
Maintainable type classes for Haskell
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State of affairs ...

I GHC 7.8.4 (latest) released Dec 23, 2014

I GHC 7.10.1 final release scheduled for Mar 20, 2015

I Functor–Applicative–Monad proposal[5, 1, 6]
I Prelude 7.10 - Plan FTP [2]
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Motivation

Library.hs

Client.hs

module Library where

class Eq’ a where
(≡′) :: a → a → Bool

class

Eq’ a ⇒

Ord’ a where
(≤′) :: a → a → Bool

import Library

data Foo = ...

instance Eq’ Foo where
(≡′) = ...

instance Ord’ Foo where
(≤′) = ...

[1 of 1] Compiling Client ...
No instance for (Eq’ Foo)

arising from the superclasses of an instance declaration
In the instance declaration for ‘Ord’ ClientData‘
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The Problem

It is not generally possible to alter type class hierarchy and maintain
backward compatibility.

Some changes are not viable in principle – e. g. removing a class that is
beiing used – and can be solved by DEPRECATED pragma.

On the other hand there is no way to add a superclass into the class
context – existing code does not provide instances.
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Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class

Eq a ⇒

Bar a where

xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢
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Previous solution attempts

There are some attempts to deal with the problem:
I Arbitrary change with the compiler support –

Functor–Applicative–Monad proposal.

I Various language extension proposals, none of them implemented.
Most of them lacks formal description.

I The Strathclyde Haskell Enhancement[8]
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Arbitrary change with compiler support

Three phase process:

I Phase 1: Introduce compiler warnings aka “Applicative/Monad
proposal related warnings (AMP phase 1)”[1],

ticket opened 20 and closed 17 months ago

I Phase 2: Prepare Hackage
I Phase 3: Do the change aka “Implement Functor =>Applicative

=>Monad Hierarchy (aka AMP phase 3)”[6],

ticket opened 4 years ago, yet to be closed
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Various language extension proposals

I Dates back to 2006

I None implemented, only incomplete specifications
I Three line of ideas:

I Superclass default instances
I Default methods
I Class aliases
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The Strathclyde Haskell Enhancement

I by Connor McBride

I a language preprocessor
I limited version of Default Superclass Instances proposal

eg. instance visible only within one module
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Our solution - Default Superclass Instances

The instance may be generated automatically:

class

Eq’ ⇒

Ord’ a where
(<′) :: a → a → Bool
(>′) :: a → a → Bool

default instance Eq’ a where
a ≡′ b = (a ≤′ b) && (b ≤′ a)

We provide the formal syntax and the semantics.
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Applications
I Functor–Applicative–Monad classes

I Introduce Bind and Pointed classed
I Provide Functor and Foldable default superclasses instances of

Traversable

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

default instance Applicative m where
pure x = return x
pf (<*>) px = px >>= \ x -> pf

>>= \ f -> return (f x)

default instance Functor m where
fmap f x = pure f >>= \ g -> return (g x)
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Applications
I Functor–Applicative–Monad classes
I Introduce Bind and Pointed classed
I Provide Functor and Foldable default superclasses instances of

Traversable

class Functor
fmap :: (a→ b)→ f a→ f b

class Pointed
pure :: a→ f a

class Bind
bind :: f a→ (a→ f b)→ f b

class Applicative
(<∗>) :: f (a→ b)→ f a→ f b

class Monad
return :: a→ f a

(>>=) :: f a→ (a→ f b)→ f b

Figure: Refactored class structure
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Applications (cont.)
{-# LANGUAGE SuperclassDefaultInstance #-}
newtype Id a = Id { getId :: a }
newtype Const a = Const { getConst :: a }

instance Functor Identity where
fmap f (Id x) = Id (f x)

instance Traversable (Const m) where
traverse _ (Const m) = pure (Const m)

class (Functor t, Foldable t) => Traversable t where
...
default instance Functor t where

fmap f = getId . traverse (Id . f)
default instance Foldable t where

foldMap f = getConst . traverse (Const . f)

Frantǐsek Farka Maintainable type classes March 25, 2015 13 / 18



GHC implementation

Proof-of-concept implementation of our
proposal.

Enables a new language extension
SuperclassDefaultInstances

source.hs

Parse

Rename

Typecheck

Desugar

. . .
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Summary

I What is the problem?
I Maintainability of hierarchies

I Can we provide a solution?
I Yes, Superclass Default Instances

I Is it a good solution?
I It is up to the community
I We have an implementation to test it
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