
Submitted to:
CoALP-Ty’16

c© F. Farka
This work is licensed under the
Creative Commons Attribution License.

Proofs by Resolution and Existential Variables

František Farka
University of St Andrews

Scotland, UK, and
University of Dundee

Scotland, UK
ff32@st-andrews.ac.uk

Many researchers have devoted their effort to establish category-theoretic semantics of logic pro-
gramming (LP). In particular, there have been two lines of work in operational semantics of LP: Komen-
dantskaya, Power and their collaborators developed lax semantics [3] and Bonchi and Zanasi proposed
saturated semantics [1]. Recently, Komendanskaya and Power unified the two approaches [3]. They
proposed an interpretation of term-matching resolution as theorem proving in LP whereas Bonchi and
Zanasi’s approach captures problem solving aspect of LP. Following our previous work [2], we are in-
terested in type theoretic formulation of the operational semantics and we strengthen the above claim.
In fact, term matching steps in resolution reflect proof steps acting on universally quantified variables
whereas unification steps correspond to proof steps acting on existentially quantified variables — the
problem solving aspect here corresponds to search for proof witnesses for existential variables.

We work in a proof-relevant language. A signature comprises a set of function symbols F , including
constant symbols, a set of predicate symbols P and a set of proof-term symbols K . Also, we assume
there is a countably infinite set of variables Var. A substitution, an application of substitution, a unifier
and a matcher are defined entirely standard.

Definition 1 (Syntax).

Terms Ter ::= Var |F (Ter, . . . ,Ter)

Atomic flae At ::= P(Ter, . . . ,Ter)

Horn flae HC ::= At← At, . . . ,At

Programs Prog ::= K : HC, . . . ,K : HC

Proof terms PT ::= K PT . . .PT | ind(Var.Term,PT )

Goals G ::= ∀Var, . . . ,Var∃Var, . . . ,Var.At

Our language differs from the standard language of LP in two ways: Horn formulae in our programs are
annotated with proof-term constant symbols, and goals are explicitly quantified. We refer to a clause in
a program by the symbol that annotates it. Moreover, we denote a sequence of distinct variables, by x,
and a sequence of variables occurring in an atomic formula A by var(A). Substitution application, set
intersection and set difference are extended to variable sequences in the natural way.

The explicit quantification of goals helps us to separate matching and unification steps in our proofs.
First, let us introduce proof steps by term matching:

Definition 2 (TM-Resolution).
P ` e1 : ∀w1∃z1.σB1 . . . P ` en : ∀wn∃zn.σBn

κ : A← B1, . . . ,Bn ∈ P
P ` κ e1 . . . en : ∀x∃y.σA

where wi = x∩var(σBi) and zi = var(σBi)\wi.

The above inference rule distributes quantified variables of a goal ∀x∃y.σA to goals ∀w1∃z1.B1 to
∀wn∃zn.Bn in premise. Universally quantified variables that are relevant to a goal Bi are quantified uni-
versally, existential variables are quantified existentially and any (existential) variable that does not occur

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Proofs by resolution

in the head of clause κ is quantified existentially. This is in concordance with the above referred results
of Komendantskaya and Power [3]. In particular, consider the following example.
Example 1. Let PListNat: be the following program:

κ1 : nat(zero) ←
κ2 : nat(s(x)) ← nat(x)

κ3 : list(nil)) ←
κ4 : list(cons(x,y))) ← nat(x), list(y)

A ground goal list(cons(zero,nil)) can be resolved using only the TM-Resolution rule:

P ` κ1 : nat(zero) P ` κ3 : list(nil)
P ` κ4 κ1 κ3 : list(cons(zero,nil))

However, for other goals full unification is necessary. The Unif-resolution is defined as follows.
Definition 3 (Unif-Resolution).

