
Bibliography

March 28, 2017

Contents

M. Abadi and M. P. Fiore
Syntactic Considerations on Recursive Types

A. Abel and B. Pientka
Wellfounded recursion with copatterns: a unified approach to termination and pro-
ductivity

A. Abel, B. Pientka, D. Thibodeau, et al.
Copatterns: programming infinite structures by observations

S. Abramsky and N. Tzevelekos
Introduction to Categories and Categorical Logic

J. Adámek and V. Koubek
Least Fixed Point of a Functor

J. Adámek and V. Koubek
On the Greatest Fixed Point of a Set Functor

D. Ancona and A. Dovier
A Theoretical Perspective of Coinductive Logic Programming

D. Ancona and G. Lagorio
Idealized coinductive type systems for imperative object-oriented programs

E. De Angelis, F. Fioravanti, A. Pettorossi, et al.
Proving correctness of imperative programs by linearizing constrained Horn clauses

R. Atkey
What is a Categorical Model of Arrows?

author
Algebraic and Coalgebraic Methods in the Mathematics of Program Construction

H. P. Barendregt
Functional Programming and Lambda Calculus

H. Basold and H. H. Hansen
Well-definedness and observational equivalence for inductivecoinductive programs

M. Bellia and G. Levi
The Relation between Logic and Functional Languages: A Survey

B. van den Berg and F. D. Marchi
Non-well-founded trees in categories

J. Bernardy, P. Jansson, M. Zalewski, et al.
Generic programming with C++ concepts and Haskell type classes - a comparison

R. S. Bird, J. Gibbons, S. Mehner, et al.
Understanding idiomatic traversals backwards and forwards

F. Bonchi and F. Zanasi
Bialgebraic Semantics for Logic Programming

A. Colmerauer
Equations and Inequations on Finite and Infinite Trees

P. Cousot and R. Cousot
Inductive Definitions, Semantics and Abstract Interpretation

K. Crary, R. Harper, and S. Puri
What is a Recursive Module?

D. Van Dalen
Intuitionistic Logic

L. Damas and R. Milner
Principal Type-Schemes for Functional Programs

N. A. Danielsson, J. Hughes, P. Jansson, et al.
Fast and loose reasoning is morally correct

E. DE ANGELIS, F. FIORAVANTI, A. PETTOROSSI, et al.
Proving correctness of imperative programs by linearizing constrained Horn clauses

D. De Schreye, V. Nys, and C. Nicholson
Analysing and Compiling Coroutines with Abstract Conjunctive Partial Deduction

D. Devriese and F. Piessens
On the bright side of type classes: instance arguments in Agda

A. Dijkstra, J. Fokker, and S. D. Swierstra
The Structure of the Essential Haskell Compiler, or Coping with Compiler Complex-
ity

M. Falaschi, G. Levi, C. Palamidessi, et al.
Declarative Modeling of the Operational Behavior of Logic Languages

F. Farka, E. Komendantskaya, K. Hammond, et al.
Coinductive Soundness of Corecursive Type Class Resolution

K. Faxén
A static semantics for Haskell

P. Fu and E. Komendantskaya
A Type-Theoretic Approach to Resolution

P. Fu and E. Komendantskaya
Operational semantics of resolution and productivity in Horn clause logic

P. Fu, E. Komendantskaya, T. Schrijvers, et al.
Proof Relevant Corecursive Resolution

N. Ghani and P. Hancock
Containers, monads and induction recursion

J. Gibbons and G. Hutton
Proof Methods for Corecursive Programs

G. Gonthier, B. Ziliani, A. Nanevski, et al.
How to make ad hoc proof automation less ad hoc

G. Gupta, A. Bansal, R. Min, et al.
Coinductive Logic Programming and Its Applications

C. V. Hall, K. Hammond, S. L. P. Jones, et al.
Type Classes in Haskell

R. Hinze and S. L. P. Jones
Derivable Type Classes

R. Hinze and S. Peyton Jones
Derivable Type Classes

R. Hinze, N. Wu, and J. Gibbons
Unifying structured recursion schemes

J. S. Hodas and D. Miller
Logic Programming in a Fragment of Intuitionistic Linear Logic

P. Hudak, J. Hughes, S. L. P. Jones, et al.
A history of Haskell: being lazy with class

G. Huet and A. Saibi
Constructive Category Theory

R. Iemhoff
On The Admissible Rules of Intuitionistic Propositional Logic

J. Jaffar and P. J. Stuckey
Semantics of Infinite Tree Logic Programming

M. Jaskelioff and O. Rypacek
An Investigation of the Laws of Traversals

P. Johann and N. Ghani
A principled approach to programming with nested types in Haskell

R. van Kesteren, M. C.J. D. van Eekelen, and M. de Mol
Proof support for generic type classes

O. Kiselyov and H. Ishii
Freer monads, more extensible effects

P. Kokke and W. Swierstra
Auto in Agda - Programming Proof Search Using Reflection

E. Komendantskaya and J. Power
Coalgebraic Semantics for Derivations in Logic Programming

D. Kozen and A. Silva
Practical coinduction

R. Lämmel and S. L. P. Jones
Scrap your boilerplate with class: extensible generic functions

C. S. Lee, N. D. Jones, and A. M. Ben-Amram
The size-change principle for program termination

M. Lenisa, J. Power, and H. Watanabe
Distributivity for endofunctors, pointed and co-pointed endofunctors, monads and
comonads

F. Lindblad and M. Benke
A Tool for Automated Theorem Proving in Agda

J. W. Lloyd
Foundations of Logic Programming, 2nd Edition

A. Löh and R. Hinze
Open data types and open functions

D. B. MacQueen, G. D. Plotkin, and R. Sethi
An Ideal Model for Recursive Polymorphic Types

C. McBride
Faking it: Simulating dependent types in Haskell

C. McBride and R. Paterson
Applicative programming with effects

D. Miller and G. Nadathur
Programming with Higher-Order Logic

D. Miller, G. Nadathur, F. Pfenning, et al.
Uniform Proofs as a Foundation for Logic Programming

R. Milner
A Theory of Type Polymorphism in Programming

R. Milner
Communication and concurrency

I. Moerdijk and E. Palmgren
Wellfounded trees in categories

J. H. Morris
Lambda-calculus models of programming languages

L. S. Moss and N. Danner
On the Foundations of Corecursion

U. Norell
Dependently typed programming in agda

B. C. d. S. Oliveira, T. Schrijvers, W. Choi, et al.
The implicit calculus: a new foundation for generic programming

L. C. Paulson and A. W. Smith
Logic Programming, Functional Programming, and Inductive Definitions

B. C. Pierce
Types and programming languages

A. M. Pitts
Parametric Polymorphism and Operational Equivalence

G. D. Plotkin and J. Power
Algebraic Operations and Generic Effects

J. Power and H. Watanabe
Combining a monad and a comonad

G. Rosu and D. Lucanu
Circular Coinduction: A Proof Theoretical Foundation

J. J.M. M. Rutten
Behavioural differential equations: A coinductive calculus of streams, automata, and
power series

D. Sangiorgi
On the origins of bisimulation and coinduction

D. D. Schreye, V. Nys, and C. J. Nicholson
Analysing and Compiling Coroutines with Abstract Conjunctive Partial Deduction

T. Schrijvers, S. L. P. Jones, M. M. T. Chakravarty, et al.
Type checking with open type functions

L. Simon, A. Bansal, A. Mallya, et al.
Co-Logic Programming: Extending Logic Programming with Coinduction

A. Simpson and G. Plotkin
Complete axioms for categorical fixed-point operators

S. Staton
An Algebraic Presentation of Predicate Logic - (Extended Abstract)

P. J. Stuckey and M. Sulzmann
A theory of overloading

M. Sulzmann, G. J. Duck, S. L. P. Jones, et al.
Understanding functional dependencies via constraint handling rules

G. Sutcliffe
The TPTP problem library and associated infrastructure : the FOF and CNF Parts,
v3.5.0

H. Thielemann
How to Refine Polynomial Functions

D. Vytiniotis, S. L. P. Jones, T. Schrijvers, et al.
OutsideIn(X) Modular type inference with local assumptions

P. Wadler
Theorems for Free!

P. Wadler and S. Blott
How to Make ad-hoc Polymorphism Less ad-hoc

N. Bjørner, A. Gurfinkel, K. McMillan, et al.
Horn Clause Solvers for Program Verification

H. Geuvers and R. Nederpelt
N.G. de Bruijn’s contribution to the formalization of mathematics

R. Jhala, R. Majumdar, and A. Rybalchenko
HMC : Verifying Functional Programs

E. Komendantskaya and J. Power
Logic programming: laxness and saturation

E. Komendantskaya and J. Power
Logic programming: laxness and saturation

N. P. Mendler, P. Panangaden, P. J. Scott, et al.
A Logical View of Concurrent Constraint Programming

M. Odersky, M. Sulzmann, and M. Wehr
Type inference with constrained types

P. W. O’Hearn and R. D. Tennent
Parametricity and local variables

C.-H. L. Ong and S. J. Ramsay
Verifying higher-order functional programs with pattern-matching algebraic data
types

F. Pfenning
Logic programming in the LF logical framework

F. Pfenning and C. Schürmann
System description: Twelf a meta-logical framework for deductive systems

V. Simonet and F. Pottier
A constraint-based approach to guarded algebraic data types

M. Abadi and M. P. Fiore
Syntactic Considerations on
Recursive Types

Abstract We study recursive types from a syntactic perspective. In particular, we compare the for-
mulations of recursive types that are used in programming languages and formal systems. Our main tool
is a new syntactic explanation of type expressions as functors. We QkO introduce Q sample logic for
programs with recursive types in which we carry out our proof

References

M. Abadi and M. P. Fiore, “Syntactic considerations on recursive types,” in Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996,
IEEE Computer Society, 1996, pp. 242–252, isbn: 0-8186-7463-6. doi: 10.1109/LICS.1996.561324.
[Online]. Available: http://dx.doi.org/10.1109/LICS.1996.561324

AbadiF96

A. Abel and B. Pientka
Wellfounded recursion with
copatterns: a unified approach to
termination and productivity

Abstract We present a core programming language that supports writing well-founded structurally
recursive functions using simultaneous pattern matching on contextual LF objects and contexts. The
main technical tool is a coverage checking algorithm that also generates valid recursive calls. To establish
consistency, we define a call-by-value small-step semantics and prove that every well-typed program
terminates using a reducibility semantics. Based on the presented methodology we have implemented
a totality checker as part of the programming and proof environment Beluga where it can be used to
establish that a total Beluga program corresponds to a proof.

References

A. Abel and B. Pientka, “Wellfounded recursion with copatterns: A unified approach to termination
and productivity,” in ACM SIGPLAN International Conference on Functional Programming, ICFP’13,
Boston, MA, USA - September 25 - 27, 2013, G. Morrisett and T. Uustalu, Eds., ACM, 2013, pp. 185–
196, isbn: 978-1-4503-2326-0. doi: 10.1145/2500365.2500591. [Online]. Available: http://doi.acm.

org/10.1145/2500365.2500591

AbelP13

A. Abel, B. Pientka, D. Thibodeau, et al.
Copatterns: programming infinite
structures by observations

Abstract Inductive datatypes provide mechanisms to define finite data such as finite lists and trees
via constructors and allow programmers to analyze and manipulate finite data via pattern matching. In
this paper, we develop a dual approach for working with infinite data structures such as streams. Infinite
data inhabits coinductive datatypes which denote greatest fixpoints. Unlike finite data which is defined
by constructors we define infinite data by observations. Dual to pattern matching, a tool for analyzing
finite data, we develop the concept of copattern matching, which allows us to synthesize infinite data.
This leads to a symmetric language design where pattern matching on finite and infinite data can be
mixed. We present a core language for programming with infinite structures by observations together
with its operational semantics based on (co)pattern matching and describe coverage of copatterns. Our
language naturally supports both call-by-name and call-by-value interpretations and can be seamlessly
integrated into existing languages like Haskell and ML. We prove type soundness for our language and
sketch how copatterns open new directions for solving problems in the interaction of coinductive and
dependent types

References

A. Abel, B. Pientka, D. Thibodeau, et al., “Copatterns: Programming infinite structures by observa-
tions,” in The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, Rome, Italy - January 23 - 25, 2013, R. Giacobazzi and R. Cousot, Eds., ACM,
2013, pp. 27–38, isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429075. [Online]. Available: http:

//doi.acm.org/10.1145/2429069.2429075

AbelPTS13

S. Abramsky and N. Tzevelekos
Introduction to Categories and
Categorical Logic

Abstract The aim of these notes is to provide a succinct, accessible introduction to some of the basic
ideas of category theory and categorical logic. The notes are based on a lecture course given at Oxford
over the past few years. They contain numerous exercises, and hopefully will prove useful for self-study
by those seeking a first introduction to the subject, with fairly minimal prerequisites. The coverage is by
no means comprehensive, but should provide a good basis for further study; a guide to further reading
is included. The main prerequisite is a basic familiarity with the elements of discrete mathematics: sets,
relations and functions. An Appendix contains a summary of what we will need, and it may be useful to
review this first. In addition, some prior exposure to abstract algebra - vector spaces and linear maps,
or groups and group homomorphisms - would be helpful.

References

S. Abramsky and N. Tzevelekos, “Introduction to categories and categorical logic,” CoRR, vol. abs/1102.1313,
2011. [Online]. Available: http://arxiv.org/abs/1102.1313

AbramskyT11

J. Adámek and V. Koubek
Least Fixed Point of a Functor

Abstract no abstract provided

References

J. Adámek and V. Koubek, “Least fixed point of a functor,” J. Comput. Syst. Sci., vol. 19, no. 2,
pp. 163–178, 1979. doi: 10.1016/0022-0000(79)90026-6. [Online]. Available: http://dx.doi.org/

10.1016/0022-0000(79)90026-6

AdamekK79

J. Adámek and V. Koubek
On the Greatest Fixed Point of a Set
Functor

Abstract The greatest fixed point of a set functor is proved to be (a) a metric completion and (b) a
CPO-completion of finite iterations. For each (possibly infinitary) signature Σ the terminal Σ-coalgebra
is thus proved to be the coalgebra of all Σ-labelled trees; this is the completion of the set of all such
trees of finite depth. A set functor is presented which has a fixed point but does not have a greatest
fixed point. A sufficient condition for the existence of a greatest fixed point is proved: the existence of
two fixed points of successor cardinalities.

References

J. Adámek and V. Koubek, “On the greatest fixed point of a set functor,” Theor. Comput. Sci.,
vol. 150, no. 1, pp. 57–75, 1995. doi: 10.1016/0304-3975(95)00011-K. [Online]. Available: http:

//dx.doi.org/10.1016/0304-3975(95)00011-K

AdamekK95

D. Ancona and A. Dovier
A Theoretical Perspective of
Coinductive Logic Programming

Abstract In this paper we study the semantics of Coinductive Logic Programming and clarify its
intrinsic computational limits, which prevent, in particular, the definition of a complete, computable,
operational semantics. We propose a new operational semantics that allows a simple correctness result
and the definition of a simple meta-interpreter. We compare, and prove the equivalence, with the
operational semantics defined and used in other papers on this topic.

References

D. Ancona and A. Dovier, “A theoretical perspective of coinductive logic programming,” Fundam. In-
form., vol. 140, no. 3-4, pp. 221–246, 2015. doi: 10.3233/FI-2015-1252. [Online]. Available: http:

//dx.doi.org/10.3233/FI-2015-1252

AnconaD15

D. Ancona and G. Lagorio
Idealized coinductive type systems
for imperative object-oriented
programs

Abstract In recent work we have proposed a novel approach to define idealized type systems for
object-oriented languages, based on abstract compilation of programs into Horn formulas which are
interpreted w.r.t. the coinductive (that is, the greatest) Herbrand model. In this paper we investigate
how this approach can be applied also in the presence of imperative features. This is made possible
by considering a natural translation of Static Single Assignment intermediate form programs into Horn
formulas, where functions correspond to union types.

References

D. Ancona and G. Lagorio, “Idealized coinductive type systems for imperative object-oriented programs,”
RAIRO - Theor. Inf. and Applic., vol. 45, no. 1, pp. 3–33, 2011. doi: 10.1051/ita/2011009. [Online].
Available: http://dx.doi.org/10.1051/ita/2011009

AnconaL11

E. De Angelis, F. Fioravanti, A. Pettorossi,
et al.
Proving correctness of imperative
programs by linearizing constrained
Horn clauses

Abstract We present a method for verifying the correctness of imperative programs which is based
on the automated transformation of their specifications. Given a program prog, we consider a partial
correctness specification of the form {φ}, prog {ψ}, where the assertions and are predicates defined by a
set Spec of possibly recursive Horn clauses with linear arithmetic (LA) constraints in their premise (also
called constrained Horn clauses). The verification method consists in constructing a set PC of constrained
Horn clauses whose satisfiability implies that {φ}, prog, {ψ} is valid. We highlight some limitations of
state-of-the-art constrained Horn clause solving methods, here called LA-solving methods, which prove
the satisfiability of the clauses by looking for linear arithmetic interpretations of the predicates. In
particular, we prove that there exist some specifications that cannot be proved valid by any of those
LA-solving methods. These specifications require the proof of satisfiability of a set PC of constrained
Horn clauses that contain nonlinear clauses (that is, clauses with more than one atom in their premise).
Then, we present a transformation, called linearization, that converts PC into a set of linear clauses
(that is, clauses with at most one atom in their premise). We show that several specifications that could
not be proved valid by LA-solving methods, can be proved valid after linearization. We also present a
strategy for performing linearization in an automatic way and we report on some experimental results
obtained by using a preliminary implementation of our method.

References

E. De Angelis, F. Fioravanti, A. Pettorossi, et al., “Proving correctness of imperative programs by
linearizing constrained horn clauses,” TPLP, vol. 15, no. 4-5, pp. 635–650, 2015. doi: 10 . 1017 /

S1471068415000289. [Online]. Available: http://dx.doi.org/10.1017/S1471068415000289

AngelisFPP15

R. Atkey
What is a Categorical Model of
Arrows?

Abstract We investigate what the correct categorical formulation of Hughes Arrows should be. It has
long been folklore that Arrows, a functional programming construct, and Freyd categories, a categorical
notion due to Power, Robinson and Thielecke, are somehow equivalent. In this paper, we show that
the situation is more subtle. By considering Arrows wholly within the base category we derive two
alternative formulations of Freyd category that are equivalent to Arrowsenriched Freyd categories and
indexed Freyd categories. By imposing a further condition, we characterise those indexed Freyd categories
that are isomorphic to Freyd categories. The key differentiating point is the number of inputs available to
a computation and the structure available on them, where structured input is modelled using comonads.

