AC21007: Haskell Lecture 4 Higher order functions, map, folds

František Farka

Recapitulation

- Data type tuple (a, b)
- Non-strict semantics:
- expressions evaluated on-demand
- allows infinite data structures (lists)

Anonymous (lambda) functions

Anonymous (lambda) functions

DUNDEE

$$
\begin{aligned}
& 2+3:: \quad \text { Int } \\
& 2+\mathrm{x}::
\end{aligned}
$$

Anonymous (lambda) functions

$$
\begin{aligned}
& 2+3: \text { Int } \\
& \begin{array}{l}
2+x::
\end{array} \\
& \text { Not in scope: ' } x \text { ' Int }
\end{aligned}
$$

Anonymous (lambda) functions

- Functions without a name
- Syntax:

$$
\text { \<var } \operatorname{var}_{1} . . .\left\langle\operatorname{var}_{n}\right\rangle->\text { <expr> }
$$

Variables var ${ }_{1}$ to var $_{n}$ in scope in the expression expr

$$
\begin{aligned}
& 2+3:: \text { Int } \\
& \backslash \mathrm{x}-> 2+\mathrm{x}:: \\
& \text { Int }->\text { Int }
\end{aligned}
$$

Anonymous (lambda) functions

- Functions without a name
- Syntax:

$$
\text { \<var } \operatorname{var}_{1} . . .\left\langle\operatorname{var}_{n}\right\rangle->\text { <expr> }
$$

Variables var ${ }_{1}$ to var $_{n}$ in scope in the expression expr

- Anonymous functions:

$$
\begin{aligned}
2+3:: & \text { Int } \\
& x->2+x:
\end{aligned} \quad \text { Int }->\text { Int }
$$

Anonymous (lambda) functions

- Functions without a name
- Syntax:

$$
\text { \<var } \operatorname{var}_{1} . . .\left\langle\operatorname{var}_{n}\right\rangle->\text { <expr> }
$$

Variables var $_{1}$ to var $_{n}$ in scope in the expression expr

- Anonymous functions:
- can be applied to an argument:

$$
(\backslash x \rightarrow 2+x) 3=5
$$

$$
\begin{array}{rll}
2+3:: & \text { Int } \\
\backslash \mathrm{x}-> & 2+\mathrm{x}:: & \text { Int }->\text { Int }
\end{array}
$$

Anonymous (lambda) functions

- Functions without a name
- Syntax:

$$
\text { \<var } \operatorname{var}_{1} \text {. . <var }>\text { > }->\text { expr> }
$$

Variables var ${ }_{1}$ to $v a r_{n}$ in scope in the expression expr

- Anonymous functions:
- can be applied to an argument:

$$
(\backslash x \rightarrow 2+x) 3==5
$$

- can be passed as an argument
... anonymous functions are values

$$
\begin{aligned}
& 2+3:: \text { Int } \\
& \backslash \mathrm{x}-> 2+\mathrm{x}:: \\
& \text { Int }->\text { Int }
\end{aligned}
$$

Anonymous (lambda) functions

- Functions without a name
- Syntax:

$$
\text { \<var } \left.\operatorname{var}_{1} \ldots \text {... } \operatorname{var}_{n}\right\rangle->\text { <expr> }
$$

Variables var ${ }_{1}$ to $v a r_{n}$ in scope in the expression expr

- Anonymous functions:
- can be applied to an argument:

$$
(\backslash x \rightarrow 2+x) 3==5
$$

- can be passed as an argument
... anonymous functions are values
- E.g.:

$$
\begin{aligned}
2+3:: & \text { Int } \\
\backslash x \rightarrow 2+x: & \text { Int } \rightarrow \text { Int }
\end{aligned}
$$

Anonymous (lambda) functions (cont.)

- filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate

Anonymous (lambda) functions (cont.)

- filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate

$$
\begin{aligned}
& \text { filter : (a -> Bool) -> [a] -> [a] } \\
& \text { filter - [] } \quad \text { [] } \\
& \text { filter pred (x:xs) = if (pred } x \text {) } \\
& \text { then x : filter pred xs } \\
& \text { else filter pred xs }
\end{aligned}
$$

Anonymous (lambda) functions (cont.)

- filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter pred (x:xs) = if (pred x)
then x : filter pred xs
else filter pred xs
```

- E.g:

$$
\begin{aligned}
& \text { filter }(\backslash x->x \text { 'mod' } 2==1)[1,2,3,4,5,6] \\
& ==>[1,3,5] \\
& \text { filter }\left(\backslash x->x x^{\prime} \bmod ^{\prime} 2==0\right)[1,2,3,4,5,6] \\
& \quad==>[2,4,6]
\end{aligned}
$$

First-class functions

- All functions can be passed as an argument, e.g standard functions even and odd:

$$
\begin{aligned}
& \text { filter odd }[1,2,3,4,5,6] \\
& ==>[1,3,5] \\
& \text { filter even }[1,2,3,4,5,6] \\
& \quad==[2,4,6]
\end{aligned}
$$

First-class functions

- All functions can be passed as an argument, e.g standard functions even and odd:

$$
\begin{aligned}
& \text { filter odd }[1,2,3,4,5,6] \\
& ==>[1,3,5] \\
& \text { filter even }[1,2,3,4,5,6] \\
& \quad==[2,4,6]
\end{aligned}
$$

- All functions are just values

First-class functions

- All functions can be passed as an argument, e.g standard functions even and odd:

$$
\begin{aligned}
& \text { filter odd }[1,2,3,4,5,6] \\
& ==>[1,3,5] \\
& \text { filter even }[1,2,3,4,5,6] \\
& \quad==[2,4,6]
\end{aligned}
$$

- All functions are just values
- We will call functions that take a function as an argument higher order functions

Some useful higher order functions

- map - applies a function to each element of a list

$$
\begin{aligned}
& \operatorname{map}::(\mathrm{a}->\mathrm{b})->[\mathrm{a}]-\mathrm{b}] \\
& \operatorname{map}-[] \quad=[] \\
& \operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{f} x: \operatorname{map} \mathrm{fs}
\end{aligned}
$$

Some useful higher order functions

- map - applies a function to each element of a list

$$
\begin{aligned}
& \operatorname{map}::(a->b)->[a]->[b] \\
& \quad \operatorname{map}-[] \quad=[] \\
& \quad \operatorname{map} f(x: x s)=f x: \operatorname{map} f x s \\
& \operatorname{map}(\backslash x->2 * x))[1,2,3,4] \\
& \quad=\Rightarrow[2,4,6,8]
\end{aligned}
$$

Some useful higher order functions

- map - applies a function to each element of a list

$$
\begin{aligned}
& \operatorname{map}::(a->b)->[a]->[b] \\
& \operatorname{map}-[] \quad=[] \\
& \operatorname{map} f(x: x s)=f x: \operatorname{map} f x s
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{map} & (\backslash x->2 * x))[1,2,3,4] \\
& ==>[2,4,6,8]
\end{aligned}
$$

- zipWith - generalises zip, combines list elements with the function in its first argument, truncates the longer list

$$
\begin{aligned}
& \text { zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] } \\
& \text { zipWith _ [] _ = [] } \\
& \text { zipWith _ _ [] = [] } \\
& \text { zipWith } f \text { (a:as) (b:bs) = f a b : zipWith } f \text { as bs }
\end{aligned}
$$

zipWith (+) [2, 3, 4] [5, 6, 7]
[7, 9, 11]

First-class functions (cont)

- Function type a -> b (right-associative)

First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:

First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions

First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions

```
max :: Int -> Int -> Int
max x y = if x > y then x else y
```


First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions

$$
\begin{aligned}
& \max :: \quad \text { Int }->(\text { Int }->\text { Int) } \\
-- & \max x \mathrm{y}=\text { if } \mathrm{x}>\mathrm{y} \text { then } \mathrm{x} \text { else } \mathrm{y} \\
& \max \mathrm{x}=
\end{aligned}
$$

First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions

```
    max :: Int -> (Int -> Int)
-- max x y = if x > y then x else y
max x = \y -> if x > y then x else y
```


First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions

```
    max :: (Int -> (Int -> Int))
-- max x y = if x > y then x else y
-- max x = \y -> if x > y then x else y
    max =
```


First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions

$$
\begin{aligned}
& \max :: \quad(\text { Int }->(\text { Int }->\text { Int)) } \\
&-- \max x y=\text { if } x>y \text { then } x \text { else } y \\
&--\max x=\backslash y->\text { if } x>y \text { then } x \text { else } y \\
& \max =\backslash x y->\text { if } x>y \text { then } x \text { else } y
\end{aligned}
$$

First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions
- The following definitions of max are equivalent:

$$
\begin{aligned}
& \max :: \quad(\text { Int }->(\text { Int }->\text { Int)) } \\
&-- \max x y=\text { if } x>y \text { then } x \text { else } y \\
&--\max x=\backslash y->\text { if } x>y \text { then } x \text { else } y \\
& \max =\backslash x y \rightarrow \text { if } x>y \text { then } x \text { else } y
\end{aligned}
$$

First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions
- The following definitions of max are equivalent:

```
    max :: (Int -> (Int -> Int))
-- max x y = if x > y then x else y
-- max x = \y -> if x > y then x else y
    max = \x y -> if x > y then x else y
```

- Haskell compiler will figure out types from LHS patterns and type of RHS expression

First-class functions (cont)

- Function type a -> b (right-associative)
- Values of this type are constructed by:
- the usual function definitions
- lambda constructions
- The following definitions of max are equivalent:

