE is ∃-complete if and only if, for each sen-
tence in � that has the form (∃x)P, at least one substitution instance of
(∃x)P in which the instantiating individual term is a constant is also a
member of �.

The proof of result 11.4.4 for PDE—that every evenly subscripted set of sen-
tences that is consistent in PDE is a subset of a set of sentences that is both maxi-
mally consistent in PDE and ∃-complete—is just like the proof for PD except
that it speaks of PLE and PDE, rather than PL and PD. However, the proof of
result 11.4.7 is different because the model I* that is constructed for a maxi-
mally consistent and ∃-complete set of sentences must be defi ned differently.

The interpretation I* of the maximally consistent and ∃-complete set
�* that we constructed in the proof of 11.4.7 stipulated that a distinct positive
integer be associated with each individual constant and that

3. For each individual constant a, I*(a) is the positive integer
 associated with a.

This will not do in the case of PDE. For suppose that �, and consequently its
superset �*, contains a sentence a � b in which a and b are different constants.
If we interpret the constants of PLE in accordance with condition 3, a and b
will denote different members of the UD, and hence a � b will be false. But
the interpretation is supposed to make all members of �*, including a � b,
true. So we shall have to change condition 3 to take care of the case where a
sentence like a � b is a member of the set �*. We shall also have to interpret
the functors in the language, and to do so in a way that makes sentences con-
taining complex terms true if and only if those sentences are members of �*.

Before turning to the construction of an interpretation for �*, how-
ever, we fi rst establish some facts about sets of sentences that are maximally
consistent in PDE and ∃-complete. As the reader may easily verify, the proper-
ties listed in result 11.4.6 remain true for maximally consistent, ∃-complete
sets of sentences of PDE. We must add three additional properties to the list
in result 11.4.6:

h. For every closed term t, t � t ∈ �*.

Proof: Let t be any closed term. ∅ � t � t, by �I and ∀E. Because the
empty set is a subset of �*, it follows from 11.4.5 that t � t ∈ �*.

ber38413_ch11_545-612.indd Page 577 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 577 12/6/12 2:27 PM F-400F-400

578 PREDICATE LOGIC: METATHEORY

i. If t1 and t2 are closed terms and t1 � t2 ∈ �*, then

a. If Q is a sentence in which t1 occurs, Q ∈ �* if and only if every
sentence Q(t2//t1)(every sentence obtained by replacing one or
more occurrences of t1 in Q with t2) is a member of �*.

b. If Q is a sentence in which t2 occurs, Q ∈ �* if and only if every
sentence Q(t1//t2) is a member of �*.

Proof: Let t1 � t2 be a sentence that is a member of �* and let Q be a sen-
tence in which t1 occurs. Assume that Q ∈ �*. Every sentence Q(t2//t1)
is derivable from the set {t1 � t2, Q} by �E. Therefore, by 11.4.5, every
sentence Q(t2//t1) is a member of �*. Now assume that Q ∉ �*. Every
sentence Q(t2//t1) is such that {t1 � t2, Q(t2//t1)} � Q, by �E—use
t1 to replace every occurrence of t2 that replaced t1 in Q(t2//t1), and
the result is Q once again. So, if any sentence Q(t2//t1) ∈ �*, then, by
11.4.5, Q ∈�* as well. Therefore, if Q ∉ �*, then no sentence Q(t2//t1)
is a member of �*.

Similar reasoning shows that if t1 � t2 ∈ �* and Q is a sentence
in which t2 occurs, then Q ∈ �* if and only if every sentence Q(t1//t2)
is a member of �*.

j. For each n-place functor f and n terms t1, . . . , tn, there is at least
one constant b such that f(t1, . . . , tn) � b ∈ �*.

Proof: By property (h), the formula f(t1, . . . , tn) � f(t1, . . . , tn) ∈ �*.
Since f(t1, . . . , tn) � f(t1, . . . , tn) � (∃x)f(t1, . . . , tn) � x, the sen-
tence (∃x)f(t1, . . . , tn) � x must also be a member of �*, by 11.4.5.
And because �* is ∃-complete, it follows from our revised defi nition of
∃- completeness that there is at least one constant b such that the formula
f(t1, . . . , tn) � b is also a member of �*.

We now turn to the proof of result 11.4.7 for PDE—that every set of
sentences of PLE that is both maximally consistent in PDE and ∃-complete
is also quantifi cationally consistent. Let �* be a set of sentences that is both
maximally consistent in PLE and ∃-complete. In preparation for constructing a
model for this set, we associate positive integers with the individual constants
of PLE as follows:

First associate the positive integer i with the alphabetically ith individual
constant of PLE. Let p(a) stand for the integer that has been associated
with the constant a. Thus p(‘a’) is 1, p(‘b’) is 2, and so on.

Now we defi ne a second association q: For each constant a,
q(a) � p(a�), where a� is the alphabetically earliest constant such that
a � a� is a member of �*.

Note that for each constant a, property (h) of maximally consistent, ∃-complete
sets assures us that a � a ∈ �*, and so we can be certain that q assigns a value
to a. According to the defi nition of q, q(‘a’) is always 1 since property (h)

ber38413_ch11_545-612.indd Page 578 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 578 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 579

assures us that ‘a � a’ is a member of �*, and ‘a’ is the alphabetically earliest
constant of PLE. But for every other constant, the value that q associates with it
depends on the identity sentences that the particular set �* contains. Suppose
that ‘b � a’, ‘b � b’, ‘b � e’, and ‘b � m22’ are the only identity sentences in
�* that contain ‘b’ to the left of the identity predicate. In this case there is an
alphabetically earlier constant to the right, namely, ‘a’, and this is the alphabeti-
cally earliest constant so occurring. So q(‘b’) � p(‘a’) � 1. If ‘c � c’, ‘c � f’,
and ‘c � g3’ are the only identity sentences in �* that contain ‘c’ to the left of
the identity predicate, then ‘c’ is the alphabetically earliest constant occurring
to the right, and so q(‘c’) � p(‘c’) � 3. The defi nition of q will play a role
in ensuring that identity sentences come out true on the interpretation that
we shall construct if and only if they are members of �*, as a consequence of

11.4.9: For any constants a and b, q(a) � q(b) if and only if
a � b ∈ �*.

Proof: As preliminaries, let a� be the alphabetically earliest constant such
that a � a� ∈ �* (remember that property (h) guarantees that there is
at least one such constant), and let b� be the alphabetically earliest con-
stant such that b � b� ∈ �*. Then

 • q(a) � p(a�) by the way q is defi ned, and
 • q(b) � q(b�).
 • It follows that q(a) � q(b) if and only if q(a�) � p(b�)
 • Because p associates different values with different constants,

p(a�) � p(b�) if and only if a� and b� are the same constant.

We conclude that q(a) � q(b) if and only if a� and b� are the same constant.
Now assume that q(a) � q(b). It follows that a� and b� are the

same constant. Therefore, because b � b� ∈ �*, it follows trivially that
b � a�, which is the same sentence, is a member of �*. And because
a � a� ∈ �*, it follows from property (i) of maximally consistent,
∃-complete sets that a � b ∈ �* (because a � b is a sentence
a � a� (b//a�)).

Now assume that a � b ∈ �*.

 • Because a � a� ∈ �*, it follows from property (i) that b � a� ∈ �*.
 • Because b � b� ∈ �*, it follows from property (i) that a � b� ∈ �*.
 • b� was defi ned to be the alphabetically earliest constant that

appears to the right of the identity predicate in an identity
sentence containing b, and so from the fact that b � a� ∈ �*,
we conclude that a� is not alphabetically earlier than b�.

 • a� was defi ned to be the alphabetically earliest constant that
appears to the right of the identity predicate in an identity

ber38413_ch11_545-612.indd Page 579 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 579 12/6/12 2:27 PM F-400F-400

580 PREDICATE LOGIC: METATHEORY

 sentence containing a, and so from the fact that a � b� ∈ �*,
we conclude that b� is not alphabetically earlier than a�.

 • Therefore, a� and b� must be the same constant.

So, from (e), we may conclude that q(a) � q(b).

Result 11.4.9 guarantees that if there is an identity sentence in �* that contains
the individual constants a and b then q(a) � q(b), and if there is no identity
sentence in �* that contains a and b then q(a) 	 q(b). And this fact will be
crucial in our construction of an interpretation on which every member of a
set that is both maximally consistent in PDE and ∃-complete is true. We turn
now to the construction.

Let �* be a set that is both maximally consistent in PDE and ∃- complete,
and defi ne the interpretation I* as follows:

 1. The UD is the set of positive integers that q associates with at least
one individual constant of PLE.

 2. For each sentence letter P, I*(P) � T if and only if P ∈ �*.
 3. For each individual constant a, I*(a) � q(a).
 4. For each n-place functor f, I*(f) is the set that includes all and only

those n � 1-tuples �I*(a1), . . . , I*(an), I*(b)�, where a1, . . . , an
and b are individual constants, such that f(a1, . . . , an) � b ∈ �*.

 5. For each n-place predicate A other than the identity predicate, I*(A)
is the set that includes all and only those n-tuples 〈I*(a1), . . . ,
I*(an)〉 such that Aa1 . . . an ∈ �*.

We must ensure that conditions 4 and 5 can be met.
For condition 4 we must ensure that the interpretation of f is indeed

a function on the UD: that for each n members u1, . . . , un of the UD there
is exactly one member un�1 of the UD such that �u1, . . . , un, un�1� ∈ I*(f).
That there is at least one such member of the UD follows from the fact that
every member of the UD is denoted by at least one individual constant (this
is guaranteed by condition 1 of our defi nition of I*), and property (j) of sets
that are maximally consistent in PDE and ∃-complete, which we repeat here:

j. For each n-place functor f and n constants a1, . . . , an, there is at
least one constant b such that the formula f(a1, . . . , an) � b is a
member of �*.

Given these two facts, condition 4 ensures that for each n members u1, . . . , un
of the UD there is at least one member un�1 of the UD such that �u1, . . . , un,
un�1� ∈ I*(f), for any functor f. To show that there is at most one such mem-
ber un�1, let us assume, to the contrary, that there is also a member of the UD
u�n�1, where u�n�1 	 un�1, such that �u1, . . . , un, u�n�1� ∈ I*(f).

ber38413_ch11_545-612.indd Page 580 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 580 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 581

 • Then in addition to the sentence f(a1, . . . , an) � b, � includes a
sentence f(a1, . . . , an) � c, such that I*(c) � u�n�1 	 I*(b).

 • By virtue of clause 3 of the defi nition of I*, it follows that
q(a) 	 q(b).

 • But this is impossible, since { f(a1, . . . , an) � b, f(a1, . . . , an) � c}
� b � c by �E.

 • So b � c ∈�*, by 11.4.5, and therefore q(c) � q(b), by 11.4.9,

It follows that I*(c) � I*(b), and so there is at most one member un�1 of the
UD such that �u1, . . . , un, un�1� ∈ I*(f).

We must also ensure that condition 5 can be met, that is, that there
are not two atomic sentences Aa1 . . . an and Aa1� . . . an� such that one is a
member of �* and the other is not, yet 〈I*(a1), . . . , I*(an)〉 � 〈I*(a1�), . . . ,
I*(an�)〉. In the case of PD, it was simple to show this, for distinct constants were
interpreted to designate distinct individuals. However, q may assign the same
positive integer to more than one constant, and as a consequence condition 3
may interpret several constants to designate the same value. Here our previous
results will be useful. Suppose that the constants a1, . . . , an and a1�, . . . , an�
are such that 〈I*(a1), . . . , I*(an)〉 � 〈I*(a1�), . . . , I*(an�)〉.

 • Then, by clause 3 of the defi nition of I*, q(ai)� q(ai�) for each i.
 • It follows from 11.4.9 that for each i, ai � ai� ∈ �*.
 • Therefore, because a1 � a1� is a member of �*, property (i)

assures us that Aa1 . . . an ∈ �* if and only if Aa1� . . . an ∈ �*,
and because a2 � a2� is a member of �*, property (i) assures us
that Aa1a2 . . . an ∈ �* if and only if Aa1� a2� . . . an ∈ �*, and so
on until we note that because an � an� is a member of �*, property
(i) assures us that Aa1 . . . an ∈ �* if and only if Aa1� . . . an� ∈ �*.

We conclude that if 〈I*(a1), . . . , I*(an)〉 � 〈I*(a1�), . . . , I*(an�)〉, then Aa1 . . . an ∈ �*
if and only if Aa1� . . . an� ∈ �*. So condition 5 can indeed be met.

To establish result 11.4.7 for PDE—that every set �* that is both maxi-
mally consistent in PDE and ∃-complete is also quantifi cationally consistent—we
can prove by mathematical induction that a sentence P of PDE is true on I*
if and only if P ∈ �*. The proof is similar to that for PD, except that we must
change the basis clause to consider closed complex terms as well as constants,
and we must also consider formulas containing the identity operator. We shall
use the following result:

11.4.10: For any closed complex term t and variable assignment dI,
denI*,d

(t) � I*(a), where a is the alphabetically earliest individual con-
stant such that t � a ∈ �*. (Property (j) of sets that are maximally consist-
ent in PDE and ∃-complete guarantees that there is such a constant a.)

Proof: See Exercise 16.

ber38413_ch11_545-612.indd Page 581 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 581 12/6/12 2:27 PM F-400F-400

582 PREDICATE LOGIC: METATHEORY

Here is the revised proof.

Proof of basis clause: Either P is a sentence letter or P has the form
At1 . . . tn or t1 � t2. If P is a sentence letter, then, by clause 2 of the
 defi nition of I*, it follows that P is true on I* if and only if P ∈ �*.

If P has the form At1 . . . tn then P is true on I* if and only
if, for every variable assignment dI*, �denI*,dI*(t1), . . . , denI*,dI*(tn)�
∈ I*(A).

 • Property (j) guarantees, for each complex term ti, that there is
an alphabetically earliest constant ai such that ti � ai is a member
of �*.

 • Moreover, by virtue of the rule �E, At1� . . . tn�, where ti� is ti if ti is
a constant and ti� is ai otherwise, is derivable from the set consist-
ing of At1 . . . tn and each of these identity sentences.

 • So, by 11.4.5, P ∈ �* if and only if the sentence At1� . . . tn� ∈ �*.
 • In addition, denI*,dI*(ti) � I*(ti�), trivially if ti is a constant and by

11.4.10 if ti is a complex term.
 • So �denI*,dI*(t1), . . . , denI*,d
(tn)� ∈ I(A) if and only if

�I*(t1�), . . . , I*(tn�)� ∈ I*(A),
 • and clause 5 in the defi nition of I* guarantees that At1� . . . tn� ∈ �*

if and only if �I*(t1�), . . . , I*(tn�)� ∈ I*(A).

We conclude that At1 . . . tn ∈ �* if and only if At1 . . . tn is true on I*.
If P has the form t1 � t2, then

 • P is true on I* if and only if, for each variable assignment dI*,
denI*,dI*(t1) � denI*,dI*(t2).

 • Again, for each complex term ti, property (j) guarantees that there
is an alphabetically earliest constant ai such that ti � ai ∈ �*.