References

R. Atkey, “What is a categorical model of arrows?” Electr. Notes Theor. Comput. Sci., vol. 229, no. 5,
pp. 19–37, 2011. doi: 10.1016/j.entcs.2011.02.014. [Online]. Available: http://dx.doi.org/10.

1016/j.entcs.2011.02.014

Atkey11

author
Algebraic and Coalgebraic Methods
in the Mathematics of Program
Construction

Abstract Program construction is about turning specifications of computer software into implemen-
tations. Doing so in a way that guarantees correctness is an undertaking requiring deep understanding
of the languages and tools being used, as well as of the application domain. Recent research aimed
at improving the process of program construction exploits insights from abstract algebraic tools such
as lattice theory, fixpoint calculus, universal algebra, category theory and allegory theory. This book
provides an introduction to these mathematical theories and how they are applied to practical problems.

References

R. Backhouse, R. Crole, and J. Gibbons, Eds., Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, ser. Lecture Notes in Computer Science. Springer-Verlag, 2002, vol. 2297, isbn:
3540436138. [Online]. Available: http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/

acmmpc-toc.pdf

BackhouseCG02

H. P. Barendregt
Functional Programming and
Lambda Calculus

Abstract An abstract is not available

References

H. P. Barendregt, “Functional programming and lambda calculus,” in Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), 1990, pp. 321–363

Barendregt90

H. Basold and H. H. Hansen
Well-definedness and observational
equivalence for inductivecoinductive
programs

Abstract abstract

References

H. Basold and H. H. Hansen, “Well-definedness and observational equivalence for inductivecoinductive
programs,” Journal of Logic and Computation, exw091, 2016, issn: 0955-792X. doi: 10.1093/logcom/

exv091. [Online]. Available: https://academic.oup.com/logcom/article-lookup/doi/10.1093/

logcom/exv091

BasoldH16

M. Bellia and G. Levi
The Relation between Logic and
Functional Languages: A Survey

Abstract The paper considers different methods of integrating the functional and logic programming
paradigms, starting with the identification of their semantic differences. The main methods to extend
functional programs with logic features (i.e. unification) are then considered. These include narrowing,
completion, SLD-resolution of equational formulas, and set abstraction. The different techniques are
analyzed from several viewpoints, including the ability to support both paradigms, lazy evaluation, and
concurrency.

References

M. Bellia and G. Levi, “The relation between logic and functional languages: A survey,” J. Log. Pro-
gram., vol. 3, no. 3, pp. 217–236, 1986. doi: 10.1016/0743-1066(86)90014-2. [Online]. Available:
http://dx.doi.org/10.1016/0743-1066(86)90014-2

BelliaL86

B. van den Berg and F. D. Marchi
Non-well-founded trees in categories

Abstract Non-well-founded trees are used in mathematics and computer science, for modelling non-
well-founded sets, as well as non-terminating processes or infinite data structures. Categorically, they
arise as final coalgebras for polynomial endofunctors, which we call M-types. We derive existence results
for M-types in locally cartesian closed pretoposes with a natural numbers object, using their internal
logic. These are then used to prove stability of such categories with M-types under various topos-
theoretic constructions; namely, slicing, formation of coalgebras (for a cartesian comonad), and sheaves
for an internal site.

References

B. van den Berg and F. D. Marchi, “Non-well-founded trees in categories,” Ann. Pure Appl. Logic,
vol. 146, no. 1, pp. 40–59, 2007. doi: 10.1016/j.apal.2006.12.001. [Online]. Available: http:

//dx.doi.org/10.1016/j.apal.2006.12.001

BergM07

J. Bernardy, P. Jansson, M. Zalewski, et al.
Generic programming with C++
concepts and Haskell type classes - a
comparison

Abstract Earlier studies have introduced a list of high-level evaluation criteria to assess how well a
language supports generic programming. Languages that meet all criteria include Haskell because of its
type classes and C++ with the concept feature. We refine these criteria into a taxonomy that captures
commonalities and differences between type classes in Haskell and concepts in C++ and discuss which
differences are incidental and which ones are due to other language features. The taxonomy allows for
an improved understanding of language support for generic programming, and the comparison is useful
for the ongoing discussions among language designers and users of both languages.

References

J. Bernardy, P. Jansson, M. Zalewski, et al., “Generic programming with C++ concepts and haskell
type classes - a comparison,” J. Funct. Program., vol. 20, no. 3-4, pp. 271–302, 2010. doi: 10.1017/

S095679681000016X. [Online]. Available: http://dx.doi.org/10.1017/S095679681000016X

BernardyJZS10

R. S. Bird, J. Gibbons, S. Mehner, et al.
Understanding idiomatic traversals
backwards and forwards

Abstract We present new ways of reasoning about a particular class of effectful Haskell programs,
namely those expressed as idiomatic traversals. Starting out with a specific problem about labelling and
unlabelling binary trees, we extract a general inversion law, applicable to any monad, relating a traversal
over the elements of an arbitrary traversable type to a traversal that goes in the opposite direction. This
law can be invoked to show that, in a suitable sense, unlabelling is the inverse of labelling. The inversion
law, as well as a number of other properties of idiomatic traversals, is a corollary of a more general
theorem characterising traversable functors as finitary containers: an arbitrary traversable object can be
decomposed uniquely into shape and contents, and traversal be understood in terms of those. Proof of
the theorem involves the properties of traversal in a special idiom related to the free applicative functor.

References

R. S. Bird, J. Gibbons, S. Mehner, et al., “Understanding idiomatic traversals backwards and forwards,”
in Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, Boston, MA, USA, September 23-24,
2013, C. Shan, Ed., ACM, 2013, pp. 25–36, isbn: 978-1-4503-2383-3. doi: 10.1145/2503778.2503781.
[Online]. Available: http://doi.acm.org/10.1145/2503778.2503781

BirdGMVS13

F. Bonchi and F. Zanasi
Bialgebraic Semantics for Logic
Programming

Abstract Bialgebrae provide an abstract framework encompassing the semantics of different kinds
of computational models. In this paper we propose a bialgebraic approach to the semantics of logic
programming. Our methodology is to study logic programs as reactive systems and exploit abstract
techniques developed in that setting. First we use saturation to model the operational semantics of logic
programs as coalgebrae on presheaves. Then, we make explicit the underlying algebraic structure by
using bialgebrae on presheaves. The resulting semantics turns out to be compositional with respect to
conjunction and term substitution. Also, it encodes a parallel model of computation, whose soundness
is guaranteed by a built-in notion of synchronisation between different threads.

References

F. Bonchi and F. Zanasi, “Bialgebraic semantics for logic programming,” Logical Methods in Computer
Science, vol. 11, no. 1, 2015. doi: 10.2168/LMCS-11(1:14)2015. [Online]. Available: http://dx.doi.

org/10.2168/LMCS-11(1:14)2015

BonchiZ15

A. Colmerauer
Equations and Inequations on Finite
and Infinite Trees

Abstract No abstract available

References

A. Colmerauer, “Equations and inequations on finite and infinite trees,” in FGCS, 1984, pp. 85–99

Colmerauer84

P. Cousot and R. Cousot
Inductive Definitions, Semantics and
Abstract Interpretation

Abstract We introduce and illustrate a specification method combining rule-based inductive defini-
tions, well-founded induction principles, fixed-point theory and abstract interpretation for general use in
computer science. Finite as well as infinite objects can be specified, at various levels of details related
by abstraction. General proof principles are applicable to prove properties of the specified objects. The
specification method is illustrated by introducing G∞SOS, a structured operational semantics gener-
alizing Plotkin’s [28] structured operational semantics (SOS) so as to describe the finite, as well as the
infinite behaviors of programs in a uniform way and by constructively deriving inductive presentations
of the other (relational, denotational, predicate transformers, . . .) semantics from G∞SOS by abstract
interpretation.

References

P. Cousot and R. Cousot, “Inductive definitions, semantics and abstract interpretation,” in Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, USA, January 19-22, 1992, R. Sethi, Ed., ACM Press, 1992,
pp. 83–94, isbn: 0-89791-453-8. doi: 10.1145/143165.143184. [Online]. Available: http://doi.acm.

org/10.1145/143165.143184

CousotC92

K. Crary, R. Harper, and S. Puri
What is a Recursive Module?

Abstract A hierarchical module system is an effective tool for structuring large programs. Strictly
hierarchical module systems impose an acyclic ordering on import dependencies among program units.
This can impede modular programming by forcing mutually-dependent components to be consolidated
into a single module. Recently there have been several proposals for module systems that admit cyclic
dependencies, but it is not clear how these proposals relate to one another, nor how one might integrate
them into an expressive module system such as that of ML.To address this question we provide a type-
theoretic analysis of the notion of a recursive module in the context of a ”phase-distinction” formalism
for higher-order module systems. We extend this calculus with a recursive module mechanism and a new
form of signature, called a recursively dependent signature, to support the definition of recursive modules.
These extensions are justified by an interpretation in terms of more primitive language constructs. This
interpretation may also serve as a guide for implementation.

References

K. Crary, R. Harper, and S. Puri, “What is a recursive module?” In Proceedings of the 1999 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Atlanta, Georgia,
USA, May 1-4, 1999, B. G. Ryder and B. G. Zorn, Eds., ACM, 1999, pp. 50–63, isbn: 1-58113-094-5.
doi: 10.1145/301618.301641. [Online]. Available: http://doi.acm.org/10.1145/301618.301641

CraryHP99

D. Van Dalen
Intuitionistic Logic

Abstract Among the logics that deal with the familiar connectives and quantifiers two stand out as
having a solid philosophicalmathematical justification. On the one hand there is classical logic with its
ontological basis and on the other hand intuitionistic logic with its epistemic motivation. The case for
other logics is considerably weaker; although one may consider intermediate logics with more or less
plausible principles from certain viewpoints none of them is accompanied by a comparably compelling
philosophy. For this reason we have mostly paid attention to pure intuitionistic theories.

References

D. Van Dalen, “Intuitionistic logic,” in Handbook of Philosophical Logic: Volume III: Alternatives in
Classical Logic, D. Gabbay and F. Guenthner, Eds. Dordrecht: Springer Netherlands, 1986, pp. 225–
339, isbn: 978-94-009-5203-4. doi: 10.1007/978- 94- 009- 5203- 4_4. [Online]. Available: http:

//dx.doi.org/10.1007/978-94-009-5203-4_4

Dalen86

L. Damas and R. Milner
Principal Type-Schemes for
Functional Programs

Abstract No abstract available

References

L. Damas and R. Milner, “Principal type-schemes for functional programs,” in Conference Record of the
Ninth Annual ACM Symposium on Principles of Programming Languages, Albuquerque, New Mexico,
USA, January 1982, R. A. DeMillo, Ed., ACM Press, 1982, pp. 207–212, isbn: 0-89791-065-6. doi:
10.1145/582153.582176. [Online]. Available: http://doi.acm.org/10.1145/582153.582176

DamasM82

N. A. Danielsson, J. Hughes, P. Jansson, et
al.
Fast and loose reasoning is morally
correct

Abstract Functional programmers often reason about programs as if they were written in a total lan-
guage, expecting the results to carry over to non-total (partial) languages. We justify such reasoning.Two
languages are defined, one total and one partial, with identical syntax. The semantics of the partial lan-
guage includes partial and infinite values, and all types are lifted, including the function spaces. A partial
equivalence relation (PER) is then defined, the domain of which is the total subset of the partial lan-
guage. For types not containing function spaces the PER relates equal values, and functions are related
if they map related values to related values.It is proved that if two closed terms have the same semantics
in the total language, then they have related semantics in the partial language. It is also shown that the
PER gives rise to a bicartesian closed category which can be used to reason about values in the domain
of the relation.

References

N. A. Danielsson, J. Hughes, P. Jansson, et al., “Fast and loose reasoning is morally correct,” in Proceed-
ings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2006, Charleston, South Carolina, USA, January 11-13, 2006, J. G. Morrisett and S. L. P. Jones, Eds.,
ACM, 2006, pp. 206–217, isbn: 1-59593-027-2. doi: 10.1145/1111037.1111056. [Online]. Available:
http://doi.acm.org/10.1145/1111037.1111056

DanielssonHJG06

E. DE ANGELIS, F. FIORAVANTI,
A. PETTOROSSI, et al.
Proving correctness of imperative
programs by linearizing constrained
Horn clauses

Abstract We present a method for verifying the correctness of imperative programs which is based
on the automated transformation of their specifications. Given a program prog , we consider a partial
correctness specification of the form {}, prog {ψ}, where the assertions and ψ are predicates defined by
a set Spec of possibly recursive Horn clauses with linear arithmetic (LA) constraints in their premise
(also called constrained Horn clauses). The verification method consists in constructing a set PC of
constrained Horn clauses whose satisfiability implies that {}, prog , {ψ} is valid. We highlight some
limitations of state-of-the-art constrained Horn clause solving methods, here called LA-solving methods
, which prove the satisfiability of the clauses by looking for linear arithmetic interpretations of the
predicates. In particular, we prove that there exist some specifications that cannot be proved valid by
any of those LA -solving methods. These specifications require the proof of satisfiability of a set PC of
constrained Horn clauses that contain nonlinear clauses (that is, clauses with more than one atom in their
premise). Then, we present a transformation, called linearization , that converts PC into a set of linear
clauses (that is, clauses with at most one atom in their premise). We show that several specifications
that could not be proved valid by LA -solving methods, can be proved valid after linearization. We also
present a strategy for performing linearization in an automatic way and we report on some experimental
results obtained by using a preliminary implementation of our method.

References

E. DE ANGELIS, F. FIORAVANTI, A. PETTOROSSI, et al., “Proving correctness of imperative pro-
grams by linearizing constrained horn clauses,” Theory and Practice of Logic Programming, vol. 15, no.
4-5, pp. 635–650, 2015, issn: 1471-0684. doi: 10.1017/S1471068415000289. [Online]. Available: http:
//dx.doi.org/10.1017/S1471068415000289http://www.journals.cambridge.org/abstract{_

}S1471068415000289

DeAngelisFPP15

D. De Schreye, V. Nys, and C. Nicholson
Analysing and Compiling Coroutines
with Abstract Conjunctive Partial
Deduction

Abstract We provide an approach to formally analyze the computa- tional behavior of coroutines in
Logic Programs and to compile these computations into new programs, not requiring any support for
corou- tines. The problem was already studied near to 30 years ago, in an analy- sis and transformation
technique called Compiling Control. However, this technique had a strong ad hoc flavor: the completeness
of the analysis was not well understood and its symbolic evaluation was also very ad hoc. We show how
Abstract Conjunctive Partial Deduction, introduced by Leuschel in 2004, provides an appropriate setting
to redefine Com- piling Control. Leuschel’s framework is more general than the original formulation, it
is provably correct, and it can easily be applied for simple examples. We also show that the Abstract
Conjunctive Partial Deduc- tion framework needs some further extension to be able to deal with more
complex examples.

References

D. De Schreye, V. Nys, and C. Nicholson, “Analysing and compiling coroutines with abstract conjunctive
partial deduction,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 8981, 2015, pp. 21–38, isbn: 9783319178219. doi:
10.1007/978-3-319-17822-6_2. [Online]. Available: http://link.springer.com/10.1007/978-3-

319-17822-6{_}2

DeSchreyeNN15

D. Devriese and F. Piessens
On the bright side of type classes:
instance arguments in Agda

Abstract We present instance arguments: an alternative to type classes and related features in the
dependently typed, purely functional programming language/proof assistant Agda. They are a new,
general type of function arguments, resolved from call-site scope in a type-directed way. The mechanism
is inspired by both Scala’s implicits and Agda’s existing implicit arguments, but differs from both in
important ways. Our mechanism is designed and implemented for Agda, but our design choices can be
applied to other programming languages as well.

Like Scala’s implicits, we do not provide a separate structure for type classes and their instances,
but instead rely on Agda’s standard dependently typed records, so that standard language mechanisms
provide features that are missing or expensive in other proposals. Like Scala, we support the equivalent
of local instances. Unlike Scala, functions taking our new arguments are first-class citizens and can be
abstracted over and manipulated in standard ways. Compared to other proposals, we avoid the pitfall
of introducing a separate type-level computational model through the instance search mechanism. All
values in scope are automatically candidates for instance resolution. A final novelty of our approach is
that existing Agda libraries using records gain the benefits of type classes without any modification.

We discuss our implementation in Agda (to be part of Agda 2.2.12) and we use monads as an
example to show how it allows existing concepts in the Agda standard library to be used in a similar
way as corresponding Haskell code using type classes. We also demonstrate and discuss equivalents and
alternatives to some advanced type class-related patterns from the literature and some new patterns
specific to our system.

References

D. Devriese and F. Piessens, “On the bright side of type classes: Instance arguments in agda,” in
Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming, ICFP
2011, Tokyo, Japan, September 19-21, 2011, M. M. T. Chakravarty, Z. Hu, and O. Danvy, Eds., ACM,
2011, pp. 143–155, isbn: 978-1-4503-0865-6. doi: 10.1145/2034773.2034796. [Online]. Available:
http://doi.acm.org/10.1145/2034773.2034796

DevrieseP11

A. Dijkstra, J. Fokker, and S. D. Swierstra
The Structure of the Essential
Haskell Compiler, or Coping with
Compiler Complexity

Abstract In this paper we describe the structure of the Essential Haskell Compiler (EHC) and how we
manage its complexity, despite its growth from essentials to a full Haskell compiler. Our approach splits
both language and implementation into smaller, manageable steps, and uses specific tools to generate
parts of the compiler from higher level descriptions.

References

A. Dijkstra, J. Fokker, and S. D. Swierstra, “The structure of the essential haskell compiler, or coping with
compiler complexity,” in Implementation and Application of Functional Languages, 19th International
Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised Selected Papers, O. Chitil,
Z. Horváth, and V. Zsók, Eds., ser. Lecture Notes in Computer Science, vol. 5083, Springer, 2007,
pp. 57–74, isbn: 978-3-540-85372-5. doi: 10 . 1007 / 978 - 3 - 540 - 85373 - 2 _ 4. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85373-2_4

DijkstraFS07

M. Falaschi, G. Levi, C. Palamidessi, et al.
Declarative Modeling of the
Operational Behavior of Logic
Languages

Abstract The paper defines a new declarative semantics for logic programs, which is based on inter-
pretations containing (possibly) non-ground atoms. Two different interpretations are introduced and the
corresponding models are defined and compared. The classical results on the Herbrand model semantics
of logic programs are shown to hold in the new models too (i.e. existence of a minimal model, fixpoint
characterization, etc.). With the new models, we have a stronger soundness and completeness result for
SLD-resolution. In particular, one of the two models allows the set of computed answer substitutions to
be characterized precisely.