```
    max :: (Int -> (Int -> Int))
-- max x y = if x > y then x else y
-- max x = \y -> if x > y then x else y
    max = \x y -> if x > y then x else y
```

- Haskell compiler will figure out types from LHS patterns and type of RHS expression
- Note: In a function definition all equations must have the same number of LHS patterns

Currying

- currying - translating the evaluation of a function that takes multiple arguments into evaluating a sequence of (higher-order) functions, each with a single argument

Currying

- currying - translating the evaluation of a function that takes multiple arguments into evaluating a sequence of (higher-order) functions, each with a single argument
- A variant of max:

$$
\begin{aligned}
& \max \prime::(d, d)->d \\
& \max ,(x, y)=\text { if } x>y \text { then } \ldots
\end{aligned}
$$

Currying

- currying - translating the evaluation of a function that takes multiple arguments (a tuple of arguments) into evaluating a sequence of (higher-order) functions, each with a single argument
- A variant of max:

$$
\begin{aligned}
& \max \prime::(d, d)->d \\
& \max ,(x, y)=\text { if } x>y \text { then } \ldots
\end{aligned}
$$

Currying

- currying - translating the evaluation of a function that takes multiple arguments (a tuple of arguments) into evaluating a sequence of (higher-order) functions, each with a single argument
- A variant of max:

$$
\begin{aligned}
& \max \prime::(d, d)->d \\
& \max ,(x, y)=\text { if } x>y \text { then } \ldots
\end{aligned}
$$

- We can express this translation as higher-order function:

$$
\begin{aligned}
& \text { curry :: ((a, b) -> c) }->\mathrm{a}->\mathrm{b}->\mathrm{c} \\
& \text { curry } \mathrm{f} x \mathrm{y}=\mathrm{f}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Currying

- currying - translating the evaluation of a function that takes multiple arguments (a tuple of arguments) into evaluating a sequence of (higher-order) functions, each with a single argument
- A variant of max:

$$
\begin{aligned}
& \max \prime::(d, d)->d \\
& \max ,(x, y)=\text { if } x>y \text { then } \ldots
\end{aligned}
$$

- We can express this translation as higher-order function:

$$
\begin{aligned}
& \text { curry :: ((a, b) -> c) }->\mathrm{a} \rightarrow \mathrm{~b}->\mathrm{c} \\
& \text { curry } \mathrm{f} x \mathrm{y}=\mathrm{f}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

- There is also the reverse translation:

$$
\begin{aligned}
& \text { uncurry :: (a -> b }->\text { c) } \rightarrow \text { (} \mathrm{a}, \mathrm{~b}) \rightarrow \mathrm{c} \\
& \text { uncurry } \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{f} x \mathrm{y}
\end{aligned}
$$

Function manipulation

- Composition
- The usual $(f . g)(x)=f(g(x))$

Function manipulation

- Composition
- The usual $(f . g)(x)=f(g(x))$
- Operator (.), higher order function:

$$
\begin{aligned}
& \text { (.) }::(\mathrm{b} \rightarrow \mathrm{c}) \text {-> (a -> b) } \rightarrow \mathrm{a} \rightarrow \mathrm{c} \\
& \mathrm{f} \cdot \mathrm{~g}=\backslash \mathrm{x} \rightarrow \mathrm{f}(\mathrm{~g} \mathrm{x})
\end{aligned}
$$

Function manipulation

- Composition
- The usual $(f . g)(x)=f(g(x))$
- Operator (.), higher order function:

$$
\begin{aligned}
& \text { (.) : : (b -> c) }->(\mathrm{a}->\mathrm{b})->\mathrm{a} \rightarrow \mathrm{c} \\
& \mathrm{f} \cdot \mathrm{~g}=\backslash \mathrm{x} \rightarrow \mathrm{f}(\mathrm{~g} \mathrm{x})
\end{aligned}
$$

- E.g.:

$$
\text { filter even . (filter (} \backslash \mathrm{x} \rightarrow \mathrm{x} \text { 'mod' } 3=0 \text {) }
$$

Function manipulation

- Composition
- The usual $(f . g)(x)=f(g(x))$
- Operator (.), higher order function:

$$
\begin{aligned}
& \text { (.) : : (b -> c) }->(\mathrm{a}->\mathrm{b})->\mathrm{a} \rightarrow \mathrm{c} \\
& \mathrm{f} \cdot \mathrm{~g}=\backslash \mathrm{x} \rightarrow \mathrm{f}(\mathrm{~g} \mathrm{x})
\end{aligned}
$$

- E.g.:

$$
\text { filter even . (filter (} \backslash \mathrm{x} \rightarrow \mathrm{x} \text { 'mod' } 3=0 \text {) }
$$

- Partial application
- We can provide function only with first n arguments
- Result is a partially applied function - a new function taking the rest of arguments

Function manipulation

- Composition
- The usual $(f . g)(x)=f(g(x))$
- Operator (.), higher order function:

$$
\begin{aligned}
& \text { (.) : : (b -> c) }->(\mathrm{a}->\mathrm{b})->\mathrm{a} \rightarrow \mathrm{c} \\
& \mathrm{f} \cdot \mathrm{~g}=\backslash \mathrm{x} \rightarrow \mathrm{f}(\mathrm{~g} \mathrm{x})
\end{aligned}
$$

- E.g.:

$$
\text { filter even . (filter (} \backslash \mathrm{x} \rightarrow \mathrm{x} \text { 'mod' } 3=0 \text {) }
$$

- Partial application
- We can provide function only with first n arguments
- Result is a partially applied function - a new function taking the rest of arguments
- E.g: max 5, (1 +), (2 *)

List folding

- Let's compare two recursive functions on lists:
- Function sum:

$$
\begin{array}{ll}
\text { sum }:: \text { [Integer] } & ->\text { Integer } \\
\text { sum }[] & =0 \\
\operatorname{sum}(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

- Function maximum:

```
maximum :: [Integer] -> Integer
maximum (x : []) = x
maximum (x : xs) = max x (maximum xs)
```


List folding

- Let's compare two recursive functions on lists:
- Function sum:

$$
\begin{array}{ll}
\text { sum }:: \text { [Integer] } & ->\text { Integer } \\
\text { sum }[] & =0 \\
\text { sum }(x: x s) & =x+\operatorname{sum} x s
\end{array}
$$

- Function maximum:

```
maximum :: [Integer] -> Integer
maximum (x : []) = x
maximum (x : xs) = max x (maximum xs)
```

- Recursive case has the same structure:

$$
\operatorname{recf}(x: x s)=f x(\text { recf } x s)
$$

List folding

- Let's compare two recursive functions on lists:
- Function sum:

```
sum :: [Integer] -> Integer
sum [] = 0
sum (x : xs) = (+) x (sum xs)
```

- Function maximum:

```
maximum :: [Integer] -> Integer
maximum [] = error "empty list"
maximum (x : []) = x
maximum (x : xs) = max x (maximum xs)
```

- Recursive case has the same structure:

$$
\operatorname{recf}(x: x s)=f x \quad(\operatorname{rec} f \quad x s)
$$

List folding

- Let's compare two recursive functions on lists:
- Function sum:

```
sum :: [Integer] -> Integer
sum [] = 0
sum (x : xs) = (+) x (sum xs)
```

- Function maximum:

```
maximum :: [Integer] -> Integer
maximum [] = error "empty list"
maximum (x : []) = x
maximum (x : xs) = max x (maximum xs)
```

- Recursive case has the same structure:

$$
\operatorname{recf}(x: x s)=f x \quad(\operatorname{recf} x s)
$$

- Base case is different ...

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:
sum : :
[Int] -> Int

```
sum
sum
sum [1, 2, 3, 4, 5]
```

- Function maximum:
maximum : :
[Int] -> Int
maximum
 $=$
maximum maximum
(x : []) $=\mathrm{x}$
$(\mathrm{x}: \mathrm{xs})=\max \mathrm{x}$ (maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum ::
```

 Int \(\rightarrow\) [Int] \(\rightarrow\) Int
 $\begin{array}{lrlrl}\text { sum } & \text { val }[] & =\text { val } \\ \text { sum } & (x: y) & =(+) \times \text { (sum }\end{array}$

```
sum [1, 2, 3, 4, 5]
```

- Function maximum:
maximum : :
[Int] -> Int
maximum
 = error "..."
maximum
maximum
(x : []) $=\mathrm{x}$
$(\mathrm{x}: \mathrm{xs})=\max \mathrm{x}$ (maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum ::
```

 Int -> [Int] -> Int
 $\begin{array}{llll}\operatorname{sum} & \text { val [] } & = & \text { val } \\ \text { sum } & \operatorname{val}(x: & x s) & =(+) x(\text { sum val } x s)\end{array}$
sum $\quad[1,2,3,4,5]$

- Function maximum:
maximum : :
[Int] -> Int
maximum
 = error "..."
maximum
maximum
(x : []) $=x$
$(\mathrm{x}: \mathrm{xs})=\max \mathrm{x}$ (maximum
xs)
maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum ::
```

 Int \(\rightarrow\) [Int] \(\rightarrow\) Int
 $\begin{array}{llll}\operatorname{sum} & \text { val }[] & = & \text { val } \\ \text { sum } & \text { val }(\mathrm{x}: \quad \mathrm{xs}) & =(+) \mathrm{x} \text { (sum val } \mathrm{xs})\end{array}$
sum $\quad 0[1,2,3,4,5]$