 • So, by virtue of �E and result 11.4.5, t1 � t2 ∈ �* if and only if
t1� � t2� ∈ �*, where ti� is ti if ti is a constant and ti� is ai
otherwise.

 • Moreover, denI*,dI*(ti) � I*(ti�), trivially if ti is a constant and by
result 11.4.10 if ti is a complex term.

 • So denI*,dI*(t1) � denI*,dI*(t2) if and only if I*(t1�) � I*(t2�).
 • By the way in which I* was constructed, I*(t1�) � I*(t2�) if and only

if q(t1�) � q(t2�). By result 11.4.9, q(t1�) � q(t2�) if and only if
t1� � t2� ∈ �*.

We may conclude that t1 � t2 ∈ �* if and only if t1 � t2 is true on I*.

ber38413_ch11_545-612.indd Page 582 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 582 12/6/12 2:27 PM F-400F-400

11.4 THE COMPLETENESS OF PD, PD�, AND PDE 583

Because every member of �* is true on I*, �* is quantifi cationally consistent.
And, with results 11.4.4 and 11.4.7 established for PDE, along with the neces-
sary modifi cations of 11.4.8 (see Exercise 11.4.15), we know that result 11.4.2
is also true for PDE. It follows that PDE is complete for predicate logic with
identity and functions.

 11.4E EXERCISES

 *1. Prove that if � P then � ∪ {~ P} is quantifi cationally inconsistent.

 2. Prove that if � ∪ {~ P} is inconsistent in PD then � � P.

 3. Using Metatheorem 11.4.1, prove the following:
 a. Every argument of PL that is quantifi cationally valid is valid in PD.
 b. Every sentence of PL that is quantifi cationally true is a theorem in PD.
 *c. Every pair of sentences P and Q of PL that are quantifi cationally equivalent

are equivalent in PD.

 4. Prove that the sentences of PL can be enumerated. (Hint: See Section 6.4.)

 5. Prove the following:

If � � P and � is a subset of ��, then �� � P.

 6. Prove that any set �* constructed as in our proof of Lemma 11.4.4 is
∃-complete.

 7. Prove that the sequence of sentences constructed in the proof of 11.4.3 is a
derivation in PD by showing (by mathematical induction) that each sentence
in the new sequence can be justifi ed with the same rule as the corresponding
sentence in the original derivation.

 *8. Prove 11.4.8, using result 11.1.13.

 *9. Prove 11.4.5.

 10. Explain why, in results 11.4.4 and 11.4.7, we constructed a set that was both
∃-complete and maximally consistent in PD, rather than a set that was just
maximally consistent in PD.

 11. Let system PD* be just like PD except that the rule ∀E is replaced by the
 following rule:

Universal Elimination* (∀E*)

(∀x)P

∼ (∃x) ∼ P

 Prove that the system PD* is complete for predicate logic.

ber38413_ch11_545-612.indd Page 583 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 583 12/6/12 2:27 PM F-400F-400

584 PREDICATE LOGIC: METATHEORY

 12. Let system PD be just like PD except that the rules ∃E and ∃I are replaced by
the following two rules:

Existential Elimination* (∃E*)

(∃x)P

∼ (∀x) ∼ P

Existential Introduction* (∃I*)

∼ (∀x) ∼ P

(∃x)P

 Prove that system PD* is complete for predicate logic.

 13. Using the results in the proof of Metatheorem 11.4.1, prove the following
theorem (known as the Löwenheim Theorem):

 If a sentence P of PL is not quantifi cationally false, then there is an interpreta-
tion with the set of positive integers as the UD on which P is true.

 *14. Prove the following metatheorem (known as the Löwenheim-Skolem Theorem):

 If a set � of sentences of PL is quantifi cationally consistent, then there is an
interpretation with the set of positive integers as the UD on which every mem-
ber of � is true.

 *15. Show the changes that must be made in the proofs of 11.4.3 and 11.4.8 so that
these results will hold for PLE and PDE. (Hint: Exercise 8 suggested that you
use result 11.1.13 in proving 11.4.8; so you must check whether 11.1.13 needs
to be changed.)

 16. Prove result 11.4.10.

 17. Show that the Löwenheim Theorem (and consequently the more general
Löwenheim-Skolem Theorem) does not hold for PLE.

 11.5 THE SOUNDNESS OF THE TREE METHOD

We have presented the tree method as a means of testing for semantic proper-
ties of sentences and sets of sentences in both sentential logic and predicate
logic. In this section and the next we shall prove that the tree method in Chap-
ter 9 fulfi lls a claim we have made: A fi nite set of sentences of PL is quantifi ca-
tionally inconsistent if and only if every systematic tree for that set closes. In this
section we shall prove that the tree method is sound for predicate logic—that
if a systematic tree for a set of sentences of PL closes, then the set is quantifi -
cationally inconsistent. We shall prove the same for predicate logic with identity
and functions. In both cases we can then be assured that, if we pronounce a

ber38413_ch11_545-612.indd Page 584 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 584 12/6/12 2:27 PM F-400F-400

11.5 THE SOUNDNESS OF THE TREE METHOD 585

set of sentences inconsistent because a tree for that set closes, our pronounce-
ment is correct. In the next section we shall prove that the tree method is com-
plete for predicate logic—that if a fi nite set of sentences is quantifi cationally
inconsistent, then every systematic tree for that set is bound to close. Knowing
that the method is complete, we shall also know that open systematic trees do
establish quantifi cational consistency. (With a simple adaptation of parts of our
proofs, the soundness and completeness of the tree method for sentential logic
can also be established. This will be addressed in the exercises.)

Our Soundness Metatheorem for the tree method is:

Metatheorem 11.5.1: If a systematic tree for a set � of sentences of PL closes,
then � is quantifi cationally inconsistent.

(As we shall see in the exercises for this section, soundness also holds for non-
systematic trees.) Our proof of Metatheorem 11.5.1 will rely heavily on the fol-
lowing observation about the decomposition rules used in constructing trees:
Each rule is consistency-preserving in the sense that, if we have a consistent set
of sentences and apply a decomposition rule to one of the sentences in that set,
at least one of the sentences that results (there will be only one in the case of
a nonbranching rule) can consistently be added to the set. As we build a tree
for a set of sentences, we are, in effect, building supersets of the one we started
with—the set of sentences occurring on a branch is a superset of the original
set. Given the sense in which the decomposition rules are consistency-preserving,
at least one of the supersets formed on a branch by repeated application of
decomposition rules will be quantifi cationally consistent if the set being tested
is quantifi cationally consistent. This will be important in establishing Metathe-
orem 11.5.1, for if the supersets that comprise the branches of a closed tree are
all quantifi cationally inconsistent, each such branch will contain a contradictory
pair of literals. Because the decomposition rules are consistency-preserving in
the sense described, it follows that the only way we can end up with every super-
set being quantifi cationally inconsistent (that is, with a closed tree) is by starting
with a set that is quantifi cationally inconsistent. And that is what Metatheorem
11.5.1 says.

Our observation that the decomposition rules are consistency-preserving
must be proved. To facilitate our proof, we introduce the concept of a level of a
tree. The fi rst (occurrence of a) sentence on any tree is at level 1. For any other
sentence P, P is at level i � 1, where i is the level of the sentence occurring imme-
diately before P on the same branch of the tree. The line numbers used to annotate
trees in Chapters 4 and 9 do not always correspond to levels because we adopted
the convention in those chapters that only one decomposition rule can be cited on
each line. Consider, for example, the tree on page 420. Lines 1–3 do correspond
directly to levels 1–3 of that tree. Line 4, however, displays only one of the sentences
occurring at level 4. The sentence on line 10 on the left-hand branch is also at level
4, for the sentence that occurs immediately before it on the same branch is at level
3. Similar observations hold for sentences further down this branch of the tree.

ber38413_ch11_545-612.indd Page 585 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 585 12/6/12 2:27 PM F-400F-400

586 PREDICATE LOGIC: METATHEORY

We shall establish that our decomposition rules are consistency-
preserving by showing that at each level i of a systematic tree for a quantifi ca-
tionally consistent set of sentences, either there is at least one branch that was
completed prior to that level on which the sentences form a quantifi cationally
consistent set or there is at least one branch that extends at least as far as level
i such that the sentences on that branch up to and including level i form a
quantifi cationally consistent set.

As an example of what we want to prove, here is a completed open
tree for the set {(∀x)Fx ∨ Ga, (∃y) ~ Fy}:

1. (∀x)Fx ∨ Ga� SM
2. (∃y) ∼ Fy� SM

3. ∼ Fa ∼ Fb 2 ∃D2

4. (∀x)Fx Ga (∀x)Fx Ga 1 ∨D
5. Fa o Fb o 4 ∀D
 � �

Our claim holds of each of the levels 1–5 of this tree.

 • At level 1 there is at least one branch such that the set of
s entences occurring on that branch through and including
level 1 form a quantifi cationally consistent set: {(∀x)Fx ∨ Ga}.

 • At level 2 there is at least one branch such that the set of
 sentences occurring on that branch form a quantifi cationally
 consistent set: {(∀x)Fx ∨ Ga, (∃y) ~ Fy}.

 • At level 3 there are two (and so at least one) such branches:
{(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fa} and {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fb}.

 • At level 4 there are also two such branches: {(∀x)Fx ∨ Ga,
(∃y) ~ Fy, ~ Fa, Ga} and {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fb, Ga}.
The branches that include ‘(∀x)Fx’ are not candidates, but we
have not claimed that quantifi cationally consistent sets will be
found on all branches.

 • At level 5 there is no branch that extends to that level that con-
tains a quantifi cationally consistent set of sentences, but there is at
least one branch (in fact, there are two) that was completed at an
earlier level, level 4, on which the sentences form a quantifi cation-
ally consistent set.

So the claim is true of all levels of this tree.
The fact that the claim holds for every level of a systematic tree for a

quantifi cationally consistent set allows us to conclude that if a tree for a set of

ber38413_ch11_545-612.indd Page 586 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 586 12/6/12 2:27 PM F-400F-400

11.5 THE SOUNDNESS OF THE TREE METHOD 587

sentences closes, then the set must be quantifi cationally inconsistent. A tree
that closes has a fi nite number of levels, say n, and the claim is false for level n,
because at this point every branch contains a pair of contradictory literals—so
the set of sentences on each branch is quantifi cationally inconsistent. We may
therefore conclude that the set of sentences for which the tree was constructed
is also quantifi cationally inconsistent.

To facilitate the proof of our claim about the levels of any systematic
tree for a quantifi cationally consistent set of sentences, we introduce some ter-
minology. For any branch that extends to level i or further, we call that part
of the branch that extends to level i a ‘path’ to level i, and we say that the
path contains the set of sentences that occur on it. In the last tree displayed,

 • There is exactly one path to level 1, and it contains the set of
sentences {(∀x)Fx ∨ Ga}.

 • There is exactly one path to level 2, and it contains the set of
 sentences {(∀x)Fx ∨ Ga, (∃y) ~ Fy}.

 • There are two paths to level 3, and they contain the sets
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fa}
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fb}.

 • There are four paths to level 4, and they contain the sets
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fa, (∀x)Fx}
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fa, Ga}
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fb, (∀x)Fx}
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fb, Ga}.

 • There are two paths to level 5, and they contain the sets
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fa, (∀x)Fx, Fa}
 • {(∀x)Fx ∨ Ga, (∃y) ~ Fy, ~ Fb, (∀x)Fx, Fb}

Finally, a completed path to level i of a tree is a completed branch of
that tree that ends at level i. We state our claim about the levels of a systematic
tree for a quantifi cationally consistent set in terms of paths in the Consistent
Branch Lemma:

11.5.2 (the Consistent Branch Lemma): Each level i of a tree for a
 quantifi cationally consistent set of sentences of PL is such that either
(a) there is at least one completed path to a level earlier than i that
contains a quantifi cationally consistent set of sentences or (b) there is
at least one path to level i that contains a quantifi cationally consistent
set of sentences.

We shall prove 11.5.2 by establishing a more specifi c claim (which will later be
useful in proving that systematic trees for sets of sentences with fi nite models
always have a completed open branch).

ber38413_ch11_545-612.indd Page 587 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 587 12/6/12 2:27 PM F-400F-400

588 PREDICATE LOGIC: METATHEORY

Let � be a fi nite set of sentences of PL that is quantifi cationally consist-
ent, and let I be an interpretation.

We call interpretation Ip a path-variant of I for path p of a tree for the
set of sentences � if

 • Ip is just like I except that, for each constant a that occurs in
some sentence on the path but not in any member of �,

 • there is a member u of the UD such that
 • Ip(a) � u, and
 • for every other constant b occurring on the path but not in

any member of �, Ip(b) 	 u.

Before proceeding, we’ll give an example of a path-variant, and explain why
we are looking at path-variants, using the following completed open tree as an
example:

1 (∃x)Fx� SM
2 (∃x) ~ Fx� SM
3 Fa SM

4 ~ Fa ~ Fb 2 ∃D2
 � o

The rightmost open branch is the only completed open branch in this tree.
The sentences on this branch include the constant ‘b’, which does not occur
in the set {(∃x)Fx, (∃x) ~ Fx, Fa} for which the tree was constructed—the rule
∃D2 required the introduction of a new instantiating constant at this point.
We want to show that if the set members are all true on an interpretation,
then all of the sentences on at least one completed open branch are true on
an interpretation. But consider an interpretation I that makes the following
assignments:

 UD: Set of positive integers
 F: {�2�}
 a: 2
 b: 1

All three set members are true on such an interpretation, so this interpretation
shows that the set is consistent. But is does not follow that ‘~ Fb’ is true on
this interpretation; in fact, it is false. So we can’t say that if all of the set mem-
bers are true on an interpretation, then all of the sentences on a completed
open branch are true on that interpretation. Rather, this is where the concept
of path-variants comes in. There are infi nitely many path-variants of I for the

ber38413_ch11_545-612.indd Page 588 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 588 12/6/12 2:27 PM F-400F-400

11.5 THE SOUNDNESS OF THE TREE METHOD 589

completed open branch. Each of these assigns a positive integer other than 1
to the constant ‘b’, for example:

 UD: Set of positive integers
 F: {�2�}
 a: 2
 b: 2

We have intentionally displayed a (in fact, the only) path-variant of I on which
all sentences on the completed open branch are true. We will be proving that
such a path-variant can always be found, no matter what the original set mem-
bers are and no matter which model of those sentences we begin with.

We shall show that

11.5.3: If a fi nite set � of sentences of PL is true on an interpretation I,
then each level i of a systematic tree for � is such that either (a) there
is at least one completed path p to a level earlier than i that contains a
set of sentences all of which are true on a path-variant Ip or (b) there is
at least one path p to level i that contains a set of sentences all of which
are true on a path-variant Ip.

We establish result 11.5.3 by mathematical induction on the levels of a systematic
tree for a quantifi cationally consistent set of sentences of PL. Letting � be a fi nite
set of sentences of PL and I an interpretation on which every member of � is true,

Basis clause: Level 1 of a systematic tree for � is such that either (a) or
(b) holds.
Inductive step: If every level less than or equal to level k of a systematic
tree for � is such that either (a) or (b) holds, then the same is true of
level k � 1 of a systematic tree for �.
Conclusion: Every level of a systematic tree for � is such that either (a)
or (b) holds.