References

M. Falaschi, G. Levi, C. Palamidessi, et al., “Declarative modeling of the operational behavior of logic
languages,” Theor. Comput. Sci., vol. 69, no. 3, pp. 289–318, 1989. doi: 10.1016/0304-3975(89)

90070-4. [Online]. Available: http://dx.doi.org/10.1016/0304-3975(89)90070-4

FalaschiLPM89

F. Farka, E. Komendantskaya, K. Hammond,
et al.
Coinductive Soundness of
Corecursive Type Class Resolution

Abstract Horn clauses and first-order resolution are commonly used for the implementation of type
classes in Haskell. Recently, several core- cursive extensions to type class resolution have been proposed,
with the common goal of allowing (co)recursive dictionary construction for those cases when resolution
does not terminate. This paper shows, for the first time, that corecursive type class resolution and its
recent extensions are coinductively sound with respect to the greatest Herbrand models of logic programs
and that they are inductively unsound with respect to the least Herbrand models.

References

F. Farka, E. Komendantskaya, K. Hammond, et al., “Coinductive soundness of corecursive type class
resolution,” 2016. arXiv: 1608.05233. [Online]. Available: http://arxiv.org/abs/1608.05233

FarkaKH16

K. Faxén
A static semantics for Haskell

Abstract This paper gives a static semantics for Haskell 98, a non-strict purely functional program-
ming language. The semantics formally specifies nearly all the details of the Haskell 98 type system,
including the resolution of overloading, kind inference (including defaulting) and polymorphic recursion,
the only major omission being a proper treatment of ambiguous overloading and its resolution. Over-
loading is translated into explicit dictionary passing, as in all current implementations of Haskell. The
target language of this translation is a variant of the GirardReynolds polymorphic lambda calculus fea-
turing higher order polymorphism and explicit type abstraction and application in the term language.
Translated programs can thus still be type checked, although the implicit version of this system is im-
predicative. A surprising result of this formalization effort is that the monomorphism restriction, when
rendered in a system of inference rules, compromises the principal type property.

References

K. Faxén, “A static semantics for haskell,” J. Funct. Program., vol. 12, no. 4&5, pp. 295–357, 2002. doi:
10.1017/S0956796802004380. [Online]. Available: http://dx.doi.org/10.1017/S0956796802004380

Faxen02

P. Fu and E. Komendantskaya
A Type-Theoretic Approach to
Resolution

Abstract Resolution lies at the foundation of both logic programming and type class context reduction
in functional languages. Terminating derivations by resolution have well-defined inductive meaning,
whereas some non-terminating derivations can be understood coinductively. Cycle detection is a popular
method to capture a small subset of such derivations. We show that in fact cycle detection is a restricted
form of coinductive proof, in which the atomic formula forming the cycle plays the role of coinductive
hypothesis.

This paper introduces a heuristic method for obtaining richer coinductive hypotheses in the form
of Horn formulas. Our approach subsumes cycle detection and gives coinductive meaning to a larger
class of derivations. For this purpose we extend resolution with Horn formula resolvents and corecursive
evidence generation. We illustrate our method on non-terminating type class resolution problems.

References

P. Fu and E. Komendantskaya, “A type-theoretic approach to resolution,” in Logic-Based Program
Synthesis and Transformation - 25th International Symposium, LOPSTR 2015, Siena, Italy, July 13-15,
2015. Revised Selected Papers, M. Falaschi, Ed., ser. Lecture Notes in Computer Science, vol. 9527,
Springer, 2015, pp. 91–106, isbn: 978-3-319-27435-5. doi: 10.1007/978-3-319-27436-2_6. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-27436-2_6

FuK15

P. Fu and E. Komendantskaya
Operational semantics of resolution
and productivity in Horn clause logic

Abstract This paper presents a study of operational and type-theoretic properties of different reso-
lution strategies in Horn clause logic. We distinguish four different kinds of resolution: resolution by
unification (SLD-resolution), resolution by term-matching, the recently introduced structural resolution,
and partial (or lazy) resolution. We express them all uniformly as abstract reduction systems, which
allows us to undertake a thorough comparative analysis of their properties. To match this small-step se-
mantics, we propose to take Howard’s System H as a type-theoretic semantic counterpart. Using System
H, we interpret Horn formulas as types, and a derivation for a given formula as the proof term inhabit-
ing the type given by the formula. We prove soundness of these abstract reduction systems relative to
System H, and we show completeness of SLD-resolution and structural resolution relative to System H.
We identify conditions under which structural resolution is operationally equivalent to SLD-resolution.
We show correspondence between term-matching resolution for Horn clause programs without existential
variables and term rewriting.

References

P. Fu and E. Komendantskaya, “Operational semantics of resolution and productivity in horn clause
logic,” Formal Aspects of Computing, pp. 1–22, 2016, issn: 0934-5043. doi: 10.1007/s00165-016-

0403-1. arXiv: 1604.04114. [Online]. Available: http://arxiv.org/abs/1604.04114http://link.

springer.com/10.1007/s00165-016-0403-1

FuK16

P. Fu, E. Komendantskaya, T. Schrijvers, et
al.
Proof Relevant Corecursive
Resolution

Abstract Resolution lies at the foundation of both logic programming and type class context reduction
in functional languages. Terminating derivations by resolution have well-defined inductive meaning,
whereas some non-terminating derivations can be understood coinductively. Cycle detection is a popular
method to capture a small subset of such derivations. We show that in fact cycle detection is a restricted
form of coinductive proof, in which the atomic formula forming the cycle plays the rle of coinductive
hypothesis.

This paper introduces a heuristic method for obtaining richer coinductive hypotheses in the form
of Horn formulas. Our approach subsumes cycle detection and gives coinductive meaning to a larger
class of derivations. For this purpose we extend resolution with Horn formula resolvents and corecursive
evidence generation. We illustrate our method on non-terminating type class resolution problems.

References

P. Fu, E. Komendantskaya, T. Schrijvers, et al., “Proof relevant corecursive resolution,” in Functional
and Logic Programming - 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016,
Proceedings, O. Kiselyov and A. King, Eds., ser. Lecture Notes in Computer Science, vol. 9613, Springer,
2016, pp. 126–143, isbn: 978-3-319-29603-6. doi: 10.1007/978-3-319-29604-3_9. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-29604-3_9

FuKSP16

N. Ghani and P. Hancock
Containers, monads and induction
recursion

Abstract Induction recursion offers the possibility of a clean, simple and yet powerful meta-language
for the type system of a dependently typed programming language. At its crux, induction recursion
allows us to define a universe, that is a set U of codes and a decoding function T : U → D which assigns
to every code u : U , a value T , u of some type D, e.g. the large type Set of small types or sets. The name
induction recursion refers to the build-up of codes in U using inductive clauses, simultaneously with the
definition of the function T, by structural recursion on codes.

Our contribution is to (i) bring out explicitly algebraic structure which is less visible in the original
type-theoretic presentation in particular showing how containers and monads play a pivotal role within
induction recursion; and (ii) use these structures to present a clean and high level definition of induction
recursion suitable for use in functional programming.

References

N. Ghani and P. Hancock, “Containers, monads and induction recursion,” Mathematical Structures
in Computer Science, vol. 26, no. 1, pp. 89–113, 2016. doi: 10.1017/S0960129514000127. [Online].
Available: http://dx.doi.org/10.1017/S0960129514000127

GhaniH16

J. Gibbons and G. Hutton
Proof Methods for Corecursive
Programs

Abstract Recursion is a well-known and powerful programming technique, with a wide variety of
applications. The dual technique of corecursion is less well-known, but is increasingly proving to be
just as useful. This article is a tutorial on the four main methods for proving properties of corecursive
programs: fixpoint induction, the approximation (or take) lemma, coinduction, and fusion.

References

J. Gibbons and G. Hutton, “Proof methods for corecursive programs,” Fundam. Inform., vol. 66, no.
4, pp. 353–366, 2005. [Online]. Available: http://content.iospress.com/articles/fundamenta-

informaticae/fi66-4-03

GibbonsH05

G. Gonthier, B. Ziliani, A. Nanevski, et al.
How to make ad hoc proof
automation less ad hoc

Abstract Most interactive theorem provers provide support for some form of user-customizable proof
automation. In a number of popular systems, such as Coq and Isabelle, this automation is achieved
primarily through tactics, which are programmed in a separate language from that of the prover’s base
logic. While tactics are clearly useful in practice, they can be difficult to maintain and compose because,
unlike lemmas, their behavior cannot be specified within the expressive type system of the prover itself.

We propose a novel approach to proof automation in Coq that allows the user to specify the behavior
of custom automated routines in terms of Coq’s own type system. Our approach involves a sophisticated
application of Coq’s canonical structures, which generalize Haskell type classes and facilitate a flexible
style of dependently-typed logic programming. Specifically, just as Haskell type classes are used to infer
the canonical implementation of an overloaded term at a given type, canonical structures can be used
to infer the canonical proof of an overloaded lemma for a given instantiation of its parameters. We
present a series of design patterns for canonical structure programming that enable one to carefully and
predictably coax Coq’s type inference engine into triggering the execution of user-supplied algorithms
during unification, and we illustrate these patterns through several realistic examples drawn from Hoare
Type Theory. We assume no prior knowledge of Coq and describe the relevant aspects of Coq type
inference from first principles.

References

G. Gonthier, B. Ziliani, A. Nanevski, et al., “How to make ad hoc proof automation less ad hoc,”
J. Funct. Program., vol. 23, no. 4, pp. 357–401, 2013. doi: 10.1017/S0956796813000051. [Online].
Available: http://dx.doi.org/10.1017/S0956796813000051

GonthierZND13

G. Gupta, A. Bansal, R. Min, et al.
Coinductive Logic Programming and
Its Applications

Abstract Coinduction has recently been introduced as a powerful technique for reasoning about un-
founded sets, unbounded structures, and interactive computations. Where induction corresponds to
least fixed point semantics, coinduction corresponds to greatest fixed point semantics. In this paper we
discuss the introduction of coinduction into logic programming. We discuss applications of coinductive
logic programming to verification and model checking, lazy evaluation, concurrent logic programming
and non-monotonic reasoning.

References

G. Gupta, A. Bansal, R. Min, et al., “Coinductive logic programming and its applications,” in Logic
Programming, 23rd International Conference, ICLP 2007, Porto, Portugal, September 8-13, 2007, Pro-
ceedings, V. Dahl and I. Niemelä, Eds., ser. Lecture Notes in Computer Science, vol. 4670, Springer,
2007, pp. 27–44, isbn: 978-3-540-74608-9. doi: 10.1007/978-3-540-74610-2_4. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74610-2_4

GuptaBMSM07

C. V. Hall, K. Hammond, S. L. P. Jones, et
al.
Type Classes in Haskell

Abstract This article defines a set of type inference rules for resolving overloading introduced by type
classes, as used in the functional programming language Haskell. Programs including type classes are
transformed into ones which may be typed by standard Hindley-Milner inference rules. In contrast to
other work on type classes, the rules presented here relate directly to Haskell programs. An innova-
tive aspect of this work is the use of second-order lambda calculus to record type information in the
transformed program.

References

C. V. Hall, K. Hammond, S. L. P. Jones, et al., “Type classes in haskell,” ACM Trans. Program.
Lang. Syst., vol. 18, no. 2, pp. 109–138, 1996. doi: 10.1145/227699.227700. [Online]. Available:
http://doi.acm.org/10.1145/227699.227700

HallHJW96

R. Hinze and S. L. P. Jones
Derivable Type Classes

Abstract Generic programming allows you to write a function once, and use it many times at different
types. A lot of good foundational work on generic programming has been done. The goal of this paper
is to propose a practical way of supporting generic programming within the Haskell language, without
radically changing the language or its type system. The key idea is to present generic programming as
a richer language in which to write default method definitions in a class declaration.

On the way, we came across a separate issue, concerning type-class overloading where higher kinds
are involved. We propose a simple type-class system extension to allow the programmer to write richer
contexts than is currently possible.

References

R. Hinze and S. L. P. Jones, “Derivable type classes,” Electr. Notes Theor. Comput. Sci., vol. 41, no.
1, pp. 5–35, 2000. doi: 10.1016/S1571-0661(05)80542-0. [Online]. Available: http://dx.doi.org/

10.1016/S1571-0661(05)80542-0

HinzeJ00

R. Hinze and S. Peyton Jones
Derivable Type Classes

Abstract Generic programming allows you to write a function once, and use it many times at different
types. A lot of good foundational work on generic programming has been done. The goal of this paper
is to propose a practical way of supporting generic programming within the Haskell language, without
radically changing the language or its type system. The key idea is to present generic programming as a
richer language in which to write default method definitions in a class declaration. {\par} On the way,
we came across a separate issue, concerning type-class overloading where higher kinds are involved. We
propose a simple type-class system extension to allow the programmer to write richer contexts than is
currently possible.

References

R. Hinze and S. Peyton Jones, “Derivable type classes,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 41, no. 1, pp. 5–35, 2001, issn: 15710661. doi: 10.1016/S1571-0661(05)80542-0. [Online].
Available: http://dx.doi.org/10.1016/S1571-0661(05)80542-0http://linkinghub.elsevier.

com/retrieve/pii/S1571066105805420

HinzePJ00

R. Hinze, N. Wu, and J. Gibbons
Unifying structured recursion
schemes

Abstract Folds over inductive datatypes are well understood and widely used. In their plain form,
they are quite restricted; but many disparate generalisations have been proposed that enjoy similar
calculational benefits. There have also been attempts to unify the various generalisations: two prominent
such unifications are the ’recursion schemes from comonads’ of Uustalu, Vene and Pardo, and our own
’adjoint folds’. Until now, these two unified schemes have appeared incompatible. We show that this
appearance is illusory: in fact, adjoint folds subsume recursion schemes from comonads. The proof of
this claim involves standard constructions in category theory that are nevertheless not well known in
functional programming: Eilenberg-Moore categories and bialgebras.

References

R. Hinze, N. Wu, and J. Gibbons, “Unifying structured recursion schemes,” ACM SIGPLAN Notices,
vol. 48, no. 9, pp. 209–220, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?doid=

2544174.2500578

HinzeWG13

J. S. Hodas and D. Miller
Logic Programming in a Fragment of
Intuitionistic Linear Logic

Abstract When logic programming is based on the proof theory of intuitionistic logic, it is natural to
allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊂ G
from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context
Γ∪{D}. Thus contexts, represented as the left-hand side of intuitionistic sequents, grow as stacks during
the bottom-up search for a cut-free proof. While such an intuitionistic notion of context provides for
elegant specifications of many computations, contexts can be made more expressive and flexible if they
are based on linear logic. After presenting two equivalent formulations of a fragment of linear logic, we
show that the fragment has a goal-directed interpretation, thereby partially justifying calling it a logic
program-ming language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas
can be modularly embedded into this linear logic setting. Programming examples taken from theorem
proving, natural language parsing, and data base programming are presented: each example requires a
linear, rather than intuitionistic, notion of context to be modeled adequately. An interpreter for this
logic programming language must address the problem of splitting contexts; that is, in the attempt to
prove a multiplicative conjunction (tensor), say G1 ⊗ G2, from the context ∆ the latter must be split
into disjoint contexts ∆1 and ∆2 for which G1 follows from ∆1 and G2 follows from ∆2. Since there is
an exponential number of such splits, it is important to delay the choice of a split as much as possible.
A mechanism for the lazy splitting of contexts is presented based on viewing proof search as a process
that takes a context, consumes part of it, and returns the rest (to be consumed elsewhere). In addition,
we use collections of Kripke interpretations indexed by a commutative monoid to provide models for this
logic programming language and show that logic programs admit canonical models.

References

J. S. Hodas and D. Miller, “Logic programming in a fragment of intuitionistic linear logic,” Inf. Comput.,
vol. 110, no. 2, pp. 327–365, 1994. doi: 10.1006/inco.1994.1036. [Online]. Available: http://dx.

doi.org/10.1006/inco.1994.1036

HodasM94

P. Hudak, J. Hughes, S. L. P. Jones, et al.
A history of Haskell: being lazy with
class

Abstract This paper describes the history of Haskell, including its genesis and principles, technical
contributions, implementations and tools, and applications and impact.

References

P. Hudak, J. Hughes, S. L. P. Jones, et al., “A history of haskell: Being lazy with class,” in Proceedings
of the Third ACM SIGPLAN History of Programming Languages Conference (HOPL-III), San Diego,
California, USA, 9-10 June 2007, B. G. Ryder and B. Hailpern, Eds., ACM, 2007, pp. 1–55. doi:
10.1145/1238844.1238856. [Online]. Available: http://doi.acm.org/10.1145/1238844.1238856

HudakHJW07

G. Huet and A. Saibi
Constructive Category Theory

Abstract no abstract provided

References

G. Huet and A. Saibi, “Constructive category theory,” in Proceedings of the Joint CLICS-TYPES Work-
shop on Categories and Type Theory, Goteborg, Goteberg, 1995, p. 27

HuetS95

R. Iemhoff
On The Admissible Rules of
Intuitionistic Propositional Logic

Abstract We present a basis for the admissible rules of intuitionistic propositional logic. Thereby a
conjecture by de Jongh and Visser is proved. We also present a proof system for the admissible rules,
and give semantic criteria for admissibility.

References

R. Iemhoff, “On the admissible rules of intuitionistic propositional logic,” J. Symb. Log., vol. 66, no. 1,
pp. 281–294, 2001. doi: 10.2307/2694922. [Online]. Available: http://dx.doi.org/10.2307/2694922

Iemhoff01

J. Jaffar and P. J. Stuckey
Semantics of Infinite Tree Logic
Programming

Abstract We address the problem of declarative and operational semantics for logic programming
in the domain of infinite trees. We consider logic programming semantics based on the now familiar
function TP which maps from and into interpretations of the program P . The main point of departure
of our work from the literature is that we include unequations in our treatment. Specifically, we prove
that the intuitive notions of success and finite failure, defined in terms of TP , exactly correspond to
the operational semantics. The corresponding proofs in the case where no unequations are considered
are relatively straightforward mainly because the function TP has a closure property with respect to a
suitable metric space of infinite trees. When unequations are considered, however, the function loses this
property and consequently the proofs become more complex. The key to our treatment is a result about
images of TP ; we show that these sets have a property analogous to closure. Finally, we also prove certain
results pertaining to infinite derivations. These concern the greatest fixpoint of TP and the concept of
completed logic programs and negation-as-failure.