- Function maximum:
maximum : :
[Int] -> Int
maximum
 = error "..."
maximum
maximum
($\mathrm{x}: \quad[\mathrm{l})=\mathrm{x}$
$(\mathrm{x}: \mathrm{xs})=\max \mathrm{x}$ (maximum
xs)
maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum ::
```

 Int \(\rightarrow\) [Int] \(\rightarrow\) Int
 $\begin{array}{llll}\operatorname{sum} & \text { val }[] & = & \text { val } \\ \text { sum } & \text { val }(\mathrm{x}: \quad \mathrm{xs}) & =(+) \mathrm{x} \text { (sum val } \mathrm{xs})\end{array}$
sum $\quad 0[1,2,3,4,5]$

- Function maximum:
maximum : :
Int -> [Int] -> Int
maximum [] $=$ error "..."
maximum $(x: \quad[])=x$
maximum ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum xs)
maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum ::
```

 Int \(\rightarrow\) [Int] \(\rightarrow\) Int
 $\begin{array}{llll}\operatorname{sum} & \text { val }[] & = & \text { val } \\ \text { sum } & \text { val }(\mathrm{x}: \quad \mathrm{xs}) & =(+) \mathrm{x} \text { (sum val } \mathrm{xs})\end{array}$
sum $\quad 0[1,2,3,4,5]$

- Function maximum:
maximum : :
Int -> [Int] -> Int
maximum val [] = val
maximum $\quad(x: \quad[])=x$
maximum $(x: x s)=\max x$ (maximum x)
maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum ::
```

 Int -> [Int] -> Int
 $\begin{array}{llll}\operatorname{sum} & \text { val [] } & = & \text { val } \\ \text { sum } & \operatorname{val}(x: & x s) & =(+) \\ & x\end{array}$
sum $\quad 0[1,2,3,4,5]$

- Function maximum:
maximum : :
Int -> [Int] -> Int
maximum val [] = val
maximum ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum xs)
maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum ::
```

 Int -> [Int] -> Int
 $\begin{array}{llll}\operatorname{sum} & \text { val [] } & = & \text { val } \\ \text { sum } & \operatorname{val}(x: & x s) & =(+) x(\text { sum val } x s)\end{array}$
sum $\quad 0[1,2,3,4,5]$

- Function maximum:
maximum : :
Int -> [Int] -> Int
maximum val [] = val
maximum val ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum val xs)
maximum
$[3,2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:
Int -> [Int] -> Int
$\begin{array}{llll}\operatorname{sum} & \text { val [] } & = & \text { val } \\ \text { sum } & \operatorname{val}(x: & x s) & =(+) \\ & x\end{array}$
sum $\quad 0[1,2,3,4,5]$
- Function maximum:
maximum : :
Int -> [Int] -> Int
maximum val [] = val
maximum val ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum val xs)
maximum 3 [$2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum :: (Int -> Int -> Int) ->
    Int -> [Int] -> Int
sum val [] = val
sum val (x : xs) = (+) x (sum val xs)
sum 0 [1, 2, 3, 4, 5]
```

- Function maximum:
maximum ::
Int -> [Int] -> Int
maximum val [] = val
maximum val ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum val xs)
maximum 3 [$2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum :: (Int -> Int -> Int) ->
    Int -> [Int] -> Int
sum - val [] = val
sum f val (x : xs) = (+) x (sum val xs)
sum 0 [1, 2, 3, 4, 5]
```

- Function maximum:
maximum ::
Int -> [Int] -> Int
maximum val [] = val
maximum val ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum val xs)
maximum 3 [$2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum :: (Int -> Int -> Int) ->
    Int -> [Int] -> Int
sum - val [] = val
sum f val (x : xs) = f x (sum f val xs)
sum 0 [1, 2, 3, 4, 5]
```

- Function maximum:
maximum : :
Int -> [Int] -> Int
maximum val [] = val
maximum val ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum val xs)
maximum 3 [$2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum :: (Int -> Int -> Int) ->
        Int -> [Int] -> Int
sum - val [] = val
sum f val (x : xs) = f x (sum f val xs)
sum (+) O [1, 2, 3, 4, 5]
```

- Function maximum:
maximum : :
Int -> [Int] -> Int
maximum val [] = val
maximum val ($\mathrm{x}: \mathrm{xs}$) $=\max \mathrm{x}$ (maximum val xs)
maximum 3 [$2,5,4,2]$

List folding (cont.)