Proof of basis clause: There is exactly one path to level 1 of any tree,
and that path contains the unit set {P}, where P is a member of the set �
for which the tree is being constructed. P is true on I since every mem-
ber of � is, and I is in this case a path-variant of itself (since the path
contains no constants that do not occur in �). So (b) holds for level 1.

Proof of inductive step: We assume the inductive hypothesis for an ar-
bitrary positive integer k: For each level i of a tree for � that is less than
or equal to level k, either (a) or (b) holds. We must show that on this
assumption either (a) or (b) holds for level k � 1 of a tree for � as well.
We fi rst note that if (a) holds for an earlier level i, then (a) holds for
level k � 1 as well, for a completed path to a level earlier than i is also a
completed path to a level earlier than k � 1.

ber38413_ch11_545-612.indd Page 589 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 589 12/6/12 2:27 PM F-400F-400

590 PREDICATE LOGIC: METATHEORY

Now we must consider the case where (a) does not hold for any
level prior to k � 1. In this case it follows from the inductive hypothesis
that (b) holds for every level prior to k � 1 and, in particular, that (b)
is true of level k. If, in addition, one of these paths is completed at level
k, then (a) is true of level k � 1. If there is not such a path to level k,
we still know, on our assumption that (b) is true of level k, that at least
one (noncompleted) path p to level k contains a set of sentences all of
which are true on a path-variant Ip. Call this path �k and the variant I�k

.
Because the path is not complete at level k, it is extended to level k � 1
by application of some tree rule. We shall now consider the rules that
might be used to extend the path to level k � 1 and show that in each
case application of the rule results in at least one path p to level k � 1
that contains a set of sentences all of which are true on a path-variant
Ip—thereby establishing that (b) holds for level k � 1 as well.

We divide the rules into six cases.

Case 1: The path �k is extended to level k � 1 by adding a set
member at that level, justifi ed by SM. Because decomposition rules apply
after all set members have been entered, the only sentences on the path
�k are members of �, and the sentence entered at level k � 1 is also a
member of �. So there is a path to level k � 1 that contains a subset of �,
and all sentences on this path are therefore true on I, which in this case
is a path-variant of itself.

Case 2: The path �k is extended to level k � 1 as a result
of applying one of the nonbranching rules ~ ~ D, &D, ~ ∨D, ~ ⊃D,
~ ∀D, or ~ ∃D to a sentence P on �k. In each case {P} quantifi cationally
entails the sentence Q entered on level k � 1 (see Exercise 11.5.3).
Therefore all the sentences on �k and the sentence Q are true on I�k

,
which is a path-variant of I for the path that has been extended by one
of these nonbranching rules (since none of these rules adds a new
individual constant to the tree). Thus, there is a path to level k � 1
that contains a set of sentences all of which are true on a path-variant
of I for this path.

Case 3: The path is extended to form two paths to level k � 1
as a result of applying one of the branching rules ~ &D, ∨D, or ⊃D to
a sentence P on �k. Letting Q be one of the sentences that was entered
on level k � 1 and R the other, it can be shown that on any interpreta-
tion on which P is true either Q is true or R is true (see Exercise 11.5.4).
Therefore either all the sentences on �k plus Q are true on I�k

, which
is a path-variant of I for the new path containing Q, or all the sentences
on �k plus R are true on I�k

, which is a path-variant of I for the new path
containing R. Thus there is a path to level k � 1 that contains a set of
sentences all of which are true on a path-variant of I for that path.

Case 4: The path is extended to level k � 1 as a result of applying
either �D or ~ �D (see Exercise 5).

ber38413_ch11_545-612.indd Page 590 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 590 12/6/12 2:27 PM F-400F-400

11.5 THE SOUNDNESS OF THE TREE METHOD 591

Case 5: The path is extended to level k � 1 as a result of apply-
ing ∀D. Then �k contains a sentence (∀x)P such that P(a/x) is entered
at level k � 1, where a is either ‘a’ if no constants occur on �k or the al-
phabetically earliest constant that does occur. Because (∀x)Px P(a/x)
(result 11.1.4), P(a/x) is true on I�k

. If no constant occurred on �k, then
I�k

 is also a path-variant of I for the new path to level k � 1 because I�k
(a)

	 I�k
(b) for any other constant b occurring on �k but not in �—there

are no such constants b. If, on the other hand, a is a constant that already
occurs on �k, then we have not added a new constant to the path, and
so I�k

 is in this case also a path-variant of I for the extended path to level
k � 1. Either way, there is a path p to level k � 1 that contains a set of
sentences all of which are true on a path-variant Ip.

Case 6: The path is extended to level k � 1 as a result of apply-
ing ∃D2. Then �k contains a sentence (∃x)P such that P(a1/x), . . . ,
P(am/x), P(am�1/x) are entered on distinct paths to level k � 1, where
a1, . . . , am are all the individual constants that occur in sentences on �k
and am�1 is the alphabetically earliest constant that does not occur on
�k. We consider two possibilities:

a. If any one (or more) of P(a1/x), . . . , P(am/x) is true on
I�k

, then the path to level k � 1 on which that substitution
instance was entered is a path that contains a set of sentences
all of which are true on a path-variant of I for that path (I�k

 is
a path-variant of the newly formed path because the substitu-
tion instance does not introduce a new constant).

b. We shall show that if (a) does not hold, then the path that
results from the addition of P(am�1/x) meets the requirement.
Because (∃x)P is true on I�k

 and because am�1 does not occur
in any sentence on �k, our proof of result 11.1.10 (Exercise
11.1.5) shows that P(am�1/x) is true on an interpretation
I�k� that is just like I�k

 except that I�k�(am�1) �u, where u is a
member of the UD such that d[u/x] satisfi es P on I�k

 (we know
that there is such a member because (∃x)P is true on I�k

). This
member u is not assigned to any other individual constant b oc-
curring on �k but not in � (for, if it were, it would follow from
result 11.1.13 that P(b/x) is true on I�k

, which contradicts our
assumption that (a) does not hold). Thus I�k� is a path-variant
of I, for the path extended to level k � 1 by the addition of
P(am�1/x), on which every sentence in the new path is true.

We have considered each rule that might be used to extend the
path �k to level k � 1 and have shown that in each case there is at least
one path to level k � 1 that contains a set of sentences all of which are
true on a path-variant of I for that path. That completes the proof of the
inductive step.

ber38413_ch11_545-612.indd Page 591 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 591 12/6/12 2:27 PM F-400F-400

592 PREDICATE LOGIC: METATHEORY

Therefore, result 11.5.3 holds for every level of a tree for a set of sentences all
of which are true on interpretation I.

The Consistent Branch Lemma 11.5.2 follows immediately from result
11.5.3, for in establishing the existence of paths containing sentences all of which
are true on some path-variant of I, we have established that the set of sentences on
each such path has a model and therefore forms a quantifi cationally consistent set.

Metatheorem 11.5.1 follows from the Consistent Branch Lemma and
the fact that the null tree, which is the single tree for the empty set of sentences
of PL, is not closed (the null branch does not contain any sentences and there-
fore does not contain a contradictory pair of literals). If a tree for a set � of
sentences is closed, then every branch on that tree is closed and hence contains
a contradictory pair of literals, which means that the set of sentences on every
branch is truth-functionally inconsistent. Therefore, the last level of any closed
tree is such that neither (a) nor (b) holds (and there is a “last” level, because
such a tree must be fi nite), and it follows, by the Consistent Branch Lemma,
that the set for which the tree was constructed is quantifi cationally inconsistent.
We conclude that the tree method is sound for predicate logic.

To establish that the tree method for predicate logic with identity and
functions is also sound, we fi rst note that the cases in the inductive proof of result
11.5.3 carry over to predicate logic with identity and functions. We must add two
more cases to the inductive step, one to cover paths that are extended by an appli-
cation of �D and one to cover paths that are extended by an application of CTD.

Case 7: The path �k is extended to level k � 1 as a result of
applying �D. Then �k contains sentences t1 � t2 and P such that a sen-
tence P(t1//t2) was entered at level k � 1. It follows from 11.2.4, which
we repeat here, that P(t1//t2) is true on I�k

:

11.2.4: For any closed terms t1 and t2, if P is a sentence that contains t1,
then {t1 � t2, P} P(t2//t1), and if P is a sentence that contains t2, then
{t1 � t2, P} P(t1//t2).

In addition, I�k
 is a path-variant for the new path to level k � 1 because

�D does not introduce new constants.

Case 8: The path �k is extended to level k � 1 as a result of
 applying CTD. Then �k contains a literal sentence with a closed com-
plex term f(a1, . . . , an), where a1, . . . , an are all constants, such that
b1 � f(a1, . . . , an), . . . , bm � f(a1, . . . , an), and bm�1 � f(a1, . . . , an) are en-
tered on distinct paths to level k � 1, where b1, . . . , bm are all the individ-
ual constants that occur in sentences on �k and bm�1 is the alphabetically
earliest constant that does not occur on �k. We consider two possibilities:

a. If any one (or more) of b1 � f(a1, . . . , an), . . . , bm �
f(a1, . . . , an) is true on I�k

, then the path to level k � 1 on

ber38413_ch11_545-612.indd Page 592 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 592 12/6/12 2:27 PM F-400F-400

11.5 THE SOUNDNESS OF THE TREE METHOD 593

which that identity sentence was entered is a path that con-
tains a set of sentences all of which are true on a path-variant
of I�k

 for that path because I�k
 is a path-variant of itself for

the newly formed path, since the identity sentence does not
introduce a new constant).

b. Now consider the case where none of b1 � f(a1, . . . , an),
. . . , bm � f(a1, . . . , an) is true on I�k

. Because bm�1 does
not occur in any sentence on �k, our proof of result 11.2.5
(Exercise 11.2.7) shows that � ∪ {bm�1 � f(a1, . . . , an)}
is true on an interpretation I��k

 that is just like I�k
 except

that I��k
(bm�1) � u, where u is the member of the UD such

that � I�k
(a1), . . . , I�k

(an), u� is a member of I�k
(f). This

member u is not assigned to any other individual constant
bi occurring on �k but not in � (for, if it were, it would fol-
low that bi � f(a1, . . . , an) is true on I�k

, which contradicts
our assumption that (a) does not hold). Thus I��k

 is a path-
variant of I�k

, for the path extended to level k � 1 by the
addition of bm�1 � f(a1, . . . , an), on which every sentence
in the new path is true.

Finally, we must note that a branch of a tree for predicate logic with
identity closes in one of two cases: Either the branch contains a pair of con-
tradictory literals or the branch contains a sentence of the form ~ t � t. To
show that Metatheorem 11.5.1 for predicate logic with identity follows from the
Consistent Branch Lemma 11.5.2, we must therefore additionally show that the
set of sentences on a branch that closes because it contains a sentence ~ t � t
is quantifi cationally inconsistent. This is not diffi cult: t � t is quantifi cationally
true, so ~ t � t is quantifi cationally false, and therefore any set that contains
~ t � t is quantifi cationally inconsistent. This and the addition of Cases 7 and
8 in the proof of result 11.5.3 suffi ce to show that the tree method is sound
for predicate logic with identity and functions.

Result 11.5.3 also allows us to prove another claim that we made in
Chapter 9, namely, that trees constructed in accordance with The System have
the fi nite model property:

Metatheorem 11.5.4: If a fi nite set � of sentences of PL has a fi nite model, that
is, an interpretation with a fi nite UD on which every member of � is true, then
every systematic tree for � will contain a completed open branch.2

In such a case, we shall be able to conclude in a fi nite number of steps that the
set is quantifi cationally consistent.

2This metatheorem, along with result 11.5.3, is due to George Boolos, “Trees and Finite Satisfi ability: Proof of a
Conjecture of Burgess,” Notre Dame Journal of Formal Logic, 25(3) (1984), 193–197.

ber38413_ch11_545-612.indd Page 593 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 593 12/6/12 2:27 PM F-400F-400

594 PREDICATE LOGIC: METATHEORY

Proof of Metatheorem 11.5.4: Let � be a fi nite set of sentences such that
there is an interpretation I with a fi nite UD on which every member of �
is true. By result 11.5.3, every level i of a systematic tree for � is such that
either (a) there is at least one completed path p to a level earlier than i
that contains a set of sentences all of which are true on the path-variant
Ip or (b) there is at least one path p to level i that contains a set of sen-
tences all of which are true on the path-variant Ip.

Consider, for any level i, a path that satisfi es either (a) or (b).
There is an upper limit to the number of distinct individual constants
not already occurring in � that can occur on this path (constants that
were introduced by an application of ∀D or ∃D2), namely, the size n
of the fi nite UD for I. For if a path contains more than n new indi-
vidual constants, it cannot meet the condition in the defi nition of path-
variants that each of these constants be assigned a member of the UD
that is different from the members assigned to other new constants; there
would not be enough members of the UD to go around. In addition,
because � is a fi nite set it can only contain a fi nite number of constants,
so a path that satisfi es either (a) or (b) can contain only a fi nite number
of constants.

But a path of a systematic tree that contains only a fi nite number of
individual constants must be fi nitely long. Each of the decomposition rules
&D, ~ &D, ∨D, ~ ∨D, ~ ⊃D, ~ �D, ~ ~ D, ∀D, and ∃D2 produces sentences
with fewer occurrences of logical operators than the sentence being decom-
posed. The rules ⊃D, �D, ~ ∃D, and ~ ∀D produce one or two sentences
with the same number of occurrences of logical operators as the sentence
being decomposed, but the sentences so produced have one of the forms
~ P (in the case of ⊃D and �D), (∃x) ~ P (in the case of ~ ∀D), or (∀x)
~ P (in the case of ~ ∃D). Each of the latter sentences, if not a literal, will
be decomposed by a rule that produces only sentences with fewer occur-
rences of logical operators. Because subsequent applications of decom-
position rules produce sentences with fewer and fewer occurrences of
logical operators, literals are eventually reached. The only way in which a
branch of a systematic tree can continue indefi nitely is through repeated
instantiation of one or more universally quantifi ed sentences by ∀D, each
instantiation containing a different instantiating constant. But this can-
not be the case with a branch that contains a fi nite number of individual
constants. Therefore the paths that we are guaranteed by result 11.5.3
can be only fi nitely long.

In addition, The System was designed to guarantee that if a
path can be completed (or closed) after a fi nite number of applica-
tions of rules, it will be completed. Stages 1 and 2 (and stage 3, in the
case of PLE) each require that we decompose all sentences on the tree
of the specifi ed sort before going to the next stage, and at each stage
there are only fi nitely many sentences. The System does not allow one
branch to be developed indefi nitely while others are ignored, and so

ber38413_ch11_545-612.indd Page 594 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 594 12/6/12 2:27 PM F-400F-400

11.5 THE SOUNDNESS OF THE TREE METHOD 595

a branch that can be completed after a fi nite number of steps will
be completed.