References

J. Jaffar and P. J. Stuckey, “Semantics of infinite tree logic programming,” Theor. Comput. Sci., vol.
46, no. 3, pp. 141–158, 1986. doi: 10.1016/0304- 3975(86)90027- 7. [Online]. Available: http:

//dx.doi.org/10.1016/0304-3975(86)90027-7

JaffarS86

M. Jaskelioff and O. Rypacek
An Investigation of the Laws of
Traversals

Abstract Traversals of data structures are ubiquitous in programming. Consequently, it is important
to be able to characterise those structures that are traversable and understand their algebraic proper-
ties. Traversable functors have been characterised by McBride and Paterson as those equipped with a
distributive law over arbitrary applicative functors; however, laws that fully capture the intuition be-
hind traversals are missing. This article is an attempt to remedy this situation by proposing laws for
characterising traversals that capture the intuition behind them. To support our claims, we prove that
finitary containers are traversable in our sense and argue that elements in a traversable structure are
visited exactly once.

References

M. Jaskelioff and O. Rypacek, “An investigation of the laws of traversals,” in Proceedings Fourth Work-
shop on Mathematically Structured Functional Programming, MSFP@ETAPS 2012, Tallinn, Estonia, 25
March 2012., J. Chapman and P. B. Levy, Eds., ser. EPTCS, vol. 76, 2012, pp. 40–49. doi: 10.4204/

EPTCS.76.5. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.76.5

JaskelioffR12

P. Johann and N. Ghani
A principled approach to
programming with nested types in
Haskell

Abstract Initial algebra semantics is one of the cornerstones of the theory of modern functional pro-
gramming languages. For each inductive data type, it provides a Church encoding for that type, a build
combinator which constructs data of that type, a fold combinator which encapsulates structured recur-
sion over data of that type, and a fold/build rule which optimises modular programs by eliminating from
them data constructed using the buildcombinator, and immediately consumed using the foldcombinator,
for that type. It has long been thought that initial algebra semantics is not expressive enough to pro-
vide a similar foundation for programming with nested types in Haskell. Specifically, the standard folds
derived from initial algebra semantics have been considered too weak to capture commonly occurring
patterns of recursion over data of nested types in Haskell, and no build combinators or fold/build rules
have until now been defined for nested types. This paper shows that standard folds are, in fact, suffi-
ciently expressive for programming with nested types in Haskell. It also defines buildcombinators and
fold/build fusion rules for nested types. It thus shows how initial algebra semantics provides a principled,
expressive, and elegant foundation for programming with nested types in Haskell.

References

P. Johann and N. Ghani, “A principled approach to programming with nested types in haskell,” Higher-
Order and Symbolic Computation, vol. 22, no. 2, pp. 155–189, 2009. doi: 10.1007/s10990-009-9047-7.
[Online]. Available: http://dx.doi.org/10.1007/s10990-009-9047-7

JohannG09

R. van Kesteren, M. C.J. D. van Eekelen,
and M. de Mol
Proof support for generic type
classes

Abstract We present a proof rule and an effective tactic for proving properties about Haskell type
classes by proving them for the available instance definitions. This is not straightforward, because
instance definitions may depend on each other. The proof assistant Isabelle handles this problem
for single parameter type classes by structural induction on types. However, this does not suffice for
an effective tactic for more complex forms of overloading. We solve this using an induction scheme
derived from the instance definitions. The tactic based on this rule is implemented in the proof assistant
Sparkle.

References

R. van Kesteren, M. C.J. D. van Eekelen, and M. de Mol, “Proof support for generic type classes,” in
Revised Selected Papers from the Fifth Symposium on Trends in Functional Programming, TFP 2004,
München, Germany, 25-26 November 2004., H. Loidl, Ed., ser. Trends in Functional Programming,
vol. 5, Intellect, 2004, pp. 1–16, isbn: 1-84150-144-1

KesterenEM04

O. Kiselyov and H. Ishii
Freer monads, more extensible
effects

Abstract MetaOCaml is a superset of OCaml extending it with the data type for program code
and operations for constructing and executing such typed code values. It has been used for compiling
domain-specific languages and automating tedious and error-prone specializations of high-performance
computational kernels. By statically ensuring that the generated code compiles and letting us quickly run
it, MetaOCaml makes writing generators less daunting and more productive. The current BER MetaO-
Caml is a complete re-implementation of the original MetaOCaml by Taha, Calcagno and collaborators.
Besides the new organization, new algorithms, new code, BER MetaOCaml adds a scope extrusion check
superseding environment classifiers. Attempting to build code values with unbound or mistakenly bound
variables (liable to occur due to mutation or other effects) is now caught early, raising an exception
with good diagnostics. The guarantee that the generated code always compiles becomes unconditional,
no matter what effects were used in generating the code. We describe BER MetaOCaml stressing the
design decisions that made the new code modular and maintainable. We explain the implementation of
the scope extrusion check.

References

O. Kiselyov and H. Ishii, “Freer monads, more extensible effects,” in Proceedings of the 8th ACM SIG-
PLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, B. Lipp-
meier, Ed., ACM, 2015, pp. 94–105, isbn: 978-1-4503-3808-0. doi: 10.1145/2804302.2804319. [Online].
Available: http://doi.acm.org/10.1145/2804302.2804319

KiselyovI15

P. Kokke and W. Swierstra
Auto in Agda - Programming Proof
Search Using Reflection

Abstract As proofs in type theory become increasingly complex, there is a growing need to provide
better proof automation. This paper shows how to implement a Prolog-style resolution procedure in
the dependently typed programming language Agda. Connecting this resolution procedure to Agdas
reflection mechanism provides a first-class proof search tactic for first-order Agda terms. As a result,
writing proof automation tactics need not be different from writing any other program.

References

P. Kokke and W. Swierstra, “Auto in agda - programming proof search using reflection,” in Mathematics
of Program Construction - 12th International Conference, MPC 2015, Königswinter, Germany, June 29
- July 1, 2015. Proceedings, R. Hinze and J. Voigtländer, Eds., ser. Lecture Notes in Computer Science,
vol. 9129, Springer, 2015, pp. 276–301, isbn: 978-3-319-19796-8. doi: 10.1007/978-3-319-19797-5_14.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-19797-5_14

KokkeS15

E. Komendantskaya and J. Power
Coalgebraic Semantics for
Derivations in Logic Programming

Abstract As proofs in type theory become increasingly complex, there is a growing need to provide
better proof automation. This paper shows how to implement a Prolog-style resolution procedure in
the dependently typed programming language Agda. Connecting this resolution procedure to Agdas
reflection mechanism provides a first-class proof search tactic for first-order Agda terms. As a result,
writing proof automation tactics need not be different from writing any other program.

References

E. Komendantskaya and J. Power, “Coalgebraic semantics for derivations in logic programming,” in
Algebra and Coalgebra in Computer Science - 4th International Conference, CALCO 2011, Winchester,
UK, August 30 - September 2, 2011. Proceedings, A. Corradini, B. Klin, and C. Ĉırstea, Eds., ser.
Lecture Notes in Computer Science, vol. 6859, Springer, 2011, pp. 268–282, isbn: 978-3-642-22943-5.
doi: 10.1007/978-3-642-22944-2_19. [Online]. Available: http://dx.doi.org/10.1007/978-3-

642-22944-2_19

KomendantskayaP11

D. Kozen and A. Silva
Practical coinduction

Abstract Induction is a well-established proof principle that is taught in most undergraduate pro-
grams in mathematics and computer science. In computer science, it is used primarily to reason about
inductively defined datatypes such as finite lists, finite trees and the natural numbers. Coinduction is the
dual principle that can be used to reason about coinductive datatypes such as infinite streams or trees,
but it is not as widespread or as well understood. In this paper, we illustrate through several examples
the use of coinduction in informal mathematical arguments. Our aim is to promote the principle as a
useful tool for the working mathematician and to bring it to a level of familiarity on par with induction.
We show that coinduction is not only about bisimilarity and equality of behaviors, but also applicable
to a variety of functions and relations defined on coinductive datatypes.

References

D. Kozen and A. Silva, “Practical coinduction,” Mathematical Structures in Computer Science, 121, Feb.
2016. doi: 10.1017/S0960129515000493

KozenS16

R. Lämmel and S. L. P. Jones
Scrap your boilerplate with class:
extensible generic functions

Abstract The ’Scrap your boilerplate’ approach to generic programming allows the programmer to
write generic functions that can traverse arbitrary data structures, and yet have type-specific cases.
However, the original approach required all the type-specific cases to be supplied at once, when the
recursive knot of generic function definition is tied. Hence, generic functions were closed. In contrast,
Haskell’s type classes support open, or extensible, functions that can be extended with new type-specific
cases as new data types are defined. In this paper, we extend the ’Scrap your boilerplate’ approach to
support this open style. On the way, we demonstrate the desirability of abstraction over type classes,
and the usefulness of recursive dictionarie.

References

R. Lämmel and S. L. P. Jones, “Scrap your boilerplate with class: Extensible generic functions,” in
Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming, ICFP
2005, Tallinn, Estonia, September 26-28, 2005, O. Danvy and B. C. Pierce, Eds., ACM, 2005, pp. 204–
215, isbn: 1-59593-064-7. doi: 10.1145/1086365.1086391. [Online]. Available: http://doi.acm.org/

10.1145/1086365.1086391

LammelJ05

C. S. Lee, N. D. Jones, and
A. M. Ben-Amram
The size-change principle for
program termination

Abstract The ”size-change termination” principle for a first-order functional language with well-
founded data is: a program terminates on all inputs if every infinite call sequence (following program
control flow) would cause an infinite descent in some data values.

Size-change analysis is based only on local approximations to parameter size changes derivable from
program syntax. The set of infinite call sequences that follow program flow and can be recognized as
causing infinite descent is an ω-regular set, representable by a Büchi automaton. Algorithms for such
automata can be used to decide size-change termination. We also give a direct algorithm operating on
”size-change graphs” (without the passage to automata).

Compared to other results in the literature, termination analysis based on the size-change principle
is surprisingly simple and general: lexical orders (also called lexicographic orders), indirect function calls
and permuted arguments (descent that is not in-situ) are all handled automatically and without special
treatment, with no need for manually supplied argument orders, or theorem-proving methods not certain
to terminate at analysis time.

We establish the problem’s intrinsic complexity. This turns out to be surprisingly high, complete for
PSPACE, in spite of the simplicity of the principle. PSPACE hardness is proved by a reduction from
Boolean program termination. An ineresting consequence: the same hardness result applies to many
other analyses found in the termination and quasitermination literature.

References

C. S. Lee, N. D. Jones, and A. M. Ben-Amram, “The size-change principle for program termination,”
in Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, London, UK, January 17-19, 2001, C. Hankin and D. Schmidt, Eds., ACM,
2001, pp. 81–92, isbn: 1-58113-336-7. doi: 10 . 1145 / 360204 . 360210. [Online]. Available: http :

//doi.acm.org/10.1145/360204.360210

LeeJB01

M. Lenisa, J. Power, and H. Watanabe
Distributivity for endofunctors,
pointed and co-pointed
endofunctors, monads and comonads

Abstract We generalise the notion of a distributive law between a monad and a comonad to con-
sider weakened structures such as pointed or co-pointed endofunctors, or endofunctors. We investigate
Eilenberg-Moore and Kleisli constructions for each of these possibilities. Then we consider two appli-
cations of these weakened notions of distributivity in detail. We characterise Turi and Plotkin’s model
of GSOS as a distributive law of a monad over a co-pointed endofunctor, and we analyse generalised
coiteration and coalgebraic coinduction up-to in terms of a distributive law of the underlying pointed
endofunctor of a monad over an endofunctor.

References

M. Lenisa, J. Power, and H. Watanabe, “Distributivity for endofunctors, pointed and co-pointed end-
ofunctors, monads and comonads,” Electr. Notes Theor. Comput. Sci., vol. 33, pp. 230–260, 2000.
doi: 10.1016/S1571-0661(05)80350-0. [Online]. Available: http://dx.doi.org/10.1016/S1571-

0661(05)80350-0

LenisaPW00

F. Lindblad and M. Benke
A Tool for Automated Theorem
Proving in Agda

Abstract We present a tool for automated theorem proving in Agda, an implementation of Martin-
Löf’s intuitionistic type theory. The tool is intended to facilitate interactive proving by relieving the
user from filling in simple but tedious parts of a proof. The proof search is conducted directly in type
theory and produces proof terms. Any proof term is verified by the Agda type-checker, which ensures
soundness of the tool. Some effort has been spent on trying to produce human readable results, which
allows the user to examine the generated proofs. We have tested the tool on examples mainly in the
area of (functional) program verification. Most examples we have considered contain induction, and
some contain generalisation. The contribution of this work outside the Agda community is to extend the
experience of automated proof for intuitionistic type theory.

References

F. Lindblad and M. Benke, “A tool for automated theorem proving in agda,” in Types for Proofs and
Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18, 2004, Revised
Selected Papers, J. Filliâtre, C. Paulin-Mohring, and B. Werner, Eds., ser. Lecture Notes in Computer
Science, vol. 3839, Springer, 2004, pp. 154–169, isbn: 3-540-31428-8. doi: 10.1007/11617990_10.
[Online]. Available: http://dx.doi.org/10.1007/11617990_10

LindbladB04

J. W. Lloyd
Foundations of Logic Programming,
2nd Edition

Abstract In the two and a half years since the frrst edition of this book was published, the field of
logic programming has grown rapidly. Consequently, it seemed advisable to try to expand the subject
matter covered in the first edition. The new material in the second edition has a strong database flavour,
which reflects my own research interests over the last three years. However, despite the fact that the
second edition has about 70% more material than the first edition, many worthwhile topic!! are still
missing. I can only plead that the field is now too big to expect one author to cover everything. In
the second edition, I discuss a larger class of programs than that discussed in the first edition. Related
to this, I have also taken the opportunity to try to improve some of the earlier terminology. Firstly, I
introduce ”program statements”, which are formulas of the form A+-W, where the head A is an atom
and the body W is an arbitrary formula. A ”program” is a finite set of program statements. There
are various restrictions of this class. ”Normal” programs are ones where the body of each program
statement is a conjunction of literals. (The terminology ”general”, used in the first edition, is obviously
now inappropriate).

References

J. W. Lloyd, Foundations of Logic Programming, 2nd Edition. Springer, 1987, isbn: 3-540-18199-7

Lloyd87

A. Löh and R. Hinze
Open data types and open functions

Abstract The problem of supporting the modular extensibility of both data and functions in one
programming language at the same time is known as the expression problem. Functional languages
traditionally make it easy to add new functions, but extending data (adding new data constructors)
requires modifying existing code. We present a semantically and syntactically lightweight variant of
open data types and open functions as a solution to the expression problem in the Haskell language.
Constructors of open data types and equations of open functions may appear scattered throughout a
program with several modules. The intended semantics is as follows: the program should behave as if the
data types and functions were closed, defined in one place. The order of function equations is determined
by best-fit pattern matching, where a specific pattern takes precedence over an unspecific one. We show
that our solution is applicable to the expression problem, generic programming, and exceptions. We
sketch two implementations: a direct implementation of the semantics, and a scheme based on mutually
recursive modules that permits separate compilation.

References

A. Löh and R. Hinze, “Open data types and open functions,” in Proceedings of the 8th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, July 10-12, 2006,
Venice, Italy, A. Bossi and M. J. Maher, Eds., ACM, 2006, pp. 133–144, isbn: 1-59593-388-3. doi:
10.1145/1140335.1140352. [Online]. Available: http://doi.acm.org/10.1145/1140335.1140352

LohH06

D. B. MacQueen, G. D. Plotkin, and R. Sethi
An Ideal Model for Recursive
Polymorphic Types

Abstract An anbstract is available

References

D. B. MacQueen, G. D. Plotkin, and R. Sethi, “An ideal model for recursive polymorphic types,”
Information and Control, vol. 71, no. 1/2, pp. 95–130, 1986. doi: 10.1016/S0019-9958(86)80019-5.
[Online]. Available: http://dx.doi.org/10.1016/S0019-9958(86)80019-5

MacQueenPS86

C. McBride
Faking it: Simulating dependent
types in Haskell

Abstract Dependent types reflect the fact that validity of data is often a relative notion by allowing
prior data to affect the types of subsequent data. Not only does this make for a precise type system,
but also a highly generic one: both the type and the program for each instance of a family of operations
can be computed from the data which codes for that instance. Recent experimental extensions to the
Haskell type class mechanism give us strong tools to relativize types to other types. We may simulate
some aspects of dependent typing by making counterfeit type-level copies of data, with type constructors
simulating data constructors and type classes simulating datatypes. This paper gives examples of the
technique and discusses its potential.

References

C. McBride, “Faking it: Simulating dependent types in haskell,” J. Funct. Program., vol. 12, no. 4&5,
pp. 375–392, 2002. doi: 10.1017/S0956796802004355. [Online]. Available: http://dx.doi.org/10.

1017/S0956796802004355

McBride02

C. McBride and R. Paterson
Applicative programming with
effects

Abstract In this article, we introduce Applicative functors an abstract characterisation of an ap-
plicative style of effectful programming, weaker than Monads and hence more widespread. Indeed, it
is the ubiquity of this programming pattern that drew us to the abstraction. We retrace our steps in
this article, introducing the applicative pattern by diverse examples, then abstracting it to define the
Applicative type class and introducing a bracket notation that interprets the normal application syntax
in the idiom of an Applicative functor. Furthermore, we develop the properties of applicative functors
and the generic operations they support. We close by identifying the categorical structure of applicative
functors and examining their relationship both with Monads and with Arrow.

References

C. McBride and R. Paterson, “Applicative programming with effects,” J. Funct. Program., vol. 18, no.
1, pp. 1–13, 2008. doi: 10.1017/S0956796807006326. [Online]. Available: http://dx.doi.org/10.

1017/S0956796807006326

McBrideP08

D. Miller and G. Nadathur
Programming with Higher-Order
Logic

Abstract Formal systems that describe computations over syntactic structures occur frequently in
computer science. Logic programming provides a natural framework for encoding and animating such
systems. However, these systems often embody variable binding, a notion that must be treated carefully
at a computational level. This book aims to show that a programming language based on a simply typed
version of higher-order logic provides an elegant, declarative means for providing such a treatment.
Three broad topics are covered in pursuit of this goal. First, a proof-theoretic framework that supports a
general view of logic programming is identified. Second, an actual language called λProlog is developed
by applying this view to higher-order logic. Finally, a methodology for programming with specifications
is exposed by showing how several computations over formal objects such as logical formulas, functional
programs, and λ-terms and π-calculus expressions can be encoded in λProlog.

