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Recapitulation

I Data type tuple (a, b)

I Non-strict semantics:
I expressions evaluated on-demand
I allows infinite data structures (lists)



Anonymous (lambda) functions

I Functions without a name

I Syntax:

\<var1> ... <varn> -> <expr>

Variables var1 to varn in scope in the expression expr

I Anonymous functions:

I can be applied to an argument:
(\x -> 2 + x) 3 ==> 5

I can be passed as an argument
. . . anonymous functions are values

I E.g.:

2 + 3 :: Int

\x ->

2 + x ::

Int ->

Int

Not in scope: ‘x‘
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Anonymous (lambda) functions (cont.)

I filter, applied to a predicate and a list, returns the list of
those elements that satisfy the predicate

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = []

filter pred (x:xs) = if (pred x)

then x : filter pred xs

else filter pred xs

I E.g:

filter (\x -> x ‘mod‘ 2 == 1) [1, 2, 3, 4, 5, 6]

==> [1, 3, 5]

filter (\x -> x ‘mod‘ 2 == 0) [1, 2, 3, 4, 5, 6]

==> [2, 4, 6]



Anonymous (lambda) functions (cont.)
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First-class functions

I All functions can be passed as an argument, e.g standard
functions even and odd:

filter odd [1, 2, 3, 4, 5, 6]

==> [1, 3, 5]

filter even [1, 2, 3, 4, 5, 6]

==> [2, 4, 6]

I All functions are just values

I We will call functions that take a function as an argument
higher order functions
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Some useful higher order functions
I map - applies a function to each element of a list

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x:xs) = f x : map f xs

map (\x -> 2 * x)) [1, 2, 3, 4]

==> [2, 4, 6, 8]

I zipWith - generalises zip, combines list elements with the
function in its first argument, truncates the longer list

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith _ [] _ = []

zipWith _ _ [] = []

zipWith f (a:as) (b:bs) = f a b : zipWith f as bs

zipWith (+) [2, 3, 4] [5, 6, 7]

[7, 9, 11]
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First-class functions (cont)

I Function type a -> b (right-associative)

I Values of this type are constructed by:

I the usual function definitions
I lambda constructions

I The following definitions of max are equivalent:

max ::

(

Int ->

(

Int -> Int

))

--

max x y = if x > y then x else y

-- max x = \y -> if x > y then x else y

max = \x y -> if x > y then x else y

I Haskell compiler will figure out types from LHS patterns and
type of RHS expression

I Note: In a function definition all equations must have the
same number of LHS patterns
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Currying

I currying - translating the evaluation of a function that takes
multiple arguments

(a tuple of arguments)

into evaluating a
sequence of (higher-order) functions, each with a single
argument

I A variant of max:

max’ :: (d, d) -> d

max’ (x, y) = if x > y then ...

I We can express this translation as higher-order function:

curry :: ((a, b) -> c) -> a -> b -> c

curry f x y = f (x, y)

I There is also the reverse translation:

uncurry :: (a -> b -> c) -> (a, b) -> c

uncurry f (x, y) = f x y
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Function manipulation

I Composition
I The usual (f .g)(x) = f (g(x))

I Operator (.), higher order function:

(.) :: (b -> c) -> (a -> b) -> a -> c

f . g = \ x -> f (g x)

I E.g.:

filter even . (filter (\ x -> x ‘mod‘ 3 == 0))

I Partial application
I We can provide function only with first n arguments
I Result is a partially applied function - a new function taking

the rest of arguments

I E.g: max 5, (1 +), (2 *)
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List folding

I Let’s compare two recursive functions on lists:

I Function sum:

sum :: [Integer] -> Integer

sum [] = 0

sum (x : xs) = x + sum xs

I Function maximum:

maximum :: [Integer] -> Integer

maximum (x : []) = x

maximum (x : xs) = max x (maximum xs)

I Recursive case has the same structure:

recf (x : xs) = f x (recf xs)
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List folding (cont.)

I Let’s slightly modify our two functions:

I Function sum:
sum ::

(Int -> Int -> Int) ->

Int ->

[Int] -> Int

sum

val

[] = 0

val

sum

f val

(x : xs) =

f

(+) x (sum

f val

xs)

sum

(+) 0

[1, 2, 3, 4, 5]

I Function maximum:
maximum ::

(Int -> Int -> Int) ->

Int ->

[Int] -> Int

maximum

val

[] =

val

error "..."

maximum (x : []) = x

maximum

f val

(x : xs) =

f

max x (maximum

f val

xs)

maximum

max 3

[3, 2, 5, 4, 2]
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List folding (cont.)

I Let’s slightly modify our two functions:

I Function sum:
sum :: (Int -> Int -> Int) ->

Int -> [Int] -> Int

sum val [] =

0

val

sum f val (x : xs) = f

(+)

x (sum f val xs)

sum (+) 0 [1, 2, 3, 4, 5]

I Function maximum:
maximum :: (Int -> Int -> Int) ->

Int -> [Int] -> Int

maximum val [] = val

error "..."

maximum (x : []) = x

maximum f val (x : xs) = f
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x (maximum f val xs)

maximum max 3 [

3,

2, 5, 4, 2]



List folding - foldr and foldl

I One generic function foldr for right-associative recursion:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr _ z [] = z

foldr f z (x : xs) = f x (foldr f z)

I The structure of recursion is
foldr f z [x1, x2, ..., xn]

==> f x1 (f x2 ...(f x1)...)

I There is also function
foldl :: (b -> a -> b) -> b -> [a] -> b

for left-associative recursion, i.e.:

foldl f z [x1, x2, ..., xn]

==> f xn (...(f x2 (f x1)...)
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List folding - examples

I Our sum and maximum as folds:

sum :: [Int] -> Int

sum xs = foldr (+) 0 xs

maximum :: [Int] -> Int

maximum [] = error "empty list"

maximum (x:xs) = foldr max x xs

I A fold where a and b are different:

length :: [a] -> Integer

length xs = foldr f 0 xs

where

-- f :: a -> Integer -> Integer

f _ b = 1 + b



Next time

I Monday the the 8th of February, 2-3PM, Dalhousie 3G05 LT2
I Sorting algorithms on lists

I Selection Sort
I Insertion Sort
I Bubble Sort