We conclude that at some fi nite level i of a systematic tree for
�, there is a path that meets condition (a) of result 11.5.3. In addition,
because this path meets (a), it is a completed open path. This establishes
Metatheorem 11.5.4.

 Metatheorem 11.5.4 is also true of PLE; this proof is left as an
exercise.

 11.5E EXERCISES

 *1. Show that Metatheorem 11.5.1 holds for nonsystematic trees as well as for
systematic ones. (Result 11.5.3 is not generally true of nonsystematic trees, so
you should prove Lemma 11.5.2 directly by mathematical induction.)

 2. Using Metatheorem 11.5.1, prove the following:
 a. If a sentence P of SL is such that {P} has a closed truth-tree, then P is quanti-

fi cationally false.
 b. If a sentence P of SL is such that {~ P} has a closed truth-tree, then P is quan-

tifi cationally true.
 *c. If a set {~ (P � Q)} has a closed truth-tree, then P and Q are quantifi cationally

equivalent.
 d. If a set � ∪ {~ P} has a closed truth-tree, then � P.
 *e. If the set consisting of the premises and the negation of the conclusion of an

argument has a closed truth-tree, then that argument is quantifi cationally valid.

 3. Prove that if a sentence Q is obtained from a sentence P by application of one
of the following tree rules, then {P} Q.

 a. ~ ~ D e. ∀D
 *b. &D *f. ~ ∀D
 *c. ~ ∨D *g. ~ ∃D
 d. ~ ⊃D

 4. Prove that if sentences Q and R are obtained from a sentence P by application
of one of the following tree rules, then on any interpretation on which P is
true, either Q is true or R is true.

 a. ~ &D
 *b. ∨D
 *c. ⊃D

 5. Prove Case 4 in the inductive step of the proof of Lemma 11.5.2.

 6. If we were to drop the rule ∀D from the tree method, would the method still
be sound for predicate logic? Explain.

 7. Explain how we can adapt the proof of Metatheorem 11.5.1 to establish that
the tree method for SL is sound for sentential logic.

 *8. Prove that Metatheorem 11.5.4 is true of PLE.

ber38413_ch11_545-612.indd Page 595 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 595 12/6/12 2:27 PM F-400F-400

596 PREDICATE LOGIC: METATHEORY

 11.6 THE COMPLETENESS OF THE TREE METHOD

In the last section we established that the tree method is sound for predicate
logic—if a tree for a set of sentences of PL closes, then that set is quantifi cation-
ally inconsistent. In this section we shall prove that the tree method is also com-
plete for sentential logic. The Completeness Metatheorem for the tree method is

Metatheorem 11.6.1: If a fi nite set � of sentences of PL is quantifi cationally
inconsistent, then every systematic tree for � closes.

Whereas soundness ensures that we are correct in pronouncing a set inconsist-
ent if we can construct a closed tree for that set, completeness ensures that
we are correct in pronouncing a set consistent if a systematic tree for that set
does not close. The requirement that the tree be systematic is important, as
we shall see; and the reader should remember that a tree that is constructed
in accordance with The System but is abandoned before every branch closes
and before at least one branch becomes a completed open branch does not
count as a systematic tree.

We shall prove that the tree method is complete by establishing that
the contrapositive of Metatheorem 11.6.1 is true—that if a systematic tree for a
set of sentences of PL does not close, then the set is quantifi cationally consist-
ent. There are three parts to the proof. First, we shall prove that, if a system-
atic tree fails to close and does not contain a completed open branch after
a fi nite number of steps in its construction, then it has at least one branch
with infi nitely many sentences. Second, we shall prove that for any completed
open branch or infi nite branch of a systematic truth-tree, the set of sentences
occurring on that branch is a special sort of set known as a Hintikka set.3 Finally
we shall present a method of constructing a model for any Hintikka set. This
will establish that every Hintikka set is quantifi cationally consistent and conse-
quently that the set of sentences occurring on either a completed open branch
or an infi nite branch of a systematic truth-tree is quantifi cationally consistent.
From these three steps, it follows that, if a systematic tree for � fails to close, �
is a subset of a Hintikka set and is therefore also quantifi cationally consistent.
Therefore, if a fi nite set � is quantifi cationally inconsistent, then every system-
atic tree for � will close—and this will establish Metatheorem 11.6.1.

Consider a systematic tree such that at no level i does the tree contain
a completed open branch and at no level i is the tree closed. Our fi rst task is
to show that such a tree must contain an infi nite branch. Because the tree fails
to close or to contain a completed open branch at any level i, the tree must
contain infi nitely many sentences (strictly speaking, infi nitely many occurrences
of sentences—the sentences need not be distinct). The tree contains infi nitely

3These sets were fi rst studied by J. Hintikka, in “Form and Content in Quantifi cation Theory,” Acta Philosophica
Fennica, 8 (1955), 7–55; and “Notes on Quantifi cation Theory,” Societas Scientiarum Fennica, Commentationes Physico-
Mathematicae, 17(12) (1955).

ber38413_ch11_545-612.indd Page 596 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 596 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 597

many sentences because it takes infi nitely many steps to construct a systematic
tree that neither is closed nor contains a completed open branch at any level,
and each step in the construction involves adding at least one new sentence.
It remains to be shown that a systematic truth-tree containing infi nitely many
sentences has at least one branch that is infi nitely long—at least one branch
that contains an infi nite number of sentences. The reason that this needs to
be proven is that a tree could contain infi nitely many sentences and yet be such
that each of its branches was only fi nitely long, if it contained infi nitely many
branches. So we need to establish the following lemma, the Infi nite Branch
Lemma:

11.6.2 (the Infi nite Branch Lemma): Every systematic tree that contains
an infi nite number of occurrences of sentences has at least one branch
that is infi nitely long.4

Proof of Lemma 11.6.2: Some defi nitions will be useful for the proof.
We shall say that a sentence P (throughout, read occurrence of a sentence
whenever we speak of a sentence) in a tree is above sentence Q when P
and Q lie on the same branch of the tree and P is at an earlier level of
the tree. Q is an immediate successor of P if P and Q lie on the same
branch and P is one level earlier than Q. Every sentence in a tree,
except those that occur at the ends of branches, has a fi nite number of
immediate successors—one if a nonbranching rule is applied, two if a
branching rule other than ∃D2 is applied, and m � 1, where m is the
number of individual constants already occurring on the sentence’s
branch, if ∃D2 is applied.

We shall now show that if a systematic tree contains infi nitely
many sentences then there is at least one infi nite branch in the tree,
by starting at level 1 and working down through the levels of the
tree. The sentence at level 1 of such a tree—call it P1—is above every
other sentence in the tree. Therefore this sentence is above infi nitely
many sentences (subtracting 1 from an infi nite number leaves an infi -
nite number). P1 has a fi nite number of successors at level 2. At least
one of these immediate successors must therefore be above infi nitely
many sentences—for if they were all above only a fi nite number of
successors, P1 would also only be above a fi nite number of succes-
sors. The reasoning that we have just used can be generalized: If a
sentence at any level is above infi nitely many sentences, then at least
one immediate successor of that sentence is above infi nitely many
sentences. We therefore conclude, by mathematical induction, that
at every level of the tree there is at least one sentence that is above
infi nitely many sentences, which means that at least one branch is
infi nitely long.

4This follows as a special case of a famous lemma known as König’s Lemma (D. König, Theorie der endlichen und
unendlichen Graphen, Leipzig, 1936).

ber38413_ch11_545-612.indd Page 597 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 597 12/6/12 2:27 PM F-400F-400

598 PREDICATE LOGIC: METATHEORY

We may therefore conclude that a systematic tree that fails to close either has
a completed open branch after a fi nite number of steps or has at least one
infi nite branch. This will be important in what follows.

Turning to the second step of the proof of Metatheorem 11.6.1, we
defi ne a Hintikka set to be a set � of sentences of PL that has the following
properties:

a. There is no atomic sentence P such that both P and ~ P are
 members of �.

b. If ~ ~ P ∈ �, then P ∈ �.
c. If P & Q ∈ �, then P ∈ � and Q ∈ �.
d. If ~ (P & Q) ∈ �, then either ~ P ∈ � or ~ Q ∈ �.
e. If P ∨ Q ∈ �, then either P ∈ � or Q ∈ �.
f. If ~ (P ∨ Q) ∈ �, then ~ P ∈ � and ~ Q ∈ �.
g. If P ⊃ Q ∈ �, then either ~ P ∈ � or Q ∈ �.
h. If ~ (P ⊃ Q) ∈ �, then P ∈ � and ~ Q ∈ �.
i. If P � Q ∈ �, then either P ∈ � and Q ∈ � or ~ P ∈ � and ~ Q ∈ �.
j. If ~ (P � Q) ∈ �, then either P ∈ � and ~ Q ∈ � or ~ P ∈ � and

Q ∈ �.
k. If (∀x)P ∈ �, then at least one substitution instance of (∀x)P

is a member of �, and for every constant a that occurs in some
 sentence of �, P(a/x) ∈ �.

l. If ~ (∀x)P ∈ �, then (∃x) ~ P ∈ �.
m. If (∃x)P ∈ �, then for at least one constant a, P(a/x) ∈ �.
n. If ~ (∃x)P ∈ �, then (∀x) ~ P ∈ �.

We call a branch of a tree a Hintikka branch if and only if the sentences on
that branch constitute a Hintikka set. We now prove that every completed open
branch and every infi nite branch of a systematic tree is a Hintikka branch,
which will establish the Hintikka Branch Lemma:

11.6.3 (the Hintikka Branch Lemma): Every systematic tree that is not
closed has at least one Hintikka branch.

Afterward we shall show that every Hintikka set is quantifi cationally consistent.

Proof of Lemma 11.6.3: If a systematic tree fails to close, then either
the tree has a completed open branch or, by Lemma 11.6.2, the tree
has an infi nite branch. We shall show that each of these two types of
branches is a Hintikka branch—that is, that the set of sentences occur-
ring on such a branch has properties (a)–(n).

First consider completed open branches. By defi nition a
 completed open branch is a fi nite branch that is open—there is no

ber38413_ch11_545-612.indd Page 598 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 598 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 599

 contradictory pair of literals P and ~ P on the branch—and each sen-
tence on that branch is one of the following:

1. A literal (an atomic sentence or the negation of an atomic
sentence)

2. A sentence that is not universally quantifi ed and that has
been decomposed

3. A universally quantifi ed sentence (∀x)P such that at least
one substitution instance of (∀x)P occurs on the branch
and, for each constant a occurring on the branch, P(a/x)
occurs on the branch

The set of sentences on a completed open branch has property (a) be-
cause the branch does not include a pair of contradictory literals. Every
sentence that has one of the forms described in properties (b)–(j)
and (l)–(n) has been decomposed (because this is a completed open
branch), and so it is easily verifi ed that the set of sentences on a com-
pleted open branch has those properties. (For example, if a sentence
~ ~ P occurs on a completed open branch and has been decomposed by
an application of ~ ~ D, then P also occurs on that branch—which estab-
lishes property (b).) Finally the set of sentences on a completed open
branch also has property (k), for part 3 of the defi nition of completed
open branches stipulates that property (k) is satisfi ed. We conclude that
a completed open branch is therefore a Hintikka branch.

Now we turn to infi nite branches. The System for tree construc-
tion was designed to guarantee that every infi nite (nonterminating)
branch is a Hintikka branch; we shall explain how it does so. First, a
nonterminating branch is not closed (a branch that closes contains only
fi nitely many sentences); so the set of sentences on such a branch must
have property (a) of Hintikka sets. Second, the alternation of stages 1
and 2 of The System ensures that each nonliteral sentence that does not
have the form (∀x)P is decomposed a fi nite number of levels after the
level on which it occurs, that for each universally quantifi ed sentence
(∀x)P and constant a on a branch of the tree P(a/x) is entered within
a fi nite number of levels, and that at least one substitution instance
P(a/x) is entered. Each such addition yields only a fi nite number of lev-
els, so every sentence on a branch must be decomposed if the branch is
infi nite. Therefore the set of sentences on a nonterminating branch sat-
isfi es properties (b)–(n) of Hintikka sets, as well as property (a). Every
infi nite branch of a systematic tree is therefore a Hintikka branch.

Finally we prove

11.6.4 (the Hintikka Set Lemma): Every Hintikka set is quantifi cationally
consistent.

ber38413_ch11_545-612.indd Page 599 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 599 12/6/12 2:27 PM F-400F-400

600 PREDICATE LOGIC: METATHEORY

From this it will follow that if a systematic tree for a set � of sentences does
not close then � is quantifi cationally consistent—for one of the branches that
contains the sentences in � is a Hintikka branch.

Proof of Lemma 11.6.4: Let � be a Hintikka set of sentences of PL. We
fi rst associate with each individual constant of PL a distinct positive inte-
ger—i is associated with the alphabetically ith constant. We shall prove
that every sentence of � is true on the interpretation I defi ned as follows:

1. The UD is the set consisting of the positive integers that
are associated with the individual constants occurring in
members of �. If no member of � contains an individual
constant, let the UD be the set {1}.

2. For each sentence letter P, I(P) � T if and only if P ∈ �.
3. For each individual constant a that occurs in some sentence

in �, I(a) is the positive integer associated with a. For each
constant a that does not occur in any sentence of �, I(a) is
the smallest positive integer in the UD (which, by specifi ca-
tion 1, is nonempty).

4. For each n-place predicate A, I(A) includes all and only
those n-tuples 〈u1, . . . , un〉 such that for some constants
a1, . . . , an, Aa1 . . . an ∈ � and 〈I(a1), . . . , I(an)〉 �
〈u1, . . . , un〉.

We shall use mathematical induction to prove that every mem-
ber of � is true on I. Our induction will not be on the number of occur-
rences of logical operators in a sentence since some of the clauses of the
proof would not work in that case (see Exercise 11.6.5). Instead, we shall
appeal to the length of a sentence. Where P is a formula of PL, let the
length of P be the number of occurrences of sentence letters, predicates,
and logical operators in P. No sentence of PL has length 0 since every
sentence contains at least one sentence letter or predicate. So the basis
clause begins with length 1.

Basis clause: Every sentence P of length 1 is such that if P ∈ � then
I(P) � T.
Inductive step: If every sentence P of length less than or equal to k is such
that if P ∈ � then I(P) � T, then the same holds of every sentence P of
length k � 1.

Conclusion: Every sentence P is such that if P ∈ �, then I(P) � T.

Proof of basis clause: A sentence of length 1 is an atomic sentence. If P is
a sentence letter, then by part 2 of the defi nition of I, I(P) � T if P ∈ �. If
P is an atomic sentence of the form Aa1 . . . an, then by part 4 of the defi -
nition of I, �I(a1), . . . , I(an)� ∈I(A) if Aa1 . . . an ∈ �, and so I(P) � T.

ber38413_ch11_545-612.indd Page 600 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 600 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 601

Proof of inductive step: We assume that the inductive hypothesis holds
for some arbitrary positive integer k—that every sentence of length k or
less that is a member of � is true on I. We must show that any sentence P
of length k � 1 that is a member of � is also true on I. It is easy to verify
that P, being nonatomic, must have one of the forms specifi ed in proper-
ties (a)–(n) of Hintikka sets; and we shall consider each of these forms
that P may have.