References

D. Miller and G. Nadathur, Programming with Higher-Order Logic. Cambridge University Press, 2012,
isbn: 978-0-521-87940-8. [Online]. Available: http://www.cambridge.org/de/academic/subjects/

computer-science/programming-languages-and-applied-logic/programming-higher-order-

logic?format=HB

MillerN12

D. Miller, G. Nadathur, F. Pfenning, et al.
Uniform Proofs as a Foundation for
Logic Programming

Abstract A proof-theoretic characterization of logical languages that form suitable bases for Prolog-like
programming languages is provided. This characterization is based on the principle that the declarative
meaning of a logic program, provided by provability in a logical system, should coincide with its op-
erational meaning, provided by interpreting logical connectives as simple and fixed search instructions.
The operational semantics is formalized by the identification of a class of cut-free sequent proofs called
uniform proofs. A uniform proof is one that can be found by a goal-directed search that respects the
interpretation of the logical connectives as search instructions. The concept of a uniform proof is used
to define the notion of an abstract logic programming language, and it is shown that first-order and
higher-order Horn clauses with classical provability are examples of such a language. Horn clauses are
then generalized to hereditary Harrop formulas and it is shown that first-order and higher-order versions
of this new class of formulas are also abstract logic programming languages if the inference rules are
those of either intuitionistic or minimal logic. The programming language significance of the various
generalizations to first-order Horn clauses is briefly discussed.

References

D. Miller, G. Nadathur, F. Pfenning, et al., “Uniform proofs as a foundation for logic programming,”
Ann. Pure Appl. Logic, vol. 51, no. 1-2, pp. 125–157, 1991. doi: 10.1016/0168-0072(91)90068-W.
[Online]. Available: http://dx.doi.org/10.1016/0168-0072(91)90068-W

MillerNPS91

R. Milner
A Theory of Type Polymorphism in
Programming

Abstract The aim of this work is largely a practical one. A widely employed style of programming,
particularly in structure-processing languages which impose no discipline of types, entails defining pro-
cedures which work well on objects of a wide variety. We present a formal type discipline for such
polymorphic procedures in the context of a simple programming language, and a compile time type-
checking algorithm W which enforces the discipline. A Semantic Soundness Theorem (based on a formal
semantics for the language) states that well-type programs cannot go wrong and a Syntactic Soundness
Theorem states that if W accepts a program then it is well typed. We also discuss extending these results
to richer languages; a type-checking algorithm based on W is in fact already implemented and working,
for the metalanguage ML in the Edinburgh LCF system.

References

R. Milner, “A theory of type polymorphism in programming,” J. Comput. Syst. Sci., vol. 17, no. 3,
pp. 348–375, 1978. doi: 10.1016/0022-0000(78)90014-4. [Online]. Available: http://dx.doi.org/

10.1016/0022-0000(78)90014-4

Milner78

R. Milner
Communication and concurrency

Abstract Communication and Concurrency develops a general calculus of concurrent programming
from first principles. The book provides an understanding of concurrency through a very small number
of primitive ideas and illustrates how these ideas apply to hardware and software, to specification and
implementation. The material is organised to form the basis of a practical course.

References

R. Milner, Communication and concurrency, ser. PHI Series in computer science. Prentice Hall, 1989,
isbn: 978-0-13-115007-2

Milner89

I. Moerdijk and E. Palmgren
Wellfounded trees in categories

Abstract In this paper we present and study a categorical formulation of the W-types of Martin-Lf.
These are essentially free term algebras where the operations may have finite or infinite arity. It is shown
that W-types are preserved under the construction of sheaves and Artin gluing. In the proofs we avoid
using impredicative or nonconstructive principles.

References

I. Moerdijk and E. Palmgren, “Wellfounded trees in categories,” Ann. Pure Appl. Logic, vol. 104,
no. 1-3, pp. 189–218, 2000. doi: 10 . 1016 / S0168 - 0072(00) 00012 - 9. [Online]. Available: http :

//dx.doi.org/10.1016/S0168-0072(00)00012-9

MoerdijkP00

J. H. Morris
Lambda-calculus models of
programming languages

Abstract No absract available.

References

J. H. Morris, “Lambda-calculus models of programming languages,” PhD thesis, Massachusetts Institute
of Technology, 1968, p. 134. doi: 1721.1/64850

Morris68

L. S. Moss and N. Danner
On the Foundations of Corecursion

Abstract We consider foundational questions related to the definition of functions by corecursion.
This method is especially suited to functions into the greatest fixed point of some monotone operator,
and it is most applicable in the context of non-wellfounded sets. We review the work on the Special
Final Coalgebra Theorem of Aczel [1] and the Corecursion Theorem of Barwise and Moss [4]. We offer a
condition weaker than Aczel’s condition of uniformity on maps, and then we prove a result relating the
operators satisfying the new condition to the smooth operators of [4].

References

L. S. Moss and N. Danner, “On the foundations of corecursion,” Logic Journal of the IGPL, vol. 5, no.
2, pp. 231–257, 1997. doi: 10.1093/jigpal/5.2.231. [Online]. Available: http://dx.doi.org/10.

1093/jigpal/5.2.231

MossD97

U. Norell
Dependently typed programming in
agda

Abstract Dependently typed languages have for a long time been used to describe proofs about pro-
grams. Traditionally, dependent types are used mostly for stating and proving the properties of the
programs and not in defining the programs themselves. An impressive example is the certified compiler
by Leroy (2006) implemented and proved correct in Coq (Bertot and Castéran 2004). Recently there
has been an increased interest in dependently typed programming, where the aim is to write programs
that use the dependent type system to a much higher degree. In this way a lot of the properties that
were previously proved separately can be integrated in the type of the program, in many cases adding
little or no complexity to the definition of the program. New languages, such as Epigram (McBride
and McKinna 2004), are being designed, and existing languages are being extended with new features
to accomodate these ideas, for instance the work on dependently typed programming in Coq by Sozeau
(2007). This talk gives an overview of the Agda programming language (Norell 2007), whose main focus
is on dependently typed programming. Agda provides a rich set of inductive types with a powerful
mechanism for pattern matching, allowing dependently typed programs to be written with minimal fuss.
To read about programming in Agda, see the lecture notes from the Advanced Functional Programming
summer school (Norell 2008) and the work by Oury and Swierstra (2008). In the talk a number of
examples of interesting dependently typed programs chosen from the domain of programming language
implementation are presented as they are implemented in Agda.

References

U. Norell, “Dependently typed programming in agda,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5832 LNCS,
2009, pp. 230–266, isbn: 3642046517. doi: 10.1007/978-3-642-04652-0_5

Norell09

B. C. d. S. Oliveira, T. Schrijvers, W. Choi,
et al.
The implicit calculus: a new
foundation for generic programming

Abstract Generic programming (GP) is an increasingly important trend in programming languages.
Well-known GP mechanisms, such as type classes and the C++0x concepts proposal, usually combine
two features: 1) a special type of interfaces; and 2) implicit instantiation of implementations of those
interfaces.

Scala implicits are a GP language mechanism, inspired by type classes, that break with the tradition
of coupling implicit instantiation with a special type of interface. Instead, implicits provide only implicit
instantiation, which is generalized to work for any types. This turns out to be quite powerful and useful
to address many limitations that show up in other GP mechanisms.

This paper synthesizes the key ideas of implicits formally in a minimal and general core calculus
called the implicit calculus (λ ⇒), and it shows how to build source languages supporting implicit
instantiation on top of it. A novelty of the calculus is its support for partial resolution and higher-order
rules (a feature that has been proposed before, but was never formalized or implemented). Ultimately,
the implicit calculus provides a formal model of implicits, which can be used by language designers to
study and inform implementations of similar mechanisms in their own languages.

References

B. C. d. S. Oliveira, T. Schrijvers, W. Choi, et al., “The implicit calculus: A new foundation for generic
programming,” in ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012, J. Vitek, H. Lin, and F. Tip, Eds., ACM, 2012, pp. 35–44,
isbn: 978-1-4503-1205-9. doi: 10.1145/2254064.2254070. [Online]. Available: http://doi.acm.org/

10.1145/2254064.2254070

OliveiraSCLY12

L. C. Paulson and A. W. Smith
Logic Programming, Functional
Programming, and Inductive
Definitions

Abstract An attempt at unifying logic and functional programming is reported. As a starting point,
we take the view that ”logic programs” are not about logic but constitute inductive definitions of sets
and relations. A skeletal language design based on these considerations is sketched and a prototype
implementation discussed.

References

L. C. Paulson and A. W. Smith, “Logic programming, functional programming, and inductive defini-
tions,” CoRR, vol. cs.LO/9301109, 1993. [Online]. Available: http://arxiv.org/abs/cs.LO/9301109

PaulsonS93

B. C. Pierce
Types and programming languages

Abstract A type system is a syntactic method for enforcing levels of abstraction in programs. The
study of type systems–and of programming languages from a type-theoretic perspective–has important
applications in software engineering, language design, high-performance compilers, and security.

This text provides a comprehensive introduction both to type systems in computer science and to
the basic theory of programming languages. The approach is pragmatic and operational; each new
concept is motivated by programming examples and the more theoretical sections are driven by the
needs of implementations. Each chapter is accompanied by numerous exercises and solutions, as well as
a running implementation. Dependencies between chapters are explicitly identified, allowing readers to
choose a variety of paths through the material.

The core topics include the untyped lambda-calculus, simple type systems, type reconstruction, uni-
versal and existential polymorphism, subtyping, bounded quantification, recursive types, kinds, and type
operators. Extended case studies develop a variety of approaches to modeling the features of object-
oriented languages.

References

B. C. Pierce, Types and programming languages. MIT Press, 2002, isbn: 978-0-262-16209-8

Pierce02

A. M. Pitts
Parametric Polymorphism and
Operational Equivalence

Abstract Studies of the mathematical properties of impredicatively polymorphic types have for the
most part focused on the polymorphic lambda calculus of Girard-Reynolds, which is a calculus of total
polymorphic functions. This paper considers polymorphic types from a functional programming per-
spective, where the partialness arising from the presence of fixpoint recursion complicates the nature of
potentially infinite (lazy) datatypes. An operationally-based approach to Reynolds’ notion of relational
parametricity is developed for an extension of Plotkin’s PCF with types and lazy lists. The resulting
logical relation is shown to be a useful tool for proving properties of polymorphic types up to a notion
of operational equivalence based on Morris-style contextual equivalence.

References

A. M. Pitts, “Parametric polymorphism and operational equivalence,” Electr. Notes Theor. Comput.
Sci., vol. 10, pp. 2–27, 1997. doi: 10.1016/S1571- 0661(05)80685- 1. [Online]. Available: http:

//dx.doi.org/10.1016/S1571-0661(05)80685-1

Pitts97

G. D. Plotkin and J. Power
Algebraic Operations and Generic
Effects

Abstract Given a complete and cocomplete symmetric monoidal closed category V and a symmetric
monoidal V -category C with cotensors and a strong V -monad T on C, we investigate axioms under which
an ObC-indexed family of operations of the form αx : (Tx)v → (Tx)w provides semantics for algebraic
operations on the computational λ-calculus. We recall a definition for which we have elsewhere given
adequacy results, and we show that an enrichment of it is equivalent to a range of other possible natural
definitions of algebraic operation. In particular, we define the notion of generic effect and show that
to give a generic effect is equivalent to giving an algebraic operation. We further show how the usual
monadic semantics of the computational λ-calculus extends uniformly to incorporate generic effects. We
outline examples and non-examples and we show that our definition also enriches one for call-by-name
languages with effects.

References

G. D. Plotkin and J. Power, “Algebraic operations and generic effects,” Applied Categorical Structures,
vol. 11, no. 1, pp. 69–94, 2003. doi: 10.1023/A:1023064908962. [Online]. Available: http://dx.doi.

org/10.1023/A:1023064908962

PlotkinP03

J. Power and H. Watanabe
Combining a monad and a comonad

Abstract We give a systematic treatment of distributivity for a monad and a comonad as arises in
giving category theoretic accounts of operational and denotational semantics, and in giving an intensional
denotational semantics. We do this axiomatically, in terms of a monad and a comonad in a 2-category,
giving accounts of the EilenbergMoore and Kleisli constructions. We analyse the eight possible relation-
ships, deducing that two pairs are isomorphic, but that the other pairs are all distinct. We develop those
2-categorical definitions necessary to support this analysis.

References

J. Power and H. Watanabe, “Combining a monad and a comonad,” Theor. Comput. Sci., vol. 280,
no. 1-2, pp. 137–162, 2002. doi: 10 . 1016 / S0304 - 3975(01) 00024 - X. [Online]. Available: http :

//dx.doi.org/10.1016/S0304-3975(01)00024-X

PowerW02

G. Rosu and D. Lucanu
Circular Coinduction: A Proof
Theoretical Foundation

Abstract Several algorithmic variants of circular coinduction have been proposed and implemented
during the last decade, but a proof theoretical foundation of circular coinduction in its full generality
is still missing. This paper gives a three-rule proof system that can be used to formally derive circular
coinductive proofs. This three-rule system is proved behaviorally sound and is exemplified by proving
several properties of infinite streams. Algorithmic variants of circular coinduction now become heuristics
to search for proof derivations using the three rules.

References

G. Rosu and D. Lucanu, “Circular coinduction: A proof theoretical foundation,” in Algebra and Coalgebra
in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009.
Proceedings, A. Kurz, M. Lenisa, and A. Tarlecki, Eds., ser. Lecture Notes in Computer Science, vol. 5728,
Springer, 2009, pp. 127–144, isbn: 978-3-642-03740-5. doi: 10.1007/978-3-642-03741-2_10. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-03741-2_10

RosuL09

J. J.M. M. Rutten
Behavioural differential equations: A
coinductive calculus of streams,
automata, and power series

Abstract We present a theory of streams (infinite sequences), automata and languages, and formal
power series, in terms of the notions of homomorphism and bisimulation, which are the cornerstones
of the theory of (universal) coalgebra. This coalgebraic perspective leads to a unified theory, in which
the observation that each of the aforementioned sets carries a so-called final automaton structure, plays
a central role. Finality forms the basis for both definitions and proofs by coinduction, the coalgebraic
counterpart of induction. Coinductive definitions take the shape of what we have called behavioural dif-
ferential equations, after Brzozowski’s notion of input derivative. A calculus is developed for coinductive
reasoning about all of the aforementioned structures, closely resembling calculus from classical analysis.
?? 2002 Elsevier B.V. All rights reserved.

References

J. J.M. M. Rutten, “Behavioural differential equations: a coinductive calculus of streams, automata,
and power series,” Theoretical Computer Science, vol. 308, no. 1-3, pp. 1–53, 2003, issn: 03043975. doi:
10.1016/S0304-3975(02)00895-2

Rutten03

D. Sangiorgi
On the origins of bisimulation and
coinduction

Abstract The origins of bisimulation and bisimilarity are examined, in the three fields where they
have been independently discovered: Computer Science, Philosophical Logic (precisely, Modal Logic),
Set Theory.

Bisimulation and bisimilarity are coinductive notions, and as such are intimately related to fixed
points, in particular greatest fixed points. Therefore also the appearance of coinduction and fixed points
is discussed, though in this case only within Computer Science. The paper ends with some historical
remarks on the main fixed-point theorems (such as Knaster-Tarski) that underpin the fixed-point theory
presented.

References

D. Sangiorgi, “On the origins of bisimulation and coinduction,” ACM Trans. Program. Lang. Syst., vol.
31, no. 4, 2009. doi: 10.1145/1516507.1516510. [Online]. Available: http://doi.acm.org/10.1145/

1516507.1516510

Sangiorgi09

D. D. Schreye, V. Nys, and C. J. Nicholson
Analysing and Compiling Coroutines
with Abstract Conjunctive Partial
Deduction

Abstract We provide an approach to formally analyze the computational behavior of coroutines in
Logic Programs and to compile these computations into new programs, not requiring any support for
coroutines. The problem was already studied near to 30 years ago, in an analysis and transformation
technique called Compiling Control. However, this technique had a strong ad hoc flavor: the completeness
of the analysis was not well understood and its symbolic evaluation was also very ad hoc. We show how
Abstract Conjunctive Partial Deduction, introduced by Leuschel in 2004, provides an appropriate setting
to redefine Compiling Control. Leuschels framework is more general than the original formulation, it
is provably correct, and it can easily be applied for simple examples. We also show that the Abstract
Conjunctive Partial Deduction framework needs some further extension to be able to deal with more
complex examples.

References

D. D. Schreye, V. Nys, and C. J. Nicholson, “Analysing and compiling coroutines with abstract con-
junctive partial deduction,” in Logic-Based Program Synthesis and Transformation - 24th International
Symposium, LOPSTR 2014, Canterbury, UK, September 9-11, 2014. Revised Selected Papers, M. Proi-
etti and H. Seki, Eds., ser. Lecture Notes in Computer Science, vol. 8981, Springer, 2014, pp. 21–
38, isbn: 978-3-319-17821-9. doi: 10.1007/978- 3- 319- 17822- 6_2. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-319-17822-6_2

SchreyeNN14

T. Schrijvers, S. L. P. Jones,
M. M. T. Chakravarty, et al.
Type checking with open type
functions

Abstract We report on an extension of Haskell with open type-level functions and equality constraints
that unifies earlier work on GADTs, functional dependencies, and associated types. The contribution of
the paper is that we identify and characterise the key technical challenge of entailment checking; and
we give a novel, decidable, sound, and complete algorithm to solve it, together with some practically-
important variants. Our system is implemented in GHC, and is already in active use.

References

T. Schrijvers, S. L. P. Jones, M. M. T. Chakravarty, et al., “Type checking with open type functions,”
in Proceeding of the 13th ACM SIGPLAN international conference on Functional programming, ICFP
2008, Victoria, BC, Canada, September 20-28, 2008, J. Hook and P. Thiemann, Eds., ACM, 2008,
pp. 51–62, isbn: 978-1-59593-919-7. doi: 10 . 1145 / 1411204 . 1411215. [Online]. Available: http :

//doi.acm.org/10.1145/1411204.1411215

SchrijversJCS08

L. Simon, A. Bansal, A. Mallya, et al.
Co-Logic Programming: Extending
Logic Programming with
Coinduction

Abstract In this paper we present the theory and practice of co-logic programming (co-LP for brevity),
a paradigm that combines both inductive and coinductive logic programming. Co-LP is a natural gen-
eralization of logic programming and coinductive logic programming, which in turn generalizes other
extensions of logic programming, such as infinite trees, lazy predicates, and concurrent communicating
predicates. Co-LP has applications to rational trees, verifying infinitary properties, lazy evaluation,
concurrent LP, model checking, bisimilarity proofs, etc.