P ` e1 : ∀w1∃z1.σB1 . . . P ` en : ∀x.σBn
κ : A← B1, . . . ,Bn ∈ P

P ` ind(y.σy,κ e1, . . . ,en) : ∀x∃y.A′
if σ �y A′ = σ �y A. Moreover, wi = x∩var(σBi) and zi = var(σBi)\wi.
We use σ � y to denote a restriction of a substitution σ to variables y. The notation y.σy indicates binding
of variables in y given by substitution σ . Using both TM-resolution and Unif-resolution rules allows us
to prove e.g. ∃x,y. list(cons(x,y)):

P ` κ1 : nat(zero) P ` κ3 : list(nil)
P ` ind(x.zero,y.nil,κ4 κ1 κ3) : ∃x,y. list(cons(x,y))

Finally, proofs by TM-Resolution are sound w.r.t. coalgebraic operational semantics of resolution
given by Komendantskaya and Power [3]. We extend Lawvere theory L op

Σ
to category K op

Σ
with explicit

marking of variables by quantifiers and substitutions preserve these markings as in the TM-Resolution
rule. Note that there is the obvious forgetful functor U : At→G. We model goals by presheaf G : K op

Σ
→

Poset. This allows us to state the following theorem:
Theorem 1. The forgetful functor U : G→ At has the left adjoint F such that given a non-existential
logic program P via Pf Pf -coalgebra p : At→ Pf Pf At, the following diagram commutes:

G C(Pf Pf )(G)

At C(Pf Pf )(At)

U

F p

p̄

F C(Pf Pf )(U)

where C(−) denotes the cofree comonad.

References
[1] Filippo Bonchi & Fabio Zanasi (2015): Bialgebraic Semantics for Logic Programming. Logical Methods in

Computer Science 11(1), doi:10.2168/LMCS-11(1:14)2015.
[2] František Farka, Ekaterina Komendantskaya, Kevin Hammond & Peng Fu (2016): Coinductive Soundness of

Corecursive Type Class Resolution. In: Pre-proceedings of the 26th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR 2016).

[3] Ekaterina Komendantskaya & John Power (2016): Logic programming: laxness and saturation. Submitted to
Journal of Logic and Algebraic Methods in Programming.

http://dx.doi.org/10.2168/LMCS-11(1:14)2015


F. Farka 3

A Definitions

Definition 4 (Lawvere theory). The (opposite) Lawvere theory on a signature Σ is a category L op
Σ

where

objects are natural numbers

morphisms for any two objects m,n ∈L op
Σ

, the set L op
Σ
[n,m] consists of all n-tuples < t1, . . . , tn > of terms

in variables x1, . . . ,xm. The composition of < t1, . . . , tn >: n→ m and < s1, . . . ,sm >: m→ l is the
tuple < r1, . . . ,rn >: n→ l where ri is a term ti where every variable x j has been replaced by s j.

An object n ∈ L op
Σ

intuitively represents an atomic formula in n distinct variables v1, . . . ,vn from Var
and morphisms are substitutions.

Definition 5. The collection of atoms At based on a signature Σ is a presheaf At : L op
Σ
→ Poset.

Definition 6. The category KΣ on a signature Σ

objects are pairs of natural numbers

morphisms for any two objects (m,m′),(n,n;′ ) ∈ KΣ, the set KΣ[(m,m′),(n,n′)] consists of all pairs of n-
tuples < t1, . . . , tn > of terms in variables v1, . . . ,vm and n′-tuples of terms < t ′1, . . . , t

′
n >) on terms

in variables v1, . . . ,v′m. The composition is defined by replacement per components.

An object (n,m) ∈KΣ intuitively represents an atomic formula where variables v1 to vn are universally
quantified and variables v′1 to v′m are existentially quantified, i.e. goals. Morphism are substitutions that
respect quantifiers.

Proposition 1. KΣ is isomorphic to L op
Σ
×L op

Σ
.

Definition 7. The collection of goals G based on signature Σ is G : KΣ→ Poset

Proposition 2. There is a forgetfull functor U : G→ At from G to At regarded as functor categories.

Proof.


	Defs