Case 1: P has the form ~ Q, where Q is an atomic sentence. If
~ Q ∈ � then, by property (a) of Hintikka sets, Q ∉ �. If Q is a sentence
letter then, by part 2 of the defi nition of I, I(Q) � F and so I(~ Q) � T. If
Q has the form Aa1 . . . an then, by part 4 of the defi nition of I, 〈I(a1), . . . ,
I(an)〉 ∉ I(A). This is because each constant that occurs in some member
of � designates a positive integer different from that designated by any
other constant occurring in � (by part 3), and so there is no other set of
constants occurring in � that also designate the members of the n-tuple
〈I(a1), . . . , I(an)〉. We may therefore conclude, from the fact that Aa1 . .
. an ∉ �, that I(Aa1 . . . an) � F and I(~ Aa1 . . . an) � T.

Case 2: P has the form ~ ~ Q. If ~ ~ Q ∈ � then, by property (b)
of Hintikka sets, Q ∈ �. The length of Q is less than k � 1, so, by the
inductive hypothesis, I(Q) � T. Therefore I(~ ~ Q) � T as well.

Case 3: P has the form Q & R. If Q & R ∈ � then, by property
(c) of Hintikka sets, Q ∈ � and R ∈ �. By the inductive hypothesis (Q
and R both having lengths less than k � 1), I(Q) � T and I(R) � T. So
I(Q & R) � T.

Case 4: P has the form ~ (Q & R). If ~ (Q & R) ∈ � then, by
property (d) of Hintikka sets, either ~ Q ∈ � or ~ R ∈ �. The lengths of
~ Q and of ~ R are less than the length of ~ (Q & R), so, by the inductive
hypothesis, either I(~ Q) � T or I(~ R) � T. If I(~ Q) � T, then I(Q)
� F, I(Q & R) � F, and I(~ (Q & R)) � T. Similarly, if I(~ R) � T, then
I(~ (Q & R)) � T. Either way, I(~ (Q & R)) � T.

Cases 5–10: P has one of the forms Q ∨ R, ~ (Q ∨ R), Q ⊃ R,
~ (Q ⊃ R), Q � R, or ~ (Q � R) (see Exercise 11.6.3).

Case 11: P has the form (∀x)Q. If P ∈ � then, by property (k)
of Hintikka sets, for every constant a that occurs in �, Q(a/x) ∈ � (and
there is at least one such constant). Each substitution instance has a
length less than k � 1, so it follows from the inductive hypothesis that,
for each of these sentences, I(Q(a/x)) � T. Moreover, each member
of the UD is designated by some constant occurring in � (by part 1 of
the defi nition of the interpretation I—because at least one constant oc-
curs in �), so for each member of the UD there is a constant a such that
Q(a/x) ∈ � and hence is true on I. It therefore follows from 11.6.5 that
I((∀x)Q) � T:

ber38413_ch11_545-612.indd Page 601 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 601 12/6/12 2:27 PM F-400F-400

602 PREDICATE LOGIC: METATHEORY

11.6.5: Let I be an interpretation on which for each member u of
the UD there is at least one constant a such that I(a) � u and
I(P(a/x)) � T. Then I((∀x)P) � T.

Proof: See Exercise 11.6.4.

Case 12: P has the form ~ (∀x)Q. If ~ (∀x)Q ∈ �, then, by
 property (1) of Hintikka sets, (∃x) ~ Q ∈ �, and by property (m)
~ Q(a/x) ∈ � for some constant a. The length of ~ Q(a/x) is less than
k � 1, so, by the inductive hypothesis, I(~ Q(a/x)) � T and therefore
I(Q(a/x)) � F. Because {(∀x)Q} Q(a/x) (result 11.1.4), it follows that
I((∀x)Q) � F and I(~ (∀x)Q) � T.

Cases 13 and 14: P has one of the forms (∃x)Q or ~ (∃x)Q (see
Exercise 11.6.3).

That completes the proof of the inductive step. Therefore every sentence that
is a member of the Hintikka set � is true on I, and this shows that � is quan-
tifi cationally consistent.

The Hintikka Branch Lemma 11.6.3 and the Hintikka Set Lemma 11.6.4
can now be used to establish Metatheorem 11.6.1. If a systematic tree for a set
� of sentences does not close, then the tree has at least one Hintikka branch
(Lemma 11.6.3). The set of sentences on that Hintikka branch is quantifi cation-
ally consistent (Lemma 11.6.4). Therefore, because every member of � lies on
that branch (as well as on every other branch), � is quantifi cationally consistent.
So if � is quantifi cationally inconsistent, then every systematic tree for � closes.

We note that the proof that we have just given is a constructive complete-
ness proof. We have shown how, given a Hintikka branch of a systematic tree
for a set of sentences �, to construct a model for �. This establishes a claim
made in Chapter 9: An interpretation showing the quantifi cational consistency
of � can always be constructed from a completed open branch of a tree for �.

Finally, the tree method for predicate logic with identity and functions
is also complete, and this can be shown by making appropriate changes in the
proofs of Lemmas 11.6.3 and 11.6.4. We defi ne a Hintikka set for PLE to be
a set � that has the properties (a)–(n) of our earlier defi nition and that also
has these properties:

o. No sentence of the form ~ t � t is a member of �.
p. If a � t, where a is a constant, is a member of �, and a literal

sentence P ∈ � contains t, then every sentence P(a//t) is also a
member of �.

q. If a complex term f(a1, . . . , an) in which a1, . . . , an are individual
constants occurs in any literal sentence in �, then, for at least one
constant b, b � f(a1, . . . , an) ∈ �.

The proof of Lemma 11.6.3—that every systematic tree that does not
close has a Hintikka branch—runs as before, except that we replace talk of the

ber38413_ch11_545-612.indd Page 602 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 602 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 603

constant a occurring on a branch with talk of the closed term t occurring on
a branch. We must also add the following:

The set of sentences on a completed open branch of a systematic tree
must have property (o), because by defi nition a branch that does not
close does not contain a sentence of the form ~ t � t. Property (p) must
hold by virtue of the requirement in clause 4 of the defi nition of a com-
pleted open branch. Property (q) must hold by virtue of the fi nal com-
ponent of the defi nition of a completed open branch.

Similar remarks establish that infi nite branches in trees for PLE
are also Hintikka branches: The cycle of stages 1–4 in The System, and
the fact that each stage adds only a fi nite number of sentences, guaran-
tees that every sentence on a branch will be decomposed if the branch is
infi nite. Note that the requirement in stage 2 of The System, that P(t/x)
be entered for a complex term t only if doing so will close the branch
on which it is entered, plays a crucial role here. If The System allowed
such substitutions for complex terms that did not close the branch, we
could have a branch containing a sequence such as ‘(∀x)Gf(x)’, ‘Gf(a)’,
‘a � f(a)’, ‘Gf(f(a))’, ‘Gf(f(f(a)))’, ‘Gf(f(f(f(a))))’, . . . in which ‘f(a)’
has been continuously substituted for ‘a’ at the expense of decomposing
other sentences on the branch. Similarly the restriction (ii) in stage 4
guarantees that we will not have a branch containing a sequence such
as ‘a � f(a)’, ‘a � f(f(a))’, ‘a � f(f(f(a)))’, . . . or ‘a � f(a)’, ‘Ga’, ‘Gf(a)’,
‘Gf(f(a))’, Gf(f(f(a))), . . . in which ‘f(a)’ has been continuously substitut-
ed for ‘a’ at the expense of decomposing other sentences on the branch.

To show that Lemma 11.6.4 holds for predicate logic with identity and
functions, we must defi ne the interpretations of individual constants, and the
UD for the interpretation, differently for a PLE Hintikka set � than these were
defi ned for PL. In the case of PL, we were able to assign a unique member
of the UD to each individual constant. We cannot generally do this for PLE,
because of the identity predicate: the truth of an identity sentence such as
‘a � b’ requires that ‘a’ and ‘b’ designate the same individual. We associate
members of the set of positive integers with individual constants in two steps:

 • We begin with an association of unique positive integers with the
individual constants of PLE, as we did for PL: Associate the positive
integer i with the alphabetically ith individual constant of PLE. Let
‘p’ designate this association and let p(a) stand for the integer that
has been associated with the constant a.

 • Now we run through the individual constants, in alphabetical
order, to determine whether it is necessary to adjust the associated
values because of identity sentences in the PLE Hintikka set. Our
second association, which we shall designate with ‘q’, is defi ned as:
q(a) � p(a�) if a� is the alphabetically earliest constant such that
a� � a is a member of �, and q(a) � p(a) otherwise.

ber38413_ch11_545-612.indd Page 603 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 603 12/6/12 2:27 PM F-400F-400

604 PREDICATE LOGIC: METATHEORY

For example, if ‘a � b’, ‘a � e’, and ‘a � k’ are all members of the Hintikka
set, then q(‘a’) � 1 (there is no alphabetically earlier constant, so q(‘a’) will
never have to be adjusted), q(‘e’) � q(‘a’) � 1, and q(‘k’) � q(‘a’) � 1.

We may now defi ne the interpretation for a PLE Hintikka set �:

 1. The UD is the set consisting of the positive integers that q assigns to
the individual constants occurring in members of �. If no member
of � contains an individual constant, let the UD be the set {1}.

We change clause 3 in the interpretation constructed in Lemma 11.6.4 to:

 3. For each individual constant a,
 • If a occurs in some sentence in �, I(a) � q(a).
 • If a does not occur in any sentence of �, I(a) is the smallest

positive integer in the UD.

The reason for not assigning q(a) to constants that do not occur in � is that we
want all of the members of the UD to be named by constants that do occur in �.

We must also add a fi fth clause to complete the defi nition of the inter-
pretation for the Hintikka set �:

 4. For each n-place functor f, I(f) consists of all and only the n � 1-tuples
�d1, . . . , dn, dn�1� of members of the UD such that either

 (i) there exist constants a1, . . . , an, an�1 such that
an�1 � f(a1, . . . , an) ∈ � and di � I(ai), 1 � i � n � 1, or

(ii) there are no such constants, and dn�1 is the smallest mem-
ber of the UD.

Part (i) of clause 5 ensures that the relevant identity sentences turn out to
be true, while part (ii) ensures that I(f) is indeed a function defi ned over all
members of the UD, by arbitrarily specifying a value of the function for all
other n-tuples.

We must, however, ascertain that clause 5 correctly defi nes the inter-
pretation of an n-place functor as a function that assigns exactly one member of
the UD to each n-tuple of members of the UD. It is clear that it assigns at least
one member of the UD to each n-tuple. Moreover, if case (i) doesn’t apply
then case (ii) will assign at most one member. It remains to show that if case
(i) applies it will also assign at most one member:

 • First we note that if (i) assigns more than one member of the UD
to some n-tuple of members of the UD, that will be because

• there exist constants a1, . . . , an, an�1 such that
an�1 � f(a1, . . . , an) ∈ �

ber38413_ch11_545-612.indd Page 604 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 604 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 605

• and constants b1, . . . , bn, bn�1 such that
bn�1 � f(b1, . . . , bn) ∈ �,

• where I(ai) � I(bi) for 1 � i � n and I(an�1) 	 I(bn�1).

We will show that this is impossible.

 • Note that if I(ai) � I(bi) then, by the way we defi ned the values
that I assigns to individual constants based on the association
q, either

(a) ai � bi ∈ � (in this case, ai is the alphabetically earliest con-
stant that stands on the left-hand side of an identity sen-
tence that has bi on the right-hand side), or

(b) bi � ai ∈ � (in this case, bi is the alphabetically earliest
constant that stands on the left-hand side of an identity
sentence that has ai on the right-hand side), or

(c) there is a constant ci such that both ci � ai and ci � bi are
members of � (ci is distinct from ai and bi and is the alpha-
betically earliest constant that stands on the left-hand side
of an identity sentence that has ai on the right-hand side
as well as the alphabetically earliest constant that stands on
the left-hand side of an identity sentence that has bi on the
right-hand side).

 • We now perform the following substitutions in the sentences
an�1 � f(a1, . . . , an) and bn�1 � f(b1, . . . , bn):

• For each ai and bi occurring on the right-hand side of these
 identity sentences,

• If (a) holds (ai � bi ∈ �), then replace bi with ai in
bn�1 � f(b1, . . . , bn).

• If (b) holds (bi � ai ∈ �), then replace ai with bi in
an�1 � f(a1, . . . , an).

• If (c) holds (ci � ai and ci � bi are members of �), then
replace ai with ci in an�1 � f(a1, . . . , an) and replace bi with
ci in bn�1 � f(b1, . . . , bn).

 • Note that each replacement generates a sentence that is
also a member of the Hintikka set �, by property (p) of Hintikka
sets.

 • Note also that the right-hand sides of the identity sentences
that result from these replacements will be identical: either we
replaced bi with ai in bn�1 � f(b1, . . . , bn) and left ai intact in
an�1 � f(a1, . . . , an), or vice versa, or we replaced both ai and bi
with ci.

ber38413_ch11_545-612.indd Page 605 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 605 12/6/12 2:27 PM F-400F-400

606 PREDICATE LOGIC: METATHEORY

 • Let us denote the common right-hand side as f(t1, . . . , tn); we
have shown that both an�1 � f(t1, . . . , tn) and bn�1 � f(t1, . . . , tn)
are members of �.

 • By virtue of property (p) of Hintikka sets for PLE, it follows that

• an�1 � bn�1 ∈ �, because an�1 � bn�1 is the result of replacing
f(t1, . . . , tn) in an�1 � f(t1, . . . , tn) with bn�1;

• bn�1 � an�1 ∈ �, for a similar reason;
• an�1 � an�1 ∈ �, because an�1 � an�1 is the result of

replacing bn�1 in either of the above with an�1, and
• bn�1 � bn�1 ∈ �, for a similar reason.

 • But then I(an�1) � I(bn�1), contrary to our previous assumption.
For it follows from the construction of I that

• if no identity sentence with a constant that is alphabetically
earlier than an�1 or bn�1 occurring on the left-hand side is
a member of �, then both constants will denote either p(an�1)
or p(bn�1), depending on which is alphabetically earlier,

• and if there is a constant c that is alphabetically earlier
than both an�1 and bn�1 such that either c � an�1 or c � bn�1
is a member of �, then, because the identity sentences an�1 �
bn�1 and bn�1 � an�1 are both members of �, it follows from
property (p) of PLE Hintikka sets that both cn�1 � an�1 and
cn�1 � bn�1 must be members of �as well, in which case both
I(an�1) and I(bn�1) are defi ned to be p(c) for the alphabeti-
cally earliest such constant c.

We may conclude that case (i) of clause 5 in the defi nition of an interpretation
for the PLE Hintikka set � will not assign more than one member of the UD
to any given n-tuple, so that clause 5 does indeed defi ne a function.