References

L. Simon, A. Bansal, A. Mallya, et al., “Co-logic programming: Extending logic programming with
coinduction,” in Automata, Languages and Programming, 34th International Colloquium, ICALP 2007,
Wroclaw, Poland, July 9-13, 2007, Proceedings, L. Arge, C. Cachin, T. Jurdzinski, et al., Eds., ser.
Lecture Notes in Computer Science, vol. 4596, Springer, 2007, pp. 472–483, isbn: 978-3-540-73419-2.
doi: 10.1007/978-3-540-73420-8_42. [Online]. Available: http://dx.doi.org/10.1007/978-3-

540-73420-8_42

SimonBMG07

A. Simpson and G. Plotkin
Complete axioms for categorical
fixed-point operators

Abstract We give an axiomatic treatment of fixed-point operators in categories. A notion of iteration
operator is defined embodying the equational properties of iteration theories. We prove a general com-
pleteness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free
iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result
derives them from the existence of sufficiently many bifree algebras (exploiting the universal property
Freyd introduced in his notion of algebraic compactness). Another result shows that, in the presence
of a parameterized natural numbers object and an equational lifting monad, any uniform fixed-point
operator is necessarily an iteration operator

References

A. Simpson and G. Plotkin, “Complete axioms for categorical fixed-point operators,” Proceedings Fif-
teenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332), pp. 30–41, 2000.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=855753

SimpsonP00

S. Staton
An Algebraic Presentation of
Predicate Logic - (Extended
Abstract)

Abstract We present an algebraic theory for a fragment of predicate logic. The fragment has dis-
junction, existential quantification and equality. It is not an algebraic theory in the classical sense, but
rather within a new framework that we call parameterized algebraic theories. We demonstrate the rele-
vance of this algebraic presentation to computer science by identifying a programming language in which
every type carries a model of the algebraic theory. The result is a simple functional logic programming
language. We provide a syntax-free representation theorem which places terms in bijection with sieves,
a concept from category theory. We study presentation-invariance for general parameterized algebraic
theories by providing a theory of clones. We show that parameterized algebraic theories characterize a
class of enriched monads.

References

S. Staton, “An algebraic presentation of predicate logic - (extended abstract),” in Foundations of Software
Science and Computation Structures - 16th International Conference, FOSSACS 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings, F. Pfenning, Ed., ser. Lecture Notes in Computer Science, vol. 7794, Springer,
2013, pp. 401–417, isbn: 978-3-642-37074-8. doi: 10.1007/978-3-642-37075-5_26. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37075-5_26

Staton13

P. J. Stuckey and M. Sulzmann
A theory of overloading

Abstract We present a novel approach to allow for overloading of identifiers in the spirit of type
classes. Our approach relies on a combination of the HM(X) type system framework with Constraint
Handling Rules (CHRs). CHRs are a declarative language for writing incremental constraint solvers, that
provide our scheme with a form of programmable type language. CHRs allow us to precisely describe
the relationships among overloaded identifiers. Under some sufficient conditions on the CHRs we achieve
decidable type inference and the semantic meaning of programs is unambiguous. Our approach provides
a common formal basis for many type class extensions such as multiparameter type classes and functional
dependencies.

References

P. J. Stuckey and M. Sulzmann, “A theory of overloading,” ACM Trans. Program. Lang. Syst., vol. 27,
no. 6, pp. 1216–1269, 2005. doi: 10.1145/1108970.1108974. [Online]. Available: http://doi.acm.

org/10.1145/1108970.1108974

StuckeyS05

M. Sulzmann, G. J. Duck, S. L. P. Jones, et
al.
Understanding functional
dependencies via constraint handling
rules

Abstract Functional dependencies are a popular and useful extension to Haskell style type classes.
We give a reformulation of functional dependencies in terms of Constraint Handling Rules (CHRs).
In previous work, CHRs have been employed for describing user-programmable type extensions in the
context of Haskell style type classes. Here, we make use of CHRs to provide for the first time a concise
result that under some sufficient conditions, functional dependencies allow for sound, complete and
decidable type inference. The sufficient conditions imposed on functional dependencies can be very
limiting. We show how to safely relax these conditions and suggest several sound extensions of functional
dependencies. Our results allow for a better understanding of functional dependencies and open up the
opportunity for new applications.

References

M. Sulzmann, G. J. Duck, S. L. P. Jones, et al., “Understanding functional dependencies via constraint
handling rules,” J. Funct. Program., vol. 17, no. 1, pp. 83–129, 2007. doi: 10.1017/S0956796806006137.
[Online]. Available: http://dx.doi.org/10.1017/S0956796806006137

SulzmannDJS07

G. Sutcliffe
The TPTP problem library and
associated infrastructure : the FOF
and CNF Parts, v3.5.0

Abstract This paper describes the First-Order Form (FOF) and Clause Normal Form (CNF) parts
of the TPTP problem library, and the associated infrastructure. TPTP v3.5.0 was the last release
containing only FOF and CNF problems, and thus serves as the exemplar. This paper summarizes the
history and development of the TPTP, describes the structure and contents of the TPTP, and gives an
overview of TPTP related projects and tools.

References

G. Sutcliffe, “The tptp problem library and associated infrastructure : the fof and cnf parts, v3.5.0,”
Journal of Automated Reasoning, vol. 43, no. 4, pp. 337–362, 2009, issn: 01687433. doi: 10.1007/

s10817-009-9143-8

Sutcliffe09

H. Thielemann
How to Refine Polynomial Functions

Abstract Research on refinable functions in wavelet theory is mostly focused to localized functions.
However it is known, that polynomial functions are refinable, too. In our paper we investigate on
conversions between refinement masks and polynomials and their uniqueness.

References

H. Thielemann, “How to refine polynomial functions,” IJWMIP, vol. 10, no. 3, 2012. doi: 10.1142/

S0219691312500270. [Online]. Available: http://dx.doi.org/10.1142/S0219691312500270

Thielemann12

D. Vytiniotis, S. L. P. Jones, T. Schrijvers, et
al.
OutsideIn(X) Modular type
inference with local assumptions

Abstract Advanced type system features, such as GADTs, type classes and type families, have proven
to be invaluable language extensions for ensuring data invariants and program correctness. Unfortunately,
they pose a tough problem for type inference when they are used as local type assumptions. Local type
assumptions often result in the lack of principal types and cast the generalisation of local let-bindings
prohibitively difficult to implement and specify. User-declared axioms only make this situation worse. In
this paper, we explain the problems and perhaps controversially argue for abandoning local let-binding
generalisation. We give empirical results that local let generalisation is only sporadically used by Haskell
programmers. Moving on, we present a novel constraint-based type inference approach for local type
assumptions. Our system, called OutsideIn(X), is parameterised over the particular underlying constraint
domain X, in the same way as HM(X). This stratification allows us to use a common metatheory and
inference algorithm. OutsideIn(X) extends the constraints of X by introducing implication constraints
on top. We describe the strategy for solving these implication constraints, which, in turn, relies on a
constraint solver for X. We characterise the properties of the constraint solver for X so that the resulting
algorithm only accepts programs with principal types, even when the type system specification accepts
programs that do not enjoy principal types. Going beyond the general framework, we give a particular
constraint solver for X = type classes + GADTs + type families, a non-trivial challenge in its own right.
This constraint solver has been implemented and distributed as part of GHC 7.

References

D. Vytiniotis, S. L. P. Jones, T. Schrijvers, et al., “Outsidein(x) modular type inference with local as-
sumptions,” J. Funct. Program., vol. 21, no. 4-5, pp. 333–412, 2011. doi: 10.1017/S0956796811000098.
[Online]. Available: http://dx.doi.org/10.1017/S0956796811000098

VytiniotisJSS11

P. Wadler
Theorems for Free!

Abstract From the type of a polymorphic function we can derive a theorem that it satisfies. Every
function of the same type satisfies the same theorem. This provides a free source of useful theorems,
courtesy of Reynolds’ abstraction theorem for the polymorphic lambda calculus.

References

P. Wadler, “Theorems for free!” In Proceedings of the fourth international conference on Functional
programming languages and computer architecture, FPCA 1989, London, UK, September 11-13, 1989,
J. E. Stoy, Ed., ACM, 1989, pp. 347–359, isbn: 0-201-51389-7. doi: 10.1145/99370.99404. [Online].
Available: http://doi.acm.org/10.1145/99370.99404

Wadler89

P. Wadler and S. Blott
How to Make ad-hoc Polymorphism
Less ad-hoc

Abstract This paper presents type classes, a new approach to ad-hoc polymorphism. Type classes
permit overloading of arithmetic operators such as multiplication, and generalise the eqtype variables
of Standard ML. Type classes extend the Hindley/Milner polymorphic type system, and provide a new
approach to issues that arise in object-oriented programming, bounded type quantification, and abstract
data types. This paper provides an informal introduction to type classes, and defines them formally by
means of type inference rules.

References

P. Wadler and S. Blott, “How to make ad-hoc polymorphism less ad-hoc,” in Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA,
January 11-13, 1989, ACM Press, 1989, pp. 60–76, isbn: 0-89791-294-2. doi: 10.1145/75277.75283.
[Online]. Available: http://doi.acm.org/10.1145/75277.75283

WadlerB89

N. Bjørner, A. Gurfinkel, K. McMillan, et al.
Horn Clause Solvers for Program
Verification

Abstract abstract

References

N. Bjørner, A. Gurfinkel, K. McMillan, et al., “Horn clause solvers for program verification,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 9300, 2015, pp. 24–51, isbn: 9783319235332. doi: 10.1007/978-3-319-23534-
9_2. [Online]. Available: http://link.springer.com/10.1007/978-3-319-23534-9{_}2

BjornerGM15

H. Geuvers and R. Nederpelt
N.G. de Bruijn’s contribution to the
formalization of mathematics

Abstract A ’process theory’ is any theory of systems and processes which admits sequential and
parallel composition. ‘Terminality’ unifies normalisation of pure states, trace-preservation of CP-maps,
and adding up to identity of positive operators in quantum theory, and generalises this to arbitrary
process theories. We show that terminality and non-signalling coincide in any process theory, provided
one makes causal structure explicit. In fact, making causal structure explicit is necessary to even make
sense of non-signalling in process theories. We conclude that because of its much simpler mathematical
form, terminality should be taken to be a more fundamental notion than non-signalling.

References

H. Geuvers and R. Nederpelt, “N.g. de bruijn’s contribution to the formalization of mathematics,”
Indagationes Mathematicae, vol. 24, no. 4, pp. 1034–1049, 2013, issn: 00193577. doi: 10.1016/j.

indag . 2013 . 09 . 003. [Online]. Available: http : / / linkinghub . elsevier . com / retrieve / pii /

S0019357713000700

GeuversN13

R. Jhala, R. Majumdar, and A. Rybalchenko
HMC : Verifying Functional
Programs

Abstract We present Hindley-Milner-Cousots (HMC), an algorithm that allows any interprocedural
analysis for first-order imperative programs to be used to ver-ify safety properties of typed higher-order
functional programs. HMC works as follows. First, it uses the type structure of the functional program to
generate a set of logical refinement constraints whose satisfaction implies the safety of the source program.
Next, it transforms the logical refinement constraints into a simple first-order imperative program that
is safe iff the constraints are satisfiable. Thus, in one swoop, HMC makes tools for invariant generation,
e.g., based on abstract domains, predicate abstraction, counterexample-guided refinement, and Craig
in-terpolation be directly applicable to verify safety properties of modern functional languages in a fully
automatic manner. We have implemented HMC and describe preliminary experimental results using
two imperative checkers ARMC and IN-TERPROC to verify OCAML programs. Thus, by composing
type-based reasoning grounded in program syntax and state-based reasoning grounded in abstract inter-
pretation, HMC opens the door to automatic verification of programs written in modern programming
languages.

References

R. Jhala, R. Majumdar, and A. Rybalchenko, “Hmc : verifying functional programs,” pp. 470–485, 2011

JhalaMR11

E. Komendantskaya and J. Power
Logic programming: laxness and
saturation

Abstract A propositional logic program P may be identified with a $P fP f$-coalgebra on the set of
atomic propositions in the program. The corresponding $C(P fP f)$-coalgebra, where $C(P fP f)$ is the
cofree comonad on $P fP f$, describes derivations by resolution. That correspondence has been developed
to model first-order programs in two ways, with lax semantics and saturated semantics, based on locally
ordered categories and right Kan extensions respectively. We unify the two approaches, exhibiting them
as complementary rather than competing, reflecting the theorem-proving and proof-search aspects of
logic programming. While maintaining that unity, we further refine lax semantics to give finitary models
of logic programs with existential variables, and to develop a precise semantic relationship between
variables in logic programming and worlds in local state.

References

E. Komendantskaya and J. Power, “Logic programming: laxness and saturation,” 2016. arXiv: 1608.

07708. [Online]. Available: http://arxiv.org/abs/1608.07708

Komendantskaya2016

E. Komendantskaya and J. Power
Logic programming: laxness and
saturation

Abstract A propositional logic program P may be identified with a $P fP f$-coalgebra on the set of
atomic propositions in the program. The corresponding $C(P fP f)$-coalgebra, where $C(P fP f)$ is the
cofree comonad on $P fP f$, describes derivations by resolution. That correspondence has been developed
to model first-order programs in two ways, with lax semantics and saturated semantics, based on locally
ordered categories and right Kan extensions respectively. We unify the two approaches, exhibiting them
as complementary rather than competing, reflecting the theorem-proving and proof-search aspects of
logic programming. While maintaining that unity, we further refine lax semantics to give finitary models
of logic programs with existential variables, and to develop a precise semantic relationship between
variables in logic programming and worlds in local state.

References

E. Komendantskaya and J. Power, “Logic programming: laxness and saturation,” 2016. arXiv: 1608.

07708. [Online]. Available: http://arxiv.org/abs/1608.07708

KomendantskayaP16

N. P. Mendler, P. Panangaden, P. J. Scott, et
al.
A Logical View of Concurrent
Constraint Programming

Abstract Concurrent Constraint Programming (CCP) has been the subject of growing interest as the
focus of a new paradigm for concurrent computation. Like logic programming it claims close relations to
logic. In fact CCP languages are logics in a certain sense that we make precise in this paper. In recent
work it was shown that the denotational semantics of determinate concurrent constraint programming
languages forms a fibred categorical structure called a hyperdoctrine, which is used as the basis of the
categorical formulation of first-order logic. What this shows is that the combinators of determinate CCP
can be viewed as logical connectives. In this paper we extend these ideas to the operational semantics
of such languages and thus make available similar analogies for a much broader variety of languages
including indeterminate CCP languages and concurrent block-structured imperative languages.

References

N. P. Mendler, P. Panangaden, P. J. Scott, et al., “A logical view of concurrent constraint programming,”
Nordic J. of Computing, vol. 2, no. 2, pp. 181–220, 1995

MendlerPSS95

M. Odersky, M. Sulzmann, and M. Wehr
Type inference with constrained
types

Abstract Type inference in polymorphic, nominal type systems with \nsubtyping, additionally equipped
with ad-hoc overloading is not easy. However most mainstream languages like C#, Java and C++ have
all those features, which makes extending them with type inference cumbersome. We present a practical,
sound, but not complete, type inference algorithm for such type systems. It is based on the online con-
straint solving combined with deferral of certain typing actions. The algorithm is successfully employed
in functional and objectoriented language for the .NET platform called Nemerle.

References

M. Odersky, M. Sulzmann, and M. Wehr, “Type inference with constrained types,” Theory and Prac-
tice of Object Systems, vol. 5, no. 1, pp. 35–55, 1999, issn: 1074-3227. doi: 10.1002/(SICI)1096-

9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4. [Online]. Available: http://doi.wiley.com/

10.1002/{\%}28SICI{\%}291096-9942{\%}28199901/03{\%}295{\%}3A1{\%}3C35{\%}3A{\%}3AAID-

TAPO4{\%}3E3.0.CO{\%}3B2-4

OderskySW99

P. W. O’Hearn and R. D. Tennent
Parametricity and local variables

Abstract abstract

References

P. W. O’Hearn and R. D. Tennent, “Parametricity and local variables,” Journal of the ACM, vol. 42,
no. 3, pp. 658–709, 1995, issn: 00045411. doi: 10.1145/210346.210425. [Online]. Available: http:

//portal.acm.org/citation.cfm?doid=210346.210425

OHearnT95

C.-H. L. Ong and S. J. Ramsay
Verifying higher-order functional
programs with pattern-matching
algebraic data types

Abstract Type-based model checking algorithms for higher-order recursion schemes have recently
emerged as a promising approach to the verification of functional programs. We introduce pattern-
matching recursion schemes (PMRS) as an accurate model of computation for functional programs that
manipulate algebraic data-types. PMRS are a natural extension of higher-order recursion schemes that
incorporate pattern-matching in the defining rules. This paper is concerned with the following (unde-
cidable) verification problem: given a correctness property φ, a functional program (qua PMRS) and
a regular input set , does every term that is reachable from under rewriting by satisfy φ? To solve
the PMRS verification problem, we present a sound semi-algorithm which is based on model-checking
and counterexample guided abstraction refinement. Given a no-instance of the verification problem, the
method is guaranteed to terminate. From an order-n PMRS and an input set generated by a regular tree
grammar, our method constructs an order-n weak PMRS which over-approximates only the first-order
pattern-matching behaviour, whilst remaining completely faithful to the higher-order control flow. Using
a variation of Kobayashi’s type-based approach, we show that the (trivial automaton) model-checking
problem for weak PMRS is decidable. When a violation of the property is detected in the abstraction
which does not correspond to a violation in the model, the abstraction is automatically refined by ‘un-
folding’ the pattern-matching rules in the program to give successively more and more accurate weak
PMRS models.

References

C.-H. L. Ong and S. J. Ramsay, “Verifying higher-order functional programs with pattern-matching
algebraic data types,” SIGPLAN Not., vol. 46, no. 1, pp. 587–598, 2011, issn: 0362-1340. doi: 10.