- Let's slightly modify our two functions:
- Function sum:

```
sum :: (Int -> Int -> Int) ->
        Int -> [Int] -> Int
sum - val [] = val
sum f val (x : xs) = f x (sum f val xs)
sum (+) 0 [1, 2, 3, 4, 5]
```

- Function maximum:

```
maximum :: (Int -> Int -> Int) ->
    Int -> [Int] -> Int
maximum _ val []
                                = val
maximum \(f\) val ( \(x: x s)=f \quad x\) (maximum \(f\) val \(x s\) )
```

maximum max 3 [$2,5,4,2]$

List folding - foldr and foldl

- One generic function foldr for right-associative recursion:

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr _ z [] = z } \\
& \text { foldr f } \mathrm{z} \text { (} \mathrm{x} \text { : } \mathrm{xs} \text {) }=\mathrm{f} \mathrm{x} \text { (foldr } \mathrm{f} \mathrm{z} \text {) }
\end{aligned}
$$

List folding - foldr and foldl

- One generic function foldr for right-associative recursion:

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr _ z [] = z } \\
& \text { foldr f } \mathrm{z} \text { (} \mathrm{x}: \mathrm{xs} \text {) }=\mathrm{f} \mathrm{x} \text { (foldr } \mathrm{f} \mathrm{z} \text {) }
\end{aligned}
$$

- The structure of recursion is

$$
\begin{aligned}
& \text { foldr f } z\left[x_{1}, x_{2}, \ldots, x_{n}\right] \\
& \quad==>f x_{1}\left(f x_{2} \ldots\left(f x_{1}\right) \ldots\right)
\end{aligned}
$$

List folding - foldr and foldl

- One generic function foldr for right-associative recursion:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ z [] = z
foldr f z (x : xs) = f x (foldr f z)
```

- The structure of recursion is

$$
\begin{aligned}
& \text { foldr f } z\left[x_{1}, x_{2}, \ldots, x_{n}\right] \\
& \quad==>\mathrm{f}_{1}\left(\mathrm{f} \mathrm{x}_{2} \ldots\left(\mathrm{f} \mathrm{x}_{1}\right) \ldots\right)
\end{aligned}
$$

- There is also function
foldl :: (b -> a -> b) -> b -> [a] -> b for left-associative recursion, i.e.:

$$
\begin{aligned}
& \text { foldl } f \mathrm{z}\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right] \\
& \quad=\Rightarrow \mathrm{f} \mathrm{x}_{n}\left(\ldots\left(\mathrm{f} \mathrm{x}_{2}\left(\mathrm{f} \mathrm{x}_{1}\right) \ldots\right)\right.
\end{aligned}
$$

List folding - examples

- Our sum and maximum as folds:

```
sum :: [Int] -> Int
sum xs = foldr (+) 0 xs
maximum :: [Int] -> Int
maximum [] = error "empty list"
maximum (x:xs) = foldr max x xs
```

- A fold where a and b are different:

$$
\begin{aligned}
& \text { length : : [a] -> Integer } \\
& \text { length xs }=\text { foldr } f 0 \text { xs } \\
& \text { where } \\
& \quad-\quad \mathrm{f}:: \mathrm{a}->\text { Integer }->\text { Integer } \\
& \quad \mathrm{f} _\mathrm{b}=1+\mathrm{b}
\end{aligned}
$$

Next time

- Monday the the 8th of February, 2-3PM, Dalhousie 3G05 LT2
- Sorting algorithms on lists
- Selection Sort
- Insertion Sort
- Bubble Sort