We shall use the following result in the proof that every member of a
Hintikka set is true on the interpretation I we have just defi ned:

11.6.6: If a Hintikka set � contains a literal sentence P with a closed
complex term t, it also contains each sentence P(a//t) for some con-
stant a such that denI(a) � denI(t),4 where I is the interpretation that
has just been defi ned for the Hintikka set.

Proof: We shall prove this using mathematical induction on the complexity
of t, which is defi ned recursively as follows:

 • If t is f(a1, . . . , an), where each ai is a constant, the
 complexity of t is 1.

4Because all of the terms mentioned in this proof are closed terms, we omit reference to a variable assignment
d when referring to the denotation of a term. We do so because the denotation in these cases is independent
of any particular variable assignment.

ber38413_ch11_545-612.indd Page 606 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 606 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 607

 • If t is f(t1, . . . , tn), where some ti is not a constant, the
complexity of t is 1 greater than the maximum complexity
of the terms t1, . . . , tn.

So ‘f(a, b)’ has complexity 1, ‘f(g(a), g(b))’ has complexity 2, and
‘f(g(h(a)), g(b))’ has complexity 3.

Basis clause: 11.6.6 holds for every closed complex term t of complexity 1.
Proof of basis clause: In this case the Hintikka set contains an identity
sentence a � t, where a is a constant, by property (q) of Hintikka sets,
and so, by property (p), it follows that each sentence P(a//t) is also a
member of �. In addition, denI(t) � denI(a) by the way that I(f) is de-
fi ned in clause 5 of the defi nition of I, since the Hintikka set contains the
identity sentence a � t.
Inductive step: If 11.6.6 holds for every closed complex term t of com-
plexity k or less, then 11.6.6 holds for every closed complex term t of
complexity k � 1.
Proof of inductive step: We assume that the inductive hypothesis
holds—that is, that 11.6.6 is true of every closed complex term of com-
plexity k or less. We must show that it follows that 11.6.6 also holds of eve-
ry closed complex term of complexity k � 1. Let t be a closed complex
term of complexity k � 1. Then t is f(t1, . . . , tn), where each ti is a com-
plex term of complexity k or less. It follows, by the inductive hypothesis,
that for some constants a1, . . . , an such that denI(ai) � denI(ti) for each
i, each formula that results from replacing one or more occurrences of
f(t1, . . . , tn) in P with f(a1, . . . , an) is a member of �. By property (q)
of Hintikka sets, there is a constant a such that a � f(a1, . . . , an) ∈ �,
and so, by property (p) of PLE Hintikka sets, each sentence P(a//t)
is also a member of �. Moreover, because a � f(a1, . . . , an) ∈ �, it
 follows from the defi nition of I(f) in clause 5 that denI(a) �
denI(f(a1, . . . , an)), and because denI (ai) � denI(ti) for each ai and ti,
it follows that denI(f(a1, . . . , an)) � denI(f(t1, . . . , tn)); so denI(a) �
denI(f(t1, . . . , tn)).

The proof of the basis clause of the inductive proof in 11.6.4 that every
member of a Hintikka set � is true on the interpretation I that we have just
defi ned is changed as follows:

Proof of basis clause: A sentence of length 1 is an atomic sentence. If
P is a sentence letter, then by part 2 of the defi nition of I, I(P) � T if
P ∈ �.

If P is an atomic sentence of the form At1 . . . tn, where A is not
the identity predicate, then it follows from 11.6.6 that � also contains
a sentence Aa1 . . . an such that each ai is a constant and denI(ti) �
denI(ai). By part 4 of the defi nition of I, if Aa1 . . . an ∈ �, then
�I(a1), . . . , I(an)� ∈ I(A), and so I(Aa1 . . . an) � I(At1 . . . tn) � T.

ber38413_ch11_545-612.indd Page 607 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 607 12/6/12 2:27 PM F-400F-400

608 PREDICATE LOGIC: METATHEORY

If P is a sentence of the form t1 � t2, then it follows from 11.6.6
that � also contains a sentence a1 � a2 such that a1 and a2 are constants
and denI(a1) � q(a1) � denI(t1) and denI(a2) � q(a2) � denI(t2).

 • Since a1 � a2 ∈ �, it follows, by property (p) of PLE Hintikka sets,
that a1 � a1 ∈ �.

 • Now, let q(a1) be p(b). Because a1 � a1 ∈ �, it follows by the way
that q was defi ned that b � a1 ∈ � and that b must be alphabeti-
cally earlier than or identical to a1.

 • It also follows by property (p) that b � a2 ∈ �.
 • Let q(a2) be p(c). Since a1 � a2 ∈ �, it follows that c is the

 alphabetically earliest constant such that c � a2 ∈ �.
 • Now, b cannot be alphabetically earlier than c, since b � a2 ∈ �.
 • Further, by property (p), c � b ∈ �. Therefore c � a1 ∈ �,
 • and so c cannot be alphabetically earlier than b since q(a1) is

p(b).
 • We conclude that because neither is alphabetically earlier than

the other, b and c are the same constant, and therefore
q(a1) � q(a2).

 • Consequently denI(t1) � denI(a1) � q(a1) � q(a2) � denI(a2) �
denI(t2).

We conclude that I(t1 � t2) � T.

We must also change the proof of Case 1 in the inductive step:

Case 1: P has the form ~ Q, where Q is an atomic sentence.
If Q is a sentence letter, then if ~ Q ∈ � it follows from part 2 of the defi -
nition of I that I(Q) � F since by property (a) of Hintikka sets Q ∉ �.
Therefore I(~ Q) � T.

If Q has the form At1 . . . tn, where A is not the identity predicate and ~
Q ∈ �, then, by 11.6.6, there is a formula ~ Aa1 . . . an in � in which every
complex term ti occurring in ~ Q has been replaced by a constant ai such
that denI(ti) � denI(ai). By property (a) of Hintikka sets, Aa1 . . . an ∉
�. It follows from part 4 of the defi nition of I that �I(a1), . . . , I(an)� ∉
I(A). For consider:

 • If �I(a1), . . . , I(an)� ∈ I(A), then there must be constants
a1�, . . . , an� such that Aa1� . . . an� ∈ � and I(ai) �I(ai�) for each ai.

 • Because each of these constants occurs in a member of �, it
 follows from clause 3 of the defi nition of I that for each of
these constants ai, I(ai) � q(ai) and I(ai�) � q(ai�) and thus
q(ai) � q(ai�).

ber38413_ch11_545-612.indd Page 608 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 608 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 609

 • From the last equation and the way that q is defi ned, it follows for
each of these pairs of constants that either

• ai � ai� ∈ �, or
• ai� � ai ∈ �, or
• there is a constant ci such that both ci � ai and ci � ai� are

members of �.

 • We now perform the following substitutions in the sentences
~ Aa1 . . . an and Aa1�. . . an� .

• For each ai and ai�,
• If (a) holds, then replace ai� with ai in Aa1�. . . an�.
• If (b) holds, then replace ai with ai� in ~ Aa1 . . . an.
• If (c) holds, then replace ai with ci in ~ Aa1 . . . an and

replace ai� with ci in Aa1�. . . ai�.
 • Note that each replacement generates a sentence that is also a

member of � by property (p) of Hintikka sets, and that at the
end of the replacements, we shall have two literal sentences,
one of which is the negation of the other and both of which
are members of �.

 • But this is impossible because of property (a) of Hintikka sets.

We may conclude that �I(a1), . . . , I(an)� ∉ I(A), and it follows that
I(~ Aa1 . . . an) � T.

Consequently, because denI(ti) � denI(ai) for each I, it also follows
that I(~ At1 . . . tn)(that is, I(~ Q)) � T.

If Q has the form t1 � t2 and ~ Q ∈ � then, by 11.6.6, there is a formula
~ a1 � a2 in � such that denI(ti) � denI(ai).

 • By property (a) of Hintikka sets, a1 � a2 ∉ �.
 • Now, if q(a1) � q(a2), then either

(a) a1 � a2 ∈ �, or
(b) a2 � a1 ∈ �, or
(c) there is a constant b such that b � a1 and b � a2 are both

members of �.
 • We have already shown that (a) does not hold.
 • Nor does (b) hold, because if it did then, by property (p) of

 Hintikka sets, ~ a2 � a2 would be a member of � since ~ a1 � a2
is, but that is impossible by property (o) of Hintikka sets.

 • Nor does (c) hold, because if did then, by property (p) of
Hintikka sets, ~ b � b would be a member of � since
~ a1 � a2 is, but that is also impossible by property (o) of
Hintikka sets.

ber38413_ch11_545-612.indd Page 609 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 609 12/6/12 2:27 PM F-400F-400

610 PREDICATE LOGIC: METATHEORY

 • Therefore, q(a1) 	 q(a2), so I(a1 � a2) � F and
I(~ a1 � a2) � T.

Because denI(ti) � denI(ai), we conclude that I(~ t1 � t2) � T.

 11.6E EXERCISES

 1. Using Metatheorem 11.6.1, prove the following:
 a. If P is quantifi cationally false, then every systematic tree for {P} closes.
 b. If P is quantifi cationally true, then every systematic tree for {~ P} closes.
 *c. If P and Q are quantifi cationally equivalent, then every systematic tree for

{~ (P � Q)} closes.
 d. If � P, where � is fi nite, then every systematic tree for � ∪ {~ P} closes.
 *e. If an argument of PL is quantifi cationally valid, then every systematic tree for

the set consisting of the premises and the negation of the conclusion of that
argument closes.

 2.a. What is the length of each of the following sentences?

(∀y)Wy ⊃ ~ (∀y)Bya
(∃x)Sxbc
(∀x)(Mx � ~ (∃y)My)

 b. Show that the length of a sentence ~ (Q & R) is greater than the length of
~ Q and greater than the length of ~ R.

 *c. Show that the length of a sentence Q � R is greater than the length of ~ Q
and greater than the length of ~ R.

 d. Show that the length of a sentence ~ (∀x)Q is greater than the length of
~ Q(a/x).

 3. Complete the following clauses in the inductive proof of the completeness of
the tree method.

 a. 5 *e. 9
 *b. 6 f. 10
 c. 7 g. 13
 *d. 8 *h. 14

 *4. Prove result 11.6.5.

 5. Which clauses in the inductive proof of the completeness of the tree method
would have broken down if our induction had been on the number of occur-
rences of logical operators in the sentences of PL?

 6. If the rule ∃D were not included in our tree rules, where would the proof of
Metatheorem 11.6.1 break down?

ber38413_ch11_545-612.indd Page 610 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 610 12/6/12 2:27 PM F-400F-400

11.6 THE COMPLETENESS OF THE TREE METHOD 611

 7. Suppose that our rule ~ ∀D were replaced by the following rule:

Negated Universal Decomposition* (∼ ∀D*)

~ (∀x)P

∼ P(a�x)

 where a is a constant foreign to all preceding lines of the tree.

 Would the resulting system be complete for predicate logic? Explain.

 8. Explain how we can adapt the proof of Metatheorem 11.6.1 to establish that
the tree method for SL is complete for sentential logic.

 9. Prove that every set of PL that is both maximally consistent and ∃-complete
(as defi ned in Section 11.4) is a Hintikka set. Prove that every Hintikka set
is ∃-complete. Prove that some Hintikka sets are not maximally consistent
in PD.

ber38413_ch11_545-612.indd Page 611 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 611 12/6/12 2:27 PM F-400F-400

ber38413_ch11_545-612.indd Page 612 12/6/12 2:27 PM ber38413_ch11_545-612.indd Page 612 12/6/12 2:27 PM F-400F-400

APPENDIX 1 A-1

Appendix 1

In this appendix, we review some simple facts about the positive integers.
Some readers will fi nd it useful to consult this appendix as a refresher prior
to symbolizing English sentences about the positive integers (Chapter 7), while
others will fi nd the appendix useful as a source of ideas for constructing inter-
pretations using the set of positive integers—or a subset thereof—as the UD
(Chapter 8).

The positive integers are the whole numbers 1, 2, 3, There are
infi nitely many positive integers.

• The smallest positive integer is 1.
• Every positive integer has a successor (which is also a positive inte-

ger), where the successor of an integer n is defi ned to be n � 1. As
a consequence,

 • There is no greatest positive integer.
 • For any positive integer n, there are infi nitely many positive inte-

gers that are greater than n.
• Every positive integer other than 1 is the successor of a positive integer.

1 is the successor of 0, and 0 is not a positive integer.

SOME FACTS ABOUT
THE POSITIVE INTEGERS

ber38413_app_A-1-A-4.indd Page A-1 12/6/12 2:12 PM ber38413_app_A-1-A-4.indd Page A-1 12/6/12 2:12 PM F-400F-400

A-2 APPENDIX 1

• The greater-than relationship is transitive. That is, for any positive
integers m, n, and p: if m is greater than n and n is greater than p,
then m is greater than p.

• A positive integer is even if it is evenly divisible by 2, that is, if it is
divisible by 2 without remainder. Positive integers that are not evenly
divisible by 2 are odd positive integers.

• The sum of any two positive integers is also a positive integer and is
greater than each of those integers.

• The difference between any two positive integers is less than each of
those integers but is not always a positive integer. For example, while
5 � 3 is 2, a positive integer, 3 � 3 is 0 and 3 � 5 is �2, a negative
integer. More generally, the difference between two positive integers
is a positive integer if and only if the integer that is subtracted is less
than the integer from which it is subtracted.

• The sum of two positive integers is even if and only if those integers
are both even or both odd. Put another way, the sum of two positive
integers is odd if and only if one of the two integers is even and the
other is odd.

• More generally, the sum of any n positive integers is even if and only
if those n positive integers include either no odd integers or an even
number of odd integers (e.g., 2 � 4 � 8 � 14 and 2 � 3 � 3 �
4 � 12, while 3 � 5 � 9 � 17 and 2 � 3 � 4 � 5 � 7 � 21). Put
another way, the sum of any n positive integers is odd if and only if
those n positive integers include an odd number of odd integers.

• The product of any two positive integers (that is, the result of multi-
plying them) is a positive integer, and the product is even if and only
if at least one of the two positive integers is even. More specifi cally,

 • The product of two odd positive integers is an odd positive integer.
 • The product of an even positive integer and any other positive

integer, even or odd, is an even positive integer.
• More generally, the product of n positive integers is even if and only

if at least one of those n integers is even (e.g., 3 � 2 � 5 � 30,
while 3 � 3 � 5 � 45). Put another way, the product of any n posi-
tive integers is odd if and only if all of those n integers are odd.

• A prime number is a positive integer that is evenly divisible by
exactly two positive integers: 1 and itself. As a consequence,

 • 1 is not a prime number.
 • 2, 3, 5, 7, and 11 are all prime numbers (and are the fi ve smallest

prime numbers).
• 2 is the only even prime number (since every other even positive

integer is evenly divisible by at least 3 positive integers: 1, 2, and
itself).

ber38413_app_A-1-A-4.indd Page A-2 12/6/12 2:12 PM ber38413_app_A-1-A-4.indd Page A-2 12/6/12 2:12 PM F-400F-400

APPENDIX 1 A-3

• The product of any two prime numbers is not prime (because the
result is evenly divisible by those two primes as well as by 1).