1145/1925844.1926453. [Online]. Available: http://doi.acm.org/10.1145/1925844.1926453{\%

}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=1926453{\&}type=pdf

OngR11

F. Pfenning
Logic programming in the LF logical
framework

Abstract abstract

References

F. Pfenning, “Logic programming in the lf logical framework,” First Workshop on Logical Frame-
works, pp. 1–25, 1991. [Online]. Available: http://books.google.com/books?hl=en{\&}lr={\&

}id=X9wfWwslFQIC{\&}oi=fnd{\&}pg=PA149{\&}dq=Logic+Programming+in+the+LF+Logical+

Framework{\&}ots=LfrwT41GfT{\&}sig=AymIHgqAw{_}M3EiIPGvlpnR2J34M

Pfenning91

F. Pfenning and C. Schürmann
System description: Twelf a
meta-logical framework for
deductive systems

Abstract Twelf is a meta-logical framework for the specification, implementation, and meta-theory of
deductive systems from the theory of programming languages and logics. It relies on the LF type theory
and the judgments-as-types methodology for specification [HHP93], a constraint logic programming
interpreter for implementation [Pfe91], and the meta-logic M2 for reasoning about object languages
encoded in LF [SP98]. It is a significant extension and complete reimplementation of the Elf system
[Pfe94]. Twelf is written in Standard ML and runs under SML of New Jersey and MLWorks on Unix and
Window platforms. The current version (1.2) is distributed with a complete manual, example suites, a
tutorial in the form of on-line lecture notes [Pfe], and an Emacs interface. Source and binary distributions
are accessible via the Twelf home page http://www.cs.cmu.edu/˜twelf.

References

F. Pfenning and C. Schürmann, “System description: twelf a meta-logical framework for deductive
systems,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 1632, pp. 202–206, 1999, issn: 16113349. doi: 10.1007/3-

540-48660-7_14

Pfenning99

V. Simonet and F. Pottier
A constraint-based approach to
guarded algebraic data types

Abstract We study HMG(X), an extension of the constraint-based type system HM(X) with deep
pattern matching, polymorphic recursion, and guarded algebraic data types. Guarded algebraic data
types subsume the concepts known in the literature as indexed types, guarded recursive datatype con-
structors, (first-class) phantom types, and equality qualified types, and are closely related to inductive
types. Their characteristic property is to allow every branch of a case construct to be typechecked under
different assumptions about the type variables in scope. We prove that HMG(X) is sound and that, pro-
vided recursive definitions carry a type annotation, type inference can be reduced to constraint solving.
Constraint solving is decidable, at least for some instances of X, but prohibitively expensive. Effective
type inference for guarded algebraic data types is left as an issue for future research.

References

V. Simonet and F. Pottier, “A constraint-based approach to guarded algebraic data types,” ACM Trans-
actions on Programming Languages and Systems, vol. 29, no. 1, 1–es, 2007, issn: 01640925. doi:
10.1145/1180475.1180476. [Online]. Available: http://portal.acm.org/citation.cfm?doid=

1180475.1180476

SimonetP07

Bibliography

[1] M. Abadi and M. P. Fiore, “Syntactic considerations on recursive types,” in Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA,
July 27-30, 1996, IEEE Computer Society, 1996, pp. 242–252, isbn: 0-8186-7463-6. doi: 10.1109/
LICS.1996.561324. [Online]. Available: http://dx.doi.org/10.1109/LICS.1996.561324.

[2] A. Abel and B. Pientka, “Wellfounded recursion with copatterns: A unified approach to termina-
tion and productivity,” in ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, G. Morrisett and T. Uustalu, Eds., ACM,
2013, pp. 185–196, isbn: 978-1-4503-2326-0. doi: 10.1145/2500365.2500591. [Online]. Available:
http://doi.acm.org/10.1145/2500365.2500591.

[3] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer, “Copatterns: Programming infinite structures
by observations,” in The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, R. Giacobazzi and R.
Cousot, Eds., ACM, 2013, pp. 27–38, isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429075.
[Online]. Available: http://doi.acm.org/10.1145/2429069.2429075.

[4] S. Abramsky and N. Tzevelekos, “Introduction to categories and categorical logic,” CoRR, vol.
abs/1102.1313, 2011. [Online]. Available: http://arxiv.org/abs/1102.1313.

[5] J. Adámek and V. Koubek, “Least fixed point of a functor,” J. Comput. Syst. Sci., vol. 19,
no. 2, pp. 163–178, 1979. doi: 10.1016/0022-0000(79)90026-6. [Online]. Available: http:
//dx.doi.org/10.1016/0022-0000(79)90026-6.

[6] ——, “On the greatest fixed point of a set functor,” Theor. Comput. Sci., vol. 150, no. 1, pp. 57–
75, 1995. doi: 10.1016/0304-3975(95)00011-K. [Online]. Available: http://dx.doi.org/10.
1016/0304-3975(95)00011-K.

[7] D. Ancona and A. Dovier, “A theoretical perspective of coinductive logic programming,” Fundam.
Inform., vol. 140, no. 3-4, pp. 221–246, 2015. doi: 10.3233/FI-2015-1252. [Online]. Available:
http://dx.doi.org/10.3233/FI-2015-1252.

[8] D. Ancona and G. Lagorio, “Idealized coinductive type systems for imperative object-oriented
programs,” RAIRO - Theor. Inf. and Applic., vol. 45, no. 1, pp. 3–33, 2011. doi: 10.1051/ita/
2011009. [Online]. Available: http://dx.doi.org/10.1051/ita/2011009.

[9] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, “Proving correctness of impera-
tive programs by linearizing constrained horn clauses,” TPLP, vol. 15, no. 4-5, pp. 635–650,
2015. doi: 10.1017/S1471068415000289. [Online]. Available: http://dx.doi.org/10.1017/
S1471068415000289.

[10] R. Atkey, “What is a categorical model of arrows?” Electr. Notes Theor. Comput. Sci., vol.
229, no. 5, pp. 19–37, 2011. doi: 10.1016/j.entcs.2011.02.014. [Online]. Available: http:
//dx.doi.org/10.1016/j.entcs.2011.02.014.

[11] R. Backhouse, R. Crole, and J. Gibbons, Eds., Algebraic and Coalgebraic Methods in the Mathe-
matics of Program Construction, ser. Lecture Notes in Computer Science. Springer-Verlag, 2002,
vol. 2297, isbn: 3540436138. [Online]. Available: http://www.cs.ox.ac.uk/people/jeremy.
gibbons/publications/acmmpc-toc.pdf.

[12] H. P. Barendregt, “Functional programming and lambda calculus,” in Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), 1990, pp. 321–363.

[13] H. Basold and H. H. Hansen, “Well-definedness and observational equivalence for inductive-
coinductive programs,” Journal of Logic and Computation, exw091, 2016, issn: 0955-792X. doi:
10.1093/logcom/exv091. [Online]. Available: https://academic.oup.com/logcom/article-
lookup/doi/10.1093/logcom/exv091.

[14] M. Bellia and G. Levi, “The relation between logic and functional languages: A survey,” J. Log.
Program., vol. 3, no. 3, pp. 217–236, 1986. doi: 10.1016/0743-1066(86)90014-2. [Online].
Available: http://dx.doi.org/10.1016/0743-1066(86)90014-2.

[15] B. van den Berg and F. D. Marchi, “Non-well-founded trees in categories,” Ann. Pure Appl.
Logic, vol. 146, no. 1, pp. 40–59, 2007. doi: 10.1016/j.apal.2006.12.001. [Online]. Available:
http://dx.doi.org/10.1016/j.apal.2006.12.001.

[16] J. Bernardy, P. Jansson, M. Zalewski, and S. Schupp, “Generic programming with C++ con-
cepts and haskell type classes - a comparison,” J. Funct. Program., vol. 20, no. 3-4, pp. 271–302,
2010. doi: 10.1017/S095679681000016X. [Online]. Available: http://dx.doi.org/10.1017/
S095679681000016X.

[17] R. S. Bird, J. Gibbons, S. Mehner, J. Voigtländer, and T. Schrijvers, “Understanding idiomatic
traversals backwards and forwards,” in Proceedings of the 2013 ACM SIGPLAN Symposium on
Haskell, Boston, MA, USA, September 23-24, 2013, C. Shan, Ed., ACM, 2013, pp. 25–36, isbn:
978-1-4503-2383-3. doi: 10.1145/2503778.2503781. [Online]. Available: http://doi.acm.org/
10.1145/2503778.2503781.

[18] F. Bonchi and F. Zanasi, “Bialgebraic semantics for logic programming,” Logical Methods in
Computer Science, vol. 11, no. 1, 2015. doi: 10.2168/LMCS-11(1:14)2015. [Online]. Available:
http://dx.doi.org/10.2168/LMCS-11(1:14)2015.

[19] A. Colmerauer, “Equations and inequations on finite and infinite trees,” in FGCS, 1984, pp. 85–
99.

[20] P. Cousot and R. Cousot, “Inductive definitions, semantics and abstract interpretation,” in Con-
ference Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Albuquerque, New Mexico, USA, January 19-22, 1992, R. Sethi, Ed.,
ACM Press, 1992, pp. 83–94, isbn: 0-89791-453-8. doi: 10.1145/143165.143184. [Online]. Avail-
able: http://doi.acm.org/10.1145/143165.143184.

[21] K. Crary, R. Harper, and S. Puri, “What is a recursive module?” In Proceedings of the 1999 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Atlanta,
Georgia, USA, May 1-4, 1999, B. G. Ryder and B. G. Zorn, Eds., ACM, 1999, pp. 50–63, isbn:
1-58113-094-5. doi: 10.1145/301618.301641. [Online]. Available: http://doi.acm.org/10.
1145/301618.301641.

[22] D. Van Dalen, “Intuitionistic logic,” in Handbook of Philosophical Logic: Volume III: Alternatives
in Classical Logic, D. Gabbay and F. Guenthner, Eds. Dordrecht: Springer Netherlands, 1986,
pp. 225–339, isbn: 978-94-009-5203-4. doi: 10.1007/978-94-009-5203-4_4. [Online]. Available:
http://dx.doi.org/10.1007/978-94-009-5203-4_4.

[23] L. Damas and R. Milner, “Principal type-schemes for functional programs,” in Conference Record
of the Ninth Annual ACM Symposium on Principles of Programming Languages, Albuquerque,
New Mexico, USA, January 1982, R. A. DeMillo, Ed., ACM Press, 1982, pp. 207–212, isbn: 0-
89791-065-6. doi: 10.1145/582153.582176. [Online]. Available: http://doi.acm.org/10.1145/
582153.582176.

[24] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons, “Fast and loose reasoning is morally
correct,” in Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006, J. G.
Morrisett and S. L. P. Jones, Eds., ACM, 2006, pp. 206–217, isbn: 1-59593-027-2. doi: 10.1145/
1111037.1111056. [Online]. Available: http://doi.acm.org/10.1145/1111037.1111056.

[25] E. DE ANGELIS, F. FIORAVANTI, A. PETTOROSSI, and M. PROIETTI, “Proving correctness
of imperative programs by linearizing constrained horn clauses,” Theory and Practice of Logic Pro-
gramming, vol. 15, no. 4-5, pp. 635–650, 2015, issn: 1471-0684. doi: 10.1017/S1471068415000289.
[Online]. Available: http://dx.doi.org/10.1017/S1471068415000289http://www.journals.
cambridge.org/abstract{_}S1471068415000289.

[26] D. De Schreye, V. Nys, and C. Nicholson, “Analysing and compiling coroutines with abstract
conjunctive partial deduction,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8981, 2015, pp. 21–
38, isbn: 9783319178219. doi: 10.1007/978- 3- 319- 17822- 6_2. [Online]. Available: http:
//link.springer.com/10.1007/978-3-319-17822-6{_}2.

[27] D. Devriese and F. Piessens, “On the bright side of type classes: Instance arguments in agda,”
in Proceeding of the 16th ACM SIGPLAN international conference on Functional Programming,
ICFP 2011, Tokyo, Japan, September 19-21, 2011, M. M. T. Chakravarty, Z. Hu, and O. Danvy,
Eds., ACM, 2011, pp. 143–155, isbn: 978-1-4503-0865-6. doi: 10.1145/2034773.2034796. [On-
line]. Available: http://doi.acm.org/10.1145/2034773.2034796.

[28] A. Dijkstra, J. Fokker, and S. D. Swierstra, “The structure of the essential haskell compiler, or
coping with compiler complexity,” in Implementation and Application of Functional Languages,
19th International Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007. Revised
Selected Papers, O. Chitil, Z. Horváth, and V. Zsók, Eds., ser. Lecture Notes in Computer Science,
vol. 5083, Springer, 2007, pp. 57–74, isbn: 978-3-540-85372-5. doi: 10.1007/978-3-540-85373-
2_4. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-85373-2_4.

[29] M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli, “Declarative modeling of the operational
behavior of logic languages,” Theor. Comput. Sci., vol. 69, no. 3, pp. 289–318, 1989. doi: 10.
1016/0304- 3975(89)90070- 4. [Online]. Available: http://dx.doi.org/10.1016/0304-

3975(89)90070-4.

[30] F. Farka, E. Komendantskaya, K. Hammond, and P. Fu, “Coinductive soundness of corecursive
type class resolution,” 2016. arXiv: 1608.05233. [Online]. Available: http://arxiv.org/abs/
1608.05233.

[31] K. Faxén, “A static semantics for haskell,” J. Funct. Program., vol. 12, no. 4&5, pp. 295–357,
2002. doi: 10.1017/S0956796802004380. [Online]. Available: http://dx.doi.org/10.1017/
S0956796802004380.

[32] P. Fu and E. Komendantskaya, “A type-theoretic approach to resolution,” in Logic-Based Program
Synthesis and Transformation - 25th International Symposium, LOPSTR 2015, Siena, Italy, July
13-15, 2015. Revised Selected Papers, M. Falaschi, Ed., ser. Lecture Notes in Computer Science,
vol. 9527, Springer, 2015, pp. 91–106, isbn: 978-3-319-27435-5. doi: 10.1007/978-3-319-27436-
2_6. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-27436-2_6.

[33] ——, “Operational semantics of resolution and productivity in horn clause logic,” Formal Aspects
of Computing, pp. 1–22, 2016, issn: 0934-5043. doi: 10.1007/s00165- 016- 0403- 1. arXiv:
1604.04114. [Online]. Available: http://arxiv.org/abs/1604.04114http://link.springer.
com/10.1007/s00165-016-0403-1.

[34] P. Fu, E. Komendantskaya, T. Schrijvers, and A. Pond, “Proof relevant corecursive resolution,” in
Functional and Logic Programming - 13th International Symposium, FLOPS 2016, Kochi, Japan,
March 4-6, 2016, Proceedings, O. Kiselyov and A. King, Eds., ser. Lecture Notes in Computer
Science, vol. 9613, Springer, 2016, pp. 126–143, isbn: 978-3-319-29603-6. doi: 10.1007/978-3-
319-29604-3_9. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-29604-3_9.

[35] N. Ghani and P. Hancock, “Containers, monads and induction recursion,” Mathematical Struc-
tures in Computer Science, vol. 26, no. 1, pp. 89–113, 2016. doi: 10.1017/S0960129514000127.
[Online]. Available: http://dx.doi.org/10.1017/S0960129514000127.

[36] J. Gibbons and G. Hutton, “Proof methods for corecursive programs,” Fundam. Inform., vol.
66, no. 4, pp. 353–366, 2005. [Online]. Available: http://content.iospress.com/articles/
fundamenta-informaticae/fi66-4-03.

[37] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer, “How to make ad hoc proof automation less
ad hoc,” J. Funct. Program., vol. 23, no. 4, pp. 357–401, 2013. doi: 10.1017/S0956796813000051.
[Online]. Available: http://dx.doi.org/10.1017/S0956796813000051.

[38] G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya, “Coinductive logic programming and its
applications,” in Logic Programming, 23rd International Conference, ICLP 2007, Porto, Portugal,
September 8-13, 2007, Proceedings, V. Dahl and I. Niemelä, Eds., ser. Lecture Notes in Computer
Science, vol. 4670, Springer, 2007, pp. 27–44, isbn: 978-3-540-74608-9. doi: 10.1007/978-3-540-
74610-2_4. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-74610-2_4.

[39] C. V. Hall, K. Hammond, S. L. P. Jones, and P. Wadler, “Type classes in haskell,” ACM Trans.
Program. Lang. Syst., vol. 18, no. 2, pp. 109–138, 1996. doi: 10.1145/227699.227700. [Online].
Available: http://doi.acm.org/10.1145/227699.227700.

[40] R. Hinze and S. L. P. Jones, “Derivable type classes,” Electr. Notes Theor. Comput. Sci., vol.
41, no. 1, pp. 5–35, 2000. doi: 10.1016/S1571-0661(05)80542-0. [Online]. Available: http:
//dx.doi.org/10.1016/S1571-0661(05)80542-0.

[41] R. Hinze and S. Peyton Jones, “Derivable type classes,” Electronic Notes in Theoretical Computer
Science, vol. 41, no. 1, pp. 5–35, 2001, issn: 15710661. doi: 10.1016/S1571-0661(05)80542-
0. [Online]. Available: http://dx.doi.org/10.1016/S1571- 0661(05)80542- 0http://

linkinghub.elsevier.com/retrieve/pii/S1571066105805420.

[42] R. Hinze, N. Wu, and J. Gibbons, “Unifying structured recursion schemes,” ACM SIGPLAN
Notices, vol. 48, no. 9, pp. 209–220, 2013. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2544174.2500578.

[43] J. S. Hodas and D. Miller, “Logic programming in a fragment of intuitionistic linear logic,” Inf.
Comput., vol. 110, no. 2, pp. 327–365, 1994. doi: 10.1006/inco.1994.1036. [Online]. Available:
http://dx.doi.org/10.1006/inco.1994.1036.

[44] P. Hudak, J. Hughes, S. L. P. Jones, and P. Wadler, “A history of haskell: Being lazy with class,” in
Proceedings of the Third ACM SIGPLAN History of Programming Languages Conference (HOPL-
III), San Diego, California, USA, 9-10 June 2007, B. G. Ryder and B. Hailpern, Eds., ACM, 2007,
pp. 1–55. doi: 10.1145/1238844.1238856. [Online]. Available: http://doi.acm.org/10.1145/
1238844.1238856.

[45] G. Huet and A. Saibi, “Constructive category theory,” in Proceedings of the Joint CLICS-TYPES
Workshop on Categories and Type Theory, Goteborg, Goteberg, 1995, p. 27.

[46] R. Iemhoff, “On the admissible rules of intuitionistic propositional logic,” J. Symb. Log., vol. 66,
no. 1, pp. 281–294, 2001. doi: 10.2307/2694922. [Online]. Available: http://dx.doi.org/10.
2307/2694922.

[47] J. Jaffar and P. J. Stuckey, “Semantics of infinite tree logic programming,” Theor. Comput. Sci.,
vol. 46, no. 3, pp. 141–158, 1986. doi: 10.1016/0304-3975(86)90027-7. [Online]. Available:
http://dx.doi.org/10.1016/0304-3975(86)90027-7.