• The sum of prime numbers is sometimes a prime number when one
of the primes is 2 (e.g., 2 � 3 � 5 and 2 � 5 � 7), but not always
(e.g., 2 � 2 � 4 and 2 � 7 � 9). The sum of two odd prime num-
bers is not a prime number since the sum in this case is even and
greater than 2.

• There are infi nitely many prime numbers, so there is no greatest
prime number.

ber38413_app_A-1-A-4.indd Page A-3 12/6/12 2:12 PM ber38413_app_A-1-A-4.indd Page A-3 12/6/12 2:12 PM F-400F-400

ber38413_app_A-1-A-4.indd Page A-4 12/6/12 2:12 PM ber38413_app_A-1-A-4.indd Page A-4 12/6/12 2:12 PM F-400F-400

SELECTED BIBLIOGRAPHY B-1

SELECTED BIBLIOGRAPHY

The following books are suggested for further reading.

INFORMAL LOGIC

Fogelin, Robert J., and Walter Sinnott-Armstrong. Understanding Arguments,
8th ed. Belmont, Calif.: Wadsworth/Cengage, 2009.

ELEMENTARY LOGIC

Jeffrey, Richard C. Formal Logic: Its Scope and Limits, 4th ed. Edited and forward by
John C. Burgess. Indianapolis: Hackett, 2006.

Leblanc, Hugues, and William Wisdom. Deductive Logic, 3rd ed. Englewood Cliffs,
N.J.: Prentice-Hall, 1993.

Quine, W. V. O. Methods of Logic, 4th ed. Cambridge, Mass.: Harvard University
Press, 1989.

INDUCTIVE LOGIC

Skyrms, Brian. Choice and Chance, 4th ed. Belmont, Calif.: Wadsworth/Thomson
Learning, 1999.

ber38413_bib_B-1-B-2.indd Page B-1 12/6/12 10:55 AM ber38413_bib_B-1-B-2.indd Page B-1 12/6/12 10:55 AM F-400F-400

B-2 SELECTED BIBLIOGRAPHY

ADVANCED LOGIC

Hunter, Geoffrey. Metalogic: An Introduction to the Metatheory of Standard First Order
Logic. Paperback ed. Berkeley: University of California Press, 1996.

Kleene, Stephen Cole. Introduction to Metamathematics. Paperback ed. Foreword
by Michael Beeson. New York: Ishi Press, 2009.

Mendelson, Elliot. Introduction to Mathematical Logic, 5th ed. Boca Raton, Fla.:
Taylor & Francis/CRC, 1997.

Quine, W. V. O. Mathematical Logic, rev. ed. Cambridge, Mass.: Harvard University
Press, 1981.

Smullyan, Raymond M. First-Order Logic. New York: Dover, 1995.
Smullyan, Raymond M. Gödel’s Incompleteness Theorems. New York: Oxford University

Press, 1992.

ALTERNATIVE LOGICS

Bergmann, Merrie. An Introduction to Many-Valued and Modal Logic: Semantics, Alge-
bras, and Derivation Systems. New York: Cambridge University Press, 2007.

Gottwald, Siegfried. A Treatise on Many-Valued Logics. Baldock, Hertfordshire,
England: Research Studies Press, 2001.

Hughes, G. E., and M. J. Cresswell. A New Introduction to Modal Logic. London:
Routledge, Chapman & Hall, 1996.

Rescher, N. Many-Valued Logic. Brookfi eld, Vt.: Ashgate, 1993.

HISTORY OF LOGIC

Bochenski, I. M. A History of Formal Logic. Translated and edited by Ivo Thomas.
New York: Chelsea, 1970.

Kneale, William, and Martha Kneale. The Development of Logic. Oxford:
Clarendon, 1985.

PHILOSOPHY OF LOGIC

Gabbay, D., and Guenthner, F., eds. Handbook of Philosophical Logic, 2nd ed.
 Dordrecht, Holland: Kluwer Academic, 2002.

Haack, Susan. Philosophy of Logics. New York: Cambridge University Press, 1978.
Quine, W. V. O. The Philosophy of Logic. Cambridge, Mass.: Harvard University

Press, 1986.

ber38413_bib_B-1-B-2.indd Page B-2 12/6/12 10:55 AM ber38413_bib_B-1-B-2.indd Page B-2 12/6/12 10:55 AM F-400F-400

INDEX I-1

INDEX

accessible sentence, 157
algorithm, 237
ampersand (&), 17, 28
antecedent, 20
argument, 4, 98
Aristotelean logic, 2
Aristotle, 2
Association (Assoc), 218, 222
Assumption, 148
atomic formulas, 269
atomic sentences of SL, 20
auxilliary assumptions, 157
axiomatic system, 2

basis clause, 231
Bergmann, Merrie, 459n8
Bernays and Schönfi nkel, 357n2, 379
Biconditional Decomposition (�D), 117
Biconditional Elimination (�E), 149, 150, 167
Biconditional Introduction (�I), 159,

160, 167
binary connective, 18
bound variable, 271
branching rules, 116–117

causal claims, 59, 64
characteristic sentence, 237
characteristic truth-tables, 27
check mark, 114
Church, Alonzo, 356, 357n2, 365
closed branch (of a truth-tree), 120, 443
closed subderivation, 157

closed terms, 322
closed truth-tree, 120, 145
Commutation (Com), 218, 222
Compactness Theorem for sentential

logic, 260
completed open branch (of a

truth-tree), 116, 120, 411, 444
completed truth-tree, 120, 413
completeness, 168

of deduction systems for predicate
logic, 566

of PD, 566
of PD�, 576
of PDE, 583
of SD/SD�, 252
of the tree method, 596, 602
truth-functional, 236

complex term, 322
Complex Term Decomposition (CTD), 459
complex terms, 322
components of sentences of SL, 20, 22
compound sentences of SL, 20
conclusion, 4
conclusion indicator expressions, 6
Conditional Decomposition (�D), 117
Conditional Elimination (�E), 149, 150, 167
conjunct, 20
conjunction (&), 27–28
Conjunction Decomposition (&D), 113
Conjunction Elimination (&E), 149, 167
Conjunction Introduction (&I), 149, 150, 167
consequent, 20

ber38413_ndx_I-1-I-6.indd Page I-1 12/27/12 2:00 PM user-fw429 ber38413_ndx_I-1-I-6.indd Page I-1 12/27/12 2:00 PM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

I-2 INDEX

Existential Introduction (∃I), 476, 532
existential quantifi er, 269
expansion, truth-functional, 369–373, 384
Exportation (Exp), 218, 222
expressions of PL, 269
expressions of SL, 17
extended conjunction, 39
extended disjunction, 39
extension of a predicate, 331, 333

falsity
logical, 14
quantifi cational, 351
truth-functional, 78

fi nite model, 426
fi nite model property, 593
fi nite truth-tree, 426
formula of PL, 269
free variable, 271
Frege, Gottlob, 2
function, 387
functor, 319, 526

Hilbert, David, 2
Hintikka branch, 598
Hintikka Branch Lemma, 598
Hintikka set, 598
Hintikka, J., 596
horseshoe (�), 17, 28
Hypothetical Syllogism (HS), 216, 221

Idempotence (Idem), 218, 222
Identity Decomposition (�D), 442
Identity Elimination (�E), 526
Identity Introduction (�I), 526
identity predicate, 311
immediate component of sentence

of SL, 20
immediate successor, 597
Implication (Imp), 218, 222
inconsistency

logical, 10, 14
quantifi cational, 361
truth-functional, 93
in PD, 490, 544
in SD, 175, 225

indeterminacy
logical, 9, 14
quantifi cational, 351
truth-functional, 79

individual constants of PL, 268
individual terms of PL, 268
individual terms of PLE, 322
individual variables of PL, 268

consistency
logical, 10,14
maximal, in PD, 567
maximal, in SD, 254
quantifi cational, 361
truth-functional, 93

Consistent Branch Lemma, 587
contracditory literals, 115
corresponding material biconditional, 106
corresponding material conditional, 100

De Morgan (DeM), 218, 222
decision procedure, 356
deductive logic, 1
defi nite descriptions

of English, 264
symbolizing in PL, 315–316
symbolizing in PLE, 316–317

denotation of a term, 340
derivation, 168

in PD, 474–518
in PD� 521–524
in PDE, 526–540
in SD, 146–209
in SD�, 214–222

discharged assumption, 157
disjunct, 20
disjunction (∨), 27–28
Disjunction Decomposition (∨D), 117
Disjunction Elimination (∨E), 159, 160, 167
Disjunction Introduction (∨I), 149, 150, 167
Disjunctive Syllogism (DS), 216, 221
Distribution (Dist), 218, 222
Double Negation (DN), 217, 218, 222

effective procedure, 237
entailment

logical, 10
quantifi cational, 363
truth-functional, 95

enumeration, 254
equivalence

in PS, 490
in SD, 175
logical, 9
quantifi cational, 358
truth-functional, 87

Euclid, 2
Euclidean plane geometry, 2
exclusive ‘or’, 33, 54
Existential Decomposition (∃D),

404
Existential Decomposition-2 (∃D-2), 427
Existential Elimination (∃E), 480

ber38413_ndx_I-1-I-6.indd Page I-2 12/27/12 2:00 PM user-fw429 ber38413_ndx_I-1-I-6.indd Page I-2 12/27/12 2:00 PM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

INDEX I-3

Negated Conjunction Decomposition
(~ &D), 117

Negated Disjunction Decomposition
(~ vD), 113

Negated Existential Decomposition
(~∃D), 403

Negated Negation Decomposition
(~ ~ D), 113

Negated Universal Decomposition
(~∀D), 403

negation (~), 27–28
Negation Elimination (~ E), 159,

160, 167
Negation Introduction (~ I), 159, 167
non-branching rules, 113
non-referring singular terms of

English, 265
non-subderivation rules of SD, 149–150
nonterminating branch (of a

truth-tree), 426
non-truth-functional compounds

58–67
non-truth-functional connectives

58–67
NP-complete problem, 84n4
n-place function, 387
n-tuple, 331

object language, 15–16
objectual semantics, 337n1
only if, 34
open assumption, 157
open branch (of a truth-tree)

116, 120, 411
open terms of PLE, 322
open truth-tree, 120, 413
outermost parentheses, 23

paraphrasing (sentences of English)
29–36

path of a truth-tree, 587
path-variant, 588
Peano, Giuseppe, 2
predicates of English, 264–267
predicates of PL, 268
premise, 2
premise indicator expresions, 6
primary assumptions, 156–157
pronouns of English, 264
proof of a theorem, 177
proper names of English, 264
properties of relations, 317–318
punctuation marks of PL, 268
punctuation marks of SL, 18

inductive hypothesis, 231
inductive step, 231
Infi nite Branch Lemma, 597
instantiating constant, 475
instantiating term, 533
interpretation, 330, 332–333
invalidity

logical, 5
quantifi cational, 364
truth-functional, 98

iterated conjunction, 100
iterated disjunction, 369

justifi cation column in
truth-trees, 114

König’s Lemma, 597

level of a truth-tree, 585
literal, 111
logical

consistency, 10, 14
entailment, 10, 14
equivalence, 9, 14
falsity, 8, 14
inconsistency, 10, 14
indeterminatcy, 9, 14
invalidity, 5, 14
operators of PL, 270
possibility, 10
soundness, 5, 14
truth, 8, 14
validity, 5, 14

Löwenheim Theorem, 356
Löwenheim-Skolem Theorem, 366

main connective, 20
main logical operator of PL, 270
material biconditional, 20, 27–28
material conditional, 20, 27–28
mathematical induction, 227,

228–229
maximal consistency in PD, 567
maximal consistency in SD, 254
Maximal Consistency Lemma, 254
mechanical procedure, 111, 179
metalanguage, 15–16
metavariables, 4, 17
Modus Tollens (MT), 215, 221

Negated Biconditional Decomposition
(~ �D), 117

Negated Conditional Decomposition
(~ �D), 113

ber38413_ndx_I-1-I-6.indd Page I-3 12/27/12 2:00 PM user-fw429 ber38413_ndx_I-1-I-6.indd Page I-3 12/27/12 2:00 PM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

I-4 INDEX

syllogism, 1
syllogistic logic, 2
symbolization key, 25
symmetric relations, 317
syntax, 15
syntax of PL, 268–274
syntax of SL, 15–23
System for PL, 434
System for PLE, 466–467
systematic tree, 434

Tarski, Alfred, 337n1
theorem in PD, 490, 544
theorem in SD, 175, 225
tilde (~), 17, 28
transitive relations, 317
Transposition (Trans), 218, 222
triple bar (�), 17, 28
truth

quantifi cational, 351
truth-functional, 77

truth-function, 235
truth-function schema, 236
truth-functional completeness, 236
truth-functional connectives

ampersand (&), 17, 28
horseshoe (�), 17, 28
tilde (~), 17, 28
triple bar (�), 17, 28
wedge (∨), 17, 28

truth-functional
consistency, 93, 120, 144
entailment, 95, 137, 145
equivalence, 87, 134, 144
falsity, 78, 129, 144
inconsistency, 93, 144
indalidity, 98
indeterminacy 79, 131, 144
truth, 77, 131, 144
validity 98, 138, 145

truth-functional connectives of PL, 268
truth-functional expansion, 369–373, 384
truth-functional use of a connective, 26, 68
truth-tree branch

closed, 120, 145, 443
completed open, 116, 120
open, 116, 120, 145, 411
recovering interpretations from, 406
recovering truth-value assignments from, 116

truth-value, 3
truth-value assignment, 70

UD, 276, 332
unary connective, 18
unit set, 105

quantifers of PL, 268
quantifi cational

consistency, 361, 414
entailment, 363, 417
equivalence, 358, 417
falsity, 351, 416
inconsistency, 361, 414
indeterminacy, 351, 416
invalidity, 364
truth, 351, 416
validity, 364, 417

Quantifi er Negation (QN), 522
quantifi er rules, 535
quantity terms of English, 265–267

recursive defi nition, 20
referential position, 265
referential semantics, 337n1
refl exive relations, 318
Reiteration (R), 148, 149, 167
Russell, Bertrand, 2

satisfaction, 340–341
satisfaction semantics, 337n1
scope lines, 156
scope of a quantifi er, 271
semantics, 15, 69, 329
sentence letters of PL, 268
sentence letters of SL, 17
sentence of PL, 271
sentential connectives of SL, 17
set, 4
simple individual terms of PLE, 322
single turnstyle (�), 175
singular terms of English, 262–267
SM, 114
soundness, 168

of deduction systems for predicate
logic, 561

of PD, 561
of PD� 564
of PDE, 564
of SD, 224
of the tree method, 585,595

square brackets, 23
standard form (of an argument), 4, 37
stronger than/weaker than, 63
subderivation rules of SD, 155–160
subderivations, 148
subformula of PL, 270
subjunctive conditional, 60, 66–67
subset, 245
substitution instance, 475
substitution semantics, 337n1
superset, 245

ber38413_ndx_I-1-I-6.indd Page I-4 12/27/12 2:00 PM user-fw429 ber38413_ndx_I-1-I-6.indd Page I-4 12/27/12 2:00 PM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

INDEX I-5

quantifi cational, 364
truth-functional, 98
in PD, 490, 544
in SD, 175, 255

variable, 268
variable assignment, 337
variant of a variable assignment, 338
vocabulary of SL, 17–18
wedge (∨), 17, 28

Universal Decomposition (∀D), 403
Universal Elimination (∀E), 475, 533
Universal Introduction (∀I), 477
universal quantifi er, 269
universe of discourse, 276
unless, 32, 54
use/mention distinction, 16

validity
truth-functional

logical, 5

ber38413_ndx_I-1-I-6.indd Page I-5 12/27/12 2:00 PM user-fw429 ber38413_ndx_I-1-I-6.indd Page I-5 12/27/12 2:00 PM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

ber38413_ndx_I-1-I-6.indd Page I-6 12/27/12 2:00 PM user-fw429 ber38413_ndx_I-1-I-6.indd Page I-6 12/27/12 2:00 PM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

INDEX OF SYMBOLS I-7

INDEX OF SYMBOLS

∼ 17 tilde
& 17 ampersand
∨ 17 wedge
⊃ 17 horseshoe
� 17 triple bar
⏐ 243 stroke
↓ 243 dagger
∀ 269 universal quantifi er symbol
∃ 269 existential quantifi er symbol
� 311 identity sign
{ } 4 braces
∅ 92 empty set
� 92 gamma
∪ 107 set union
∈ 257 set membership
∉ 257 set membership denial
〈 〉 331 angle brackets
 � 175 single turnstile
 � 175 single turnstile with slash
 95 double turnstile
 96 double turnstile with slash
� 148 pointer
� � 217 double pointer

ber38413_isymb_I-7-I-12.indd Page 7 12/27/12 11:48 AM user-fw429 ber38413_isymb_I-7-I-12.indd Page 7 12/27/12 11:48 AM user-fw429 ~/Desktop/lalit/MH01836:201~/Desktop/lalit/MH01836:201

Reiteration (R)

 P

� P

DERIVATION RULES OF SD

Conjunction Introduction (&I)

 P

 Q

� P & Q

Conjunction Elimination (&E)

 P & Q P & Q
 or
� P � Q

Conditional Introduction (⊃I)

 P

 Q

� P ⊃ Q

Conditional Elimination (⊃E)

 P ⊃ Q

 P

� Q

‘&’ Rules

‘⊃’ Rules

‘∼’ Rules

‘∨’ Rules

‘�’ Rules

Negation Introduction (∼ I)

 P

 Q

 ∼ Q

� ∼ P

Negation Elimination (∼ E)

 ∼ P

 Q

 ∼ Q

� P

Disjunction Introduction (∨I)

 P P
 or
� P ∨ Q � Q ∨ P

Disjunction Elimination (∨E)

 P ∨ Q

 P

 R

 Q

 R
� R

Biconditional Introduction (�I)

 P

 Q

 Q

 P
� P � Q

Biconditional Elimination (�E)

 P � Q P � Q

 P or Q

� Q � P

ber38413_es.indd Page FS2 12/12/12 1:43 PM user-F/W/149ber38413_es.indd Page FS2 12/12/12 1:43 PM user-F/W/149 user-F/W/149user-F/W/149

Commutation (Com)

P & Q � � Q & P
P ∨ Q � � Q ∨ P

Implication (Impl)

P ⊃ Q � � ∼ P ∨ Q

De Morgan (DeM)

∼ (P & Q) � � ∼ P ∨ ∼ Q
∼ (P ∨ Q) � � ∼ P & ∼ Q

Transposition (Trans)

P ⊃ Q � � ∼ Q ⊃ ∼ P

Association (Assoc)

P & (Q & R) � � (P & Q) & R
P ∨ (Q ∨ R) � � (P ∨ Q) ∨ R

Double Negation (DN)

P � � ∼ ∼ P

Idempotence (Idem)

P � � P & P
P � � P ∨ P

Exportation (Exp)

P ⊃ (Q ⊃ R) � � (P & Q) ⊃ R

Distribution (Dist)

P & (Q ∨ R) � � (P & Q) ∨ (P & R)
P ∨ (Q & R) � � (P ∨ Q) & (P ∨ R)

Equivalence (Equiv)

P � Q � � (P ⊃ Q) & (Q ⊃ P)
P � Q � � (P & Q) ∨ (∼ P & ∼ Q)

Modus Tollens (MT)

 P ⊃ Q
 ∼ Q
� ∼ P

Hypothetical Syllogism (HS)

 P ⊃ Q
 Q ⊃ R
� P ⊃ R

Disjunctive Syllogism (DS)

 P ∨ Q P ∨ Q
 ∼ P or ∼ Q
� Q � P

DERIVATION RULES OF SD�

All the Derivation Rules of SD and Rules of Inference

Rules of Replacement

ber38413_es.indd Page FS3 12/12/12 1:43 PM user-F/W/149ber38413_es.indd Page FS3 12/12/12 1:43 PM user-F/W/149 user-F/W/149user-F/W/149

DERIVATION RULES OF PD

All the Derivation Rules of SD and

DERIVATION RULES OF PD�

All the Derivation Rules of SD� and of PD and

Universal Introduction (∀I)

 P(a/x)

� (∀x)P

provided that:
 (i) a does not occur in an open

assumption.
 (ii) a does not occur in (∀x)P.

Universal Elimination (∀E)

 (∀x)P

� P(a/x)

Existential Introduction (∃I)

 P(a/x)

� (∃x)P

Existential Elimination (∃E)

 (∃x)P
 P(a/x)

 Q
� Q

provided that:
 (i) a does not occur in an open

assumption.
 (ii) a does not occur in (∃x)P.
 (iii) a does not occur in Q.

Quantifi er Negation (QN)

∼ (∀x)P � � (∃x) ∼ P
∼ (∃x)P � � (∀x) ∼ P

ber38413_es.indd Page FS4 12/12/12 1:43 PM user-F/W/149ber38413_es.indd Page FS4 12/12/12 1:43 PM user-F/W/149 user-F/W/149user-F/W/149

Universal Elimination (∀E)

 (∀x)P

� P(t/x)

where t is any closed term

Existential Introduction (∃I)

 P(t/x)

� (∃x)P

where t is any closed term

Identity Introduction (�I)

� (∀x)x � x

Identity Elimination (�E)

 t1 � t2 t1 � t2

 P or P

� P(t1//t2) � P(t2//t1)

DERIVATION RULES OF PDE

All of the Derivation Rules of PD and

where t1 and t2 are closed terms

ber38413_es.indd Page ES1 12/12/12 1:43 PM user-F/W/149ber38413_es.indd Page ES1 12/12/12 1:43 PM user-F/W/149 user-F/W/149user-F/W/149

TRUTH-TREE RULES FOR PL

 Universal Decomposition (∀D) Negated Universal Decomposition (∼ ∀D)

 (∀x)P ∼ (∀x)P�

 P(a�x) (∃x) ∼ P

 Existential Decomposition (∃D) Negated Existential Decomposition (∼ ∃D)

 (∃x)P� ∼ (∃x)P�

 P(a�x) (∀x) ∼ P

where a is a constant foreign
to the branch on which
P(a�x) is entered.

TRUTH-TREE RULES FOR SL

Negated Negation Decomposition (∼ ∼ D)

∼ ∼ P�
 P

 Conjunction Decomposition (&D) Negated Conjunction Decomposition (∼ &D)

 P & Q� ∼ (P & Q)�
 P
 Q ∼ P ∼ Q

 Disjunction Decomposition (∨D) Negated Disjunction Decomposition (∼ ∨D)

 P ∨ Q� ∼ (P ⁄ Q)�
 ∼ P
 P Q ∼ Q

 Conditional Decomposition (⊃D) Negated Conditional Decomposition (∼ ⊃D)

 P ⊃ Q� ∼ (P ⊃ Q)�
 P
 ∼ P Q ∼ Q

 Biconditional Decomposition (�D) Negated Biconditional Decomposition (∼ �D)

 P � Q� ∼ (P � Q)�

 P ∼ P P ∼ P

ber38413_es.indd Page ES2 12/12/12 1:43 PM user-F/W/149ber38413_es.indd Page ES2 12/12/12 1:43 PM user-F/W/149 user-F/W/149user-F/W/149

ALTERNATE EXISTENTIAL DECOMPOSITION RULE

Existential Decomposition-2 (∃D2)

(∃x)P�

P(a1�x) . . . P(am�x) P(am�1�x)

where a1, . . . , am are the constants that already occur on the branch on which Exis-
tential Decomposition-2 is being applied to decompose (∃x)P and am�1 is a constant
that is foreign to that branch.1

TRUTH-TREE RULES FOR PLE

All of the Predicate Truth-Tree Rules and

 Universal Decomposition (∀D) Identity Decomposition (�D)

 (∀x)P t1 � t2

 P(t�x) P

where t is a closed term P(t1//t2)

 where t1 and t2 are closed individual terms and P is
 a literal containing t2

Complex Term Decomposition (CTD)

. . . f(a1, . . . , an) . . .

b1 � f(a1, . . . , an) . . . bm � f(a1, . . . , an) bm�1 � f(a1, . . . , an)

where f(a1, . . . , an) is a closed complex term occurring within a literal on some branch,
whose arguments a1, . . . , an are individual constants; b1, . . . , bm are the constants that
already occur on that branch, and bm�1 is a constant that is foreign to that branch.

1This Existential Decomposition rule is due to George Boolos, “Trees and Finite Satisfi ability: Proof of a Conj-
ecture of Burgess,” Notre Dame Journal of Formal Logic, 25(3)(1984), 193–197.

ber38413_es.indd Page ES3 12/12/12 1:43 PM user-F/W/149ber38413_es.indd Page ES3 12/12/12 1:43 PM user-F/W/149 user-F/W/149user-F/W/149

Nikki
Typewritten Text

Nikki
Typewritten Text

Nikki
Typewritten Text

Nikki
Typewritten Text
UPLOADED BY [STORMRG]

Nikki
Typewritten Text

Nikki
Typewritten Text

The Logic Book is a leading text for symbolic logic courses that presents all

concepts and techniques with clear, comprehensive explanations. There is a wealth

of carefully constructed examples throughout the text, and its flexible organization

places materials within largely self-contained chapters that allows instructors the

freedom to cover the topics they want, in the order they choose.

Features of the 6th Edition:

 There is a fuller and more accessible discussion of formal semantics than

in previous editions.

 A recovery of only extensions of predicates from truth-trees, rather than

English readings of those predicates.

 Many chapters have been reorganized so that technical material is

presented at the beginning of the chapter, which gives instructors the flexibility

to cover the material quickly before proceeding to the following chapters.

What Instructors are Saying about The Logic Book:

“The Logic Book is an ideal choice for an upper-division first or second course

in symbolic logic. It contains not only all of the basic material covered in an

introductory symbolic logic course, but also a full treatment of mathematical

induction and the soundness and completeness of sentential and predicate logic.”

-Charles Cross, University of Georgia

“A solid and functional logic textbook that is suitable for a variety of different

introductory and intermediate logic courses...”

“A precise, careful, fully formal approach to first-order logic.”

-Arnold Smith, Kent State University

ThE

LogIc Book
Sixth Edit ion

Merrie Bergmann | James Moor | Jack Nelson

Sixth
Edition

T
h

E

Lo
g

Ic
 B

o
o

k
B
e
rgm

a
n
n

|

M
o
o
r

|
N

e
lso

n

M
D

 D
A

L
IM

 1220925 12/21/12 C
Y

A
N

 M
A

G
 Y

E
L

O
 B

L
A

C
K

	Cover Page
	Title Page
	Copyright Page
	About the Author
	Table of Content
	Preface
	CHAPTER 1 INTRODUCTION TO DEDUCTIVE LOGIC
	1.1 Introduction
	1.2 Core Concepts of Deductive Logic
	1.3 Special Cases of Logical Concepts

	CHAPTER 2 SYNTAX AND SYMBOLIZATION
	2.1 The Syntax of SL
	2.2 Introduction to Symbolization
	2.3 More Complex Symbolizations
	2.4 Non-Truth-Functional Uses of Connectives

	CHAPTER 3 SENTENTIAL LOGIC: SEMANTICS
	3.1 Truth-Value Assignments and Truth-Tables for Sentences
	3.2 Truth-Functional Truth, Falsity, and Indeterminacy
	3.3 Truth-Functional Equivalence
	3.4 Truth-Functional Consistency
	3.5 Truth-Functional Entailment and Truth-Functional Validity
	3.6 Truth-Functional Properties and Truth-Functional Consistency

	CHAPTER 4 SENTENTIAL LOGIC: TRUTH-TREES
	4.1 The Truth-Tree Method
	4.2 Using Truth-Trees To Test for Other Truth-Functional Properties

	CHAPTER 5 SENTENTIAL LOGIC: DERIVATIONS
	5.1 The Derivation System SD
	5.2 Basic Concepts of SD
	5.3 Strategies for Constructing Derivations in SD
	5.4 The Derivation System SD+

	CHAPTER 6 SENTENTIAL LOGIC: METATHEORY
	6.1 Mathematical Induction
	6.2 Truth-Functional Completeness
	6.3 The Soundness of SD and SD+
	6.4 The Completeness of SD and SD+

	CHAPTER 7 PREDICATE LOGIC: SYNTAX AND SYMBOLIZATION
	7.1 Predicates, Singular Terms, and Quantity Expressions of English
	7.2 The Formal Syntax of PL
	7.3 Introduction To Symbolization
	7.4 Symbolization Fine-Tuned
	7.5 The Language PLE (Predicate Logic Extended)

	CHAPTER 8 PREDICATE LOGIC: SEMANTICS
	8.1 Interpretations
	8.2 Quantifi cational Truth, Falsehood, and Indeterminacy
	8.3 Quantifi cational Equivalence and Consistency
	8.4 Quantifi cational Entailment and Validity
	8.5 Truth-Functional Expansions
	8.6 Semantics for Predicate Logic with Identity and Functors

	CHAPTER 9 PREDICATE LOGIC: TRUTH-TREES
	9.1 Truth-Tree Rules for PL
	9.2 Truth-Trees and Quantifi cational Consistency
	9.3 Truth-Trees and Other Semantic Properties
	9.4 Fine-Tuning the Tree Method for PL
	9.5 Truth-Trees for PLE
	9.6 Fine-Tuning the Tree Method for PLE

	CHAPTER 10 PREDICATE LOGIC: DERIVATIONS
	10.1 The Derivation System PD
	10.2 Using Derivations to Establish Syntactic Properties of PD
	10.3 The Derivation System PD+
	10.4 The Derivation System PDE

	CHAPTER 11 PREDICATE LOGIC: METATHEORY
	11.1 Semantic Preliminaries for PL
	11.2 Semantic Preliminaries for PLE
	11.3 The Soundness of PD, PD+, and PDE
	11.4 The Completeness of PD, PD+, and PDE
	11.5 The Soundness of the Tree Method
	11.6 The Completeness of the Tree Method

	Appendix 1
	Selected Bibliography
	Index
	Index of Symbols
	Back Cover