[48] M. Jaskelioff and O. Rypacek, “An investigation of the laws of traversals,” in Proceedings Fourth
Workshop on Mathematically Structured Functional Programming, MSFP@ETAPS 2012, Tallinn,
Estonia, 25 March 2012., J. Chapman and P. B. Levy, Eds., ser. EPTCS, vol. 76, 2012, pp. 40–49.
doi: 10.4204/EPTCS.76.5. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.76.5.

[49] P. Johann and N. Ghani, “A principled approach to programming with nested types in haskell,”
Higher-Order and Symbolic Computation, vol. 22, no. 2, pp. 155–189, 2009. doi: 10.1007/s10990-
009-9047-7. [Online]. Available: http://dx.doi.org/10.1007/s10990-009-9047-7.

[50] R. van Kesteren, M. C.J. D. van Eekelen, and M. de Mol, “Proof support for generic type classes,”
in Revised Selected Papers from the Fifth Symposium on Trends in Functional Programming,
TFP 2004, München, Germany, 25-26 November 2004., H. Loidl, Ed., ser. Trends in Functional
Programming, vol. 5, Intellect, 2004, pp. 1–16, isbn: 1-84150-144-1.

[51] O. Kiselyov and H. Ishii, “Freer monads, more extensible effects,” in Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015,
B. Lippmeier, Ed., ACM, 2015, pp. 94–105, isbn: 978-1-4503-3808-0. doi: 10.1145/2804302.
2804319. [Online]. Available: http://doi.acm.org/10.1145/2804302.2804319.

[52] P. Kokke and W. Swierstra, “Auto in agda - programming proof search using reflection,” in
Mathematics of Program Construction - 12th International Conference, MPC 2015, Königswinter,
Germany, June 29 - July 1, 2015. Proceedings, R. Hinze and J. Voigtländer, Eds., ser. Lecture
Notes in Computer Science, vol. 9129, Springer, 2015, pp. 276–301, isbn: 978-3-319-19796-8. doi:
10.1007/978-3-319-19797-5_14. [Online]. Available: http://dx.doi.org/10.1007/978-3-
319-19797-5_14.

[53] E. Komendantskaya and J. Power, “Coalgebraic semantics for derivations in logic programming,”
in Algebra and Coalgebra in Computer Science - 4th International Conference, CALCO 2011,
Winchester, UK, August 30 - September 2, 2011. Proceedings, A. Corradini, B. Klin, and C.
Ĉırstea, Eds., ser. Lecture Notes in Computer Science, vol. 6859, Springer, 2011, pp. 268–282,
isbn: 978-3-642-22943-5. doi: 10.1007/978-3-642-22944-2_19. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-22944-2_19.

[54] D. Kozen and A. Silva, “Practical coinduction,” Mathematical Structures in Computer Science,
121, Feb. 2016. doi: 10.1017/S0960129515000493.

[55] R. Lämmel and S. L. P. Jones, “Scrap your boilerplate with class: Extensible generic functions,”
in Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2005, Tallinn, Estonia, September 26-28, 2005, O. Danvy and B. C. Pierce, Eds., ACM,
2005, pp. 204–215, isbn: 1-59593-064-7. doi: 10.1145/1086365.1086391. [Online]. Available:
http://doi.acm.org/10.1145/1086365.1086391.

[56] C. S. Lee, N. D. Jones, and A. M. Ben-Amram, “The size-change principle for program termi-
nation,” in Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, London, UK, January 17-19, 2001, C. Hankin and
D. Schmidt, Eds., ACM, 2001, pp. 81–92, isbn: 1-58113-336-7. doi: 10.1145/360204.360210.
[Online]. Available: http://doi.acm.org/10.1145/360204.360210.

[57] M. Lenisa, J. Power, and H. Watanabe, “Distributivity for endofunctors, pointed and co-pointed
endofunctors, monads and comonads,” Electr. Notes Theor. Comput. Sci., vol. 33, pp. 230–260,
2000. doi: 10.1016/S1571-0661(05)80350-0. [Online]. Available: http://dx.doi.org/10.
1016/S1571-0661(05)80350-0.

[58] F. Lindblad and M. Benke, “A tool for automated theorem proving in agda,” in Types for Proofs
and Programs, International Workshop, TYPES 2004, Jouy-en-Josas, France, December 15-18,
2004, Revised Selected Papers, J. Filliâtre, C. Paulin-Mohring, and B. Werner, Eds., ser. Lecture
Notes in Computer Science, vol. 3839, Springer, 2004, pp. 154–169, isbn: 3-540-31428-8. doi:
10.1007/11617990_10. [Online]. Available: http://dx.doi.org/10.1007/11617990_10.

[59] J. W. Lloyd, Foundations of Logic Programming, 2nd Edition. Springer, 1987, isbn: 3-540-18199-7.

[60] A. Löh and R. Hinze, “Open data types and open functions,” in Proceedings of the 8th Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,
July 10-12, 2006, Venice, Italy, A. Bossi and M. J. Maher, Eds., ACM, 2006, pp. 133–144, isbn:
1-59593-388-3. doi: 10.1145/1140335.1140352. [Online]. Available: http://doi.acm.org/10.
1145/1140335.1140352.

[61] D. B. MacQueen, G. D. Plotkin, and R. Sethi, “An ideal model for recursive polymorphic types,”
Information and Control, vol. 71, no. 1/2, pp. 95–130, 1986. doi: 10.1016/S0019-9958(86)
80019-5. [Online]. Available: http://dx.doi.org/10.1016/S0019-9958(86)80019-5.

[62] C. McBride, “Faking it: Simulating dependent types in haskell,” J. Funct. Program., vol. 12, no.
4&5, pp. 375–392, 2002. doi: 10.1017/S0956796802004355. [Online]. Available: http://dx.
doi.org/10.1017/S0956796802004355.

[63] C. McBride and R. Paterson, “Applicative programming with effects,” J. Funct. Program., vol.
18, no. 1, pp. 1–13, 2008. doi: 10.1017/S0956796807006326. [Online]. Available: http://dx.
doi.org/10.1017/S0956796807006326.

[64] D. Miller and G. Nadathur, Programming with Higher-Order Logic. Cambridge University Press,
2012, isbn: 978-0-521-87940-8. [Online]. Available: http://www.cambridge.org/de/academic/
subjects/computer-science/programming-languages-and-applied-logic/programming-

higher-order-logic?format=HB.

[65] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov, “Uniform proofs as a foundation for logic
programming,” Ann. Pure Appl. Logic, vol. 51, no. 1-2, pp. 125–157, 1991. doi: 10.1016/0168-
0072(91)90068-W. [Online]. Available: http://dx.doi.org/10.1016/0168-0072(91)90068-W.

[66] R. Milner, “A theory of type polymorphism in programming,” J. Comput. Syst. Sci., vol. 17,
no. 3, pp. 348–375, 1978. doi: 10.1016/0022-0000(78)90014-4. [Online]. Available: http:
//dx.doi.org/10.1016/0022-0000(78)90014-4.

[67] ——, Communication and concurrency, ser. PHI Series in computer science. Prentice Hall, 1989,
isbn: 978-0-13-115007-2.

[68] I. Moerdijk and E. Palmgren, “Wellfounded trees in categories,” Ann. Pure Appl. Logic, vol.
104, no. 1-3, pp. 189–218, 2000. doi: 10.1016/S0168-0072(00)00012-9. [Online]. Available:
http://dx.doi.org/10.1016/S0168-0072(00)00012-9.

[69] J. H. Morris, “Lambda-calculus models of programming languages,” PhD thesis, Massachusetts
Institute of Technology, 1968, p. 134. doi: 1721.1/64850.

[70] L. S. Moss and N. Danner, “On the foundations of corecursion,” Logic Journal of the IGPL,
vol. 5, no. 2, pp. 231–257, 1997. doi: 10.1093/jigpal/5.2.231. [Online]. Available: http:
//dx.doi.org/10.1093/jigpal/5.2.231.

[71] U. Norell, “Dependently typed programming in agda,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 5832 LNCS, 2009, pp. 230–266, isbn: 3642046517. doi: 10.1007/978-3-642-04652-0_5.

[72] B. C. d. S. Oliveira, T. Schrijvers, W. Choi, W. Lee, and K. Yi, “The implicit calculus: A new
foundation for generic programming,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, J. Vitek, H. Lin, and
F. Tip, Eds., ACM, 2012, pp. 35–44, isbn: 978-1-4503-1205-9. doi: 10.1145/2254064.2254070.
[Online]. Available: http://doi.acm.org/10.1145/2254064.2254070.

[73] L. C. Paulson and A. W. Smith, “Logic programming, functional programming, and inductive
definitions,” CoRR, vol. cs.LO/9301109, 1993. [Online]. Available: http://arxiv.org/abs/cs.
LO/9301109.

[74] B. C. Pierce, Types and programming languages. MIT Press, 2002, isbn: 978-0-262-16209-8.

[75] A. M. Pitts, “Parametric polymorphism and operational equivalence,” Electr. Notes Theor. Com-
put. Sci., vol. 10, pp. 2–27, 1997. doi: 10.1016/S1571-0661(05)80685-1. [Online]. Available:
http://dx.doi.org/10.1016/S1571-0661(05)80685-1.

[76] G. D. Plotkin and J. Power, “Algebraic operations and generic effects,” Applied Categorical Struc-
tures, vol. 11, no. 1, pp. 69–94, 2003. doi: 10.1023/A:1023064908962. [Online]. Available: http:
//dx.doi.org/10.1023/A:1023064908962.

[77] J. Power and H. Watanabe, “Combining a monad and a comonad,” Theor. Comput. Sci., vol.
280, no. 1-2, pp. 137–162, 2002. doi: 10.1016/S0304-3975(01)00024-X. [Online]. Available:
http://dx.doi.org/10.1016/S0304-3975(01)00024-X.

[78] G. Rosu and D. Lucanu, “Circular coinduction: A proof theoretical foundation,” in Algebra and
Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy,
September 7-10, 2009. Proceedings, A. Kurz, M. Lenisa, and A. Tarlecki, Eds., ser. Lecture Notes
in Computer Science, vol. 5728, Springer, 2009, pp. 127–144, isbn: 978-3-642-03740-5. doi: 10.
1007/978-3-642-03741-2_10. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
03741-2_10.

[79] J. J.M. M. Rutten, “Behavioural differential equations: a coinductive calculus of streams, au-
tomata, and power series,” Theoretical Computer Science, vol. 308, no. 1-3, pp. 1–53, 2003, issn:
03043975. doi: 10.1016/S0304-3975(02)00895-2.

[80] D. Sangiorgi, “On the origins of bisimulation and coinduction,” ACM Trans. Program. Lang.
Syst., vol. 31, no. 4, 2009. doi: 10.1145/1516507.1516510. [Online]. Available: http://doi.
acm.org/10.1145/1516507.1516510.

[81] D. D. Schreye, V. Nys, and C. J. Nicholson, “Analysing and compiling coroutines with abstract
conjunctive partial deduction,” in Logic-Based Program Synthesis and Transformation - 24th In-
ternational Symposium, LOPSTR 2014, Canterbury, UK, September 9-11, 2014. Revised Selected
Papers, M. Proietti and H. Seki, Eds., ser. Lecture Notes in Computer Science, vol. 8981, Springer,
2014, pp. 21–38, isbn: 978-3-319-17821-9. doi: 10.1007/978-3-319-17822-6_2. [Online]. Avail-
able: http://dx.doi.org/10.1007/978-3-319-17822-6_2.

[82] T. Schrijvers, S. L. P. Jones, M. M. T. Chakravarty, and M. Sulzmann, “Type checking with
open type functions,” in Proceeding of the 13th ACM SIGPLAN international conference on
Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008, J. Hook
and P. Thiemann, Eds., ACM, 2008, pp. 51–62, isbn: 978-1-59593-919-7. doi: 10.1145/1411204.
1411215. [Online]. Available: http://doi.acm.org/10.1145/1411204.1411215.

[83] L. Simon, A. Bansal, A. Mallya, and G. Gupta, “Co-logic programming: Extending logic pro-
gramming with coinduction,” in Automata, Languages and Programming, 34th International Col-
loquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, L. Arge, C. Cachin, T.
Jurdzinski, and A. Tarlecki, Eds., ser. Lecture Notes in Computer Science, vol. 4596, Springer,
2007, pp. 472–483, isbn: 978-3-540-73419-2. doi: 10.1007/978-3-540-73420-8_42. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-73420-8_42.

[84] A. Simpson and G. Plotkin, “Complete axioms for categorical fixed-point operators,” Proceedings
Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332), pp. 30–
41, 2000. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=855753.

[85] S. Staton, “An algebraic presentation of predicate logic - (extended abstract),” in Foundations of
Software Science and Computation Structures - 16th International Conference, FOSSACS 2013,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, F. Pfenning, Ed., ser. Lecture Notes in Computer
Science, vol. 7794, Springer, 2013, pp. 401–417, isbn: 978-3-642-37074-8. doi: 10.1007/978-3-
642-37075-5_26. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-37075-5_26.

[86] P. J. Stuckey and M. Sulzmann, “A theory of overloading,” ACM Trans. Program. Lang. Syst.,
vol. 27, no. 6, pp. 1216–1269, 2005. doi: 10.1145/1108970.1108974. [Online]. Available: http:
//doi.acm.org/10.1145/1108970.1108974.

[87] M. Sulzmann, G. J. Duck, S. L. P. Jones, and P. J. Stuckey, “Understanding functional de-
pendencies via constraint handling rules,” J. Funct. Program., vol. 17, no. 1, pp. 83–129, 2007.
doi: 10 . 1017 / S0956796806006137. [Online]. Available: http : / / dx . doi . org / 10 . 1017 /

S0956796806006137.

[88] G. Sutcliffe, “The tptp problem library and associated infrastructure : the fof and cnf parts,
v3.5.0,” Journal of Automated Reasoning, vol. 43, no. 4, pp. 337–362, 2009, issn: 01687433. doi:
10.1007/s10817-009-9143-8.

[89] H. Thielemann, “How to refine polynomial functions,” IJWMIP, vol. 10, no. 3, 2012. doi: 10.
1142/S0219691312500270. [Online]. Available: http://dx.doi.org/10.1142/S0219691312500270.

[90] D. Vytiniotis, S. L. P. Jones, T. Schrijvers, and M. Sulzmann, “Outsidein(x) modular type infer-
ence with local assumptions,” J. Funct. Program., vol. 21, no. 4-5, pp. 333–412, 2011. doi: 10.
1017/S0956796811000098. [Online]. Available: http://dx.doi.org/10.1017/S0956796811000098.

[91] P. Wadler, “Theorems for free!” In Proceedings of the fourth international conference on Functional
programming languages and computer architecture, FPCA 1989, London, UK, September 11-13,
1989, J. E. Stoy, Ed., ACM, 1989, pp. 347–359, isbn: 0-201-51389-7. doi: 10.1145/99370.99404.
[Online]. Available: http://doi.acm.org/10.1145/99370.99404.

[92] P. Wadler and S. Blott, “How to make ad-hoc polymorphism less ad-hoc,” in Conference Record of
the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, ACM Press, 1989, pp. 60–76, isbn: 0-89791-294-2. doi: 10.1145/
75277.75283. [Online]. Available: http://doi.acm.org/10.1145/75277.75283.

[93] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko, “Horn clause solvers for program veri-
fication,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), vol. 9300, 2015, pp. 24–51, isbn: 9783319235332.
doi: 10.1007/978-3-319-23534-9_2. [Online]. Available: http://link.springer.com/10.
1007/978-3-319-23534-9{_}2.

[94] H. Geuvers and R. Nederpelt, “N.g. de bruijn’s contribution to the formalization of mathematics,”
Indagationes Mathematicae, vol. 24, no. 4, pp. 1034–1049, 2013, issn: 00193577. doi: 10.1016/j.
indag.2013.09.003. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0019357713000700.

[95] R. Jhala, R. Majumdar, and A. Rybalchenko, “Hmc : verifying functional programs,” pp. 470–
485, 2011.

[96] E. Komendantskaya and J. Power, “Logic programming: laxness and saturation,” 2016. arXiv:
1608.07708. [Online]. Available: http://arxiv.org/abs/1608.07708.

[97] ——, “Logic programming: laxness and saturation,” 2016. arXiv: 1608.07708. [Online]. Available:
http://arxiv.org/abs/1608.07708.

[98] N. P. Mendler, P. Panangaden, P. J. Scott, and R. A. G. Seely, “A logical view of concurrent
constraint programming,” Nordic J. of Computing, vol. 2, no. 2, pp. 181–220, 1995.

[99] M. Odersky, M. Sulzmann, and M. Wehr, “Type inference with constrained types,” Theory and
Practice of Object Systems, vol. 5, no. 1, pp. 35–55, 1999, issn: 1074-3227. doi: 10.1002/(SICI)
1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4. [Online]. Available: http://doi.
wiley.com/10.1002/{\%}28SICI{\%}291096- 9942{\%}28199901/03{\%}295{\%}3A1{\%

}3C35{\%}3A{\%}3AAID-TAPO4{\%}3E3.0.CO{\%}3B2-4.

[100] P. W. O’Hearn and R. D. Tennent, “Parametricity and local variables,” Journal of the ACM, vol.
42, no. 3, pp. 658–709, 1995, issn: 00045411. doi: 10.1145/210346.210425. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=210346.210425.

[101] C.-H. L. Ong and S. J. Ramsay, “Verifying higher-order functional programs with pattern-matching
algebraic data types,” SIGPLAN Not., vol. 46, no. 1, pp. 587–598, 2011, issn: 0362-1340. doi:
10.1145/1925844.1926453. [Online]. Available: http://doi.acm.org/10.1145/1925844.
1926453{\%}5Cnhttp://dl.acm.org/ft{_}gateway.cfm?id=1926453{\&}type=pdf.

[102] F. Pfenning, “Logic programming in the lf logical framework,” First Workshop on Logical Frame-
works, pp. 1–25, 1991. [Online]. Available: http://books.google.com/books?hl=en{\&}lr=
{\&}id=X9wfWwslFQIC{\&}oi=fnd{\&}pg=PA149{\&}dq=Logic+Programming+in+the+LF+

Logical+Framework{\&}ots=LfrwT41GfT{\&}sig=AymIHgqAw{_}M3EiIPGvlpnR2J34M.

[103] F. Pfenning and C. Schürmann, “System description: twelf a meta-logical framework for deductive
systems,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 1632, pp. 202–206, 1999, issn: 16113349.
doi: 10.1007/3-540-48660-7_14.

[104] V. Simonet and F. Pottier, “A constraint-based approach to guarded algebraic data types,” ACM
Transactions on Programming Languages and Systems, vol. 29, no. 1, 1–es, 2007, issn: 01640925.
doi: 10.1145/1180475.1180476. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=1180475.1180476.

