
Maintainable type classes for Haskell

Frantǐsek Farka

March 25, 2015

Frantǐsek Farka Maintainable type classes March 25, 2015 1 / 18



State of affairs ...

I GHC 7.8.4 (latest) released Dec 23, 2014

I GHC 7.10.1 final release scheduled for Mar 20, 2015

I Functor–Applicative–Monad proposal[5, 1, 6]
I Prelude 7.10 - Plan FTP [2]

Frantǐsek Farka Maintainable type classes March 25, 2015 2 / 18



State of affairs ...

I GHC 7.8.4 (latest) released Dec 23, 2014
I GHC 7.10.1 final release scheduled for Mar 20, 2015

I Functor–Applicative–Monad proposal[5, 1, 6]
I Prelude 7.10 - Plan FTP [2]

Frantǐsek Farka Maintainable type classes March 25, 2015 2 / 18



State of affairs ...

I GHC 7.8.4 (latest) released Dec 23, 2014
I GHC 7.10.1 final release scheduled for Mar 20, 2015

I Functor–Applicative–Monad proposal[5, 1, 6]

I Prelude 7.10 - Plan FTP [2]

Frantǐsek Farka Maintainable type classes March 25, 2015 2 / 18



State of affairs ...

I GHC 7.8.4 (latest) released Dec 23, 2014
I GHC 7.10.1 final release scheduled for Mar 20, 2015

I Functor–Applicative–Monad proposal[5, 1, 6]
I Prelude 7.10 - Plan FTP [2]

Frantǐsek Farka Maintainable type classes March 25, 2015 2 / 18



Motivation

Library.hs

Client.hs

module Library where

class Eq’ a where
(≡′) :: a → a → Bool

class

Eq’ a ⇒

Ord’ a where
(≤′) :: a → a → Bool

import Library

data Foo = ...

instance Eq’ Foo where
(≡′) = ...

instance Ord’ Foo where
(≤′) = ...

[1 of 1] Compiling Client ...
No instance for (Eq’ Foo)

arising from the superclasses of an instance declaration
In the instance declaration for ‘Ord’ ClientData‘

Frantǐsek Farka Maintainable type classes March 25, 2015 3 / 18



Motivation

Library.hs Client.hs

module Library where

class Eq’ a where
(≡′) :: a → a → Bool

class

Eq’ a ⇒

Ord’ a where
(≤′) :: a → a → Bool

import Library

data Foo = ...

instance Eq’ Foo where
(≡′) = ...

instance Ord’ Foo where
(≤′) = ...

[1 of 1] Compiling Client ...
No instance for (Eq’ Foo)

arising from the superclasses of an instance declaration
In the instance declaration for ‘Ord’ ClientData‘

Frantǐsek Farka Maintainable type classes March 25, 2015 3 / 18



Motivation

Library.hs Client.hs

module Library where

class Eq’ a where
(≡′) :: a → a → Bool

class

Eq’ a ⇒

Ord’ a where
(≤′) :: a → a → Bool

import Library

data Foo = ...

instance Eq’ Foo where
(≡′) = ...

instance Ord’ Foo where
(≤′) = ...

[1 of 1] Compiling Client ...
No instance for (Eq’ Foo)

arising from the superclasses of an instance declaration
In the instance declaration for ‘Ord’ ClientData‘

Frantǐsek Farka Maintainable type classes March 25, 2015 3 / 18



Motivation

Library.hs Client.hs

module Library where

class Eq’ a where
(≡′) :: a → a → Bool

class Eq’ a ⇒ Ord’ a where
(≤′) :: a → a → Bool

import Library

data Foo = ...

instance Eq’ Foo where
(≡′) = ...

instance Ord’ Foo where
(≤′) = ...

[1 of 1] Compiling Client ...
No instance for (Eq’ Foo)

arising from the superclasses of an instance declaration
In the instance declaration for ‘Ord’ ClientData‘

Frantǐsek Farka Maintainable type classes March 25, 2015 3 / 18



Motivation

Library.hs Client.hs

module Library where

class Eq’ a where
(≡′) :: a → a → Bool

class Eq’ a ⇒ Ord’ a where
(≤′) :: a → a → Bool

import Library

data Foo = ...

instance Eq’ Foo where
(≡′) = ...

instance Ord’ Foo where
(≤′) = ...

[1 of 1] Compiling Client ...
No instance for (Eq’ Foo)

arising from the superclasses of an instance declaration
In the instance declaration for ‘Ord’ ClientData‘

Frantǐsek Farka Maintainable type classes March 25, 2015 3 / 18



Motivation

Library.hs Client.hs

module Library where

class Eq’ a where
(≡′) :: a → a → Bool

class Eq’ a ⇒ Ord’ a where
(≤′) :: a → a → Bool

import Library

data Foo = ...

instance Eq’ Foo where
(≡′) = ...

instance Ord’ Foo where
(≤′) = ...

[1 of 1] Compiling Client ...
No instance for (Eq’ Foo)

arising from the superclasses of an instance declaration
In the instance declaration for ‘Ord’ ClientData‘

Frantǐsek Farka Maintainable type classes March 25, 2015 3 / 18



The Problem

It is not generally possible to alter type class hierarchy and maintain
backward compatibility.

Some changes are not viable in principle – e. g. removing a class that is
beiing used – and can be solved by DEPRECATED pragma.

On the other hand there is no way to add a superclass into the class
context – existing code does not provide instances.

Frantǐsek Farka Maintainable type classes March 25, 2015 4 / 18



The Problem

It is not generally possible to alter type class hierarchy and maintain
backward compatibility.

Some changes are not viable in principle – e. g. removing a class that is
beiing used – and can be solved by DEPRECATED pragma.

On the other hand there is no way to add a superclass into the class
context – existing code does not provide instances.

Frantǐsek Farka Maintainable type classes March 25, 2015 4 / 18



The Problem

It is not generally possible to alter type class hierarchy and maintain
backward compatibility.

Some changes are not viable in principle – e. g. removing a class that is
beiing used – and can be solved by DEPRECATED pragma.

On the other hand there is no way to add a superclass into the class
context – existing code does not provide instances.

Frantǐsek Farka Maintainable type classes March 25, 2015 4 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class

Eq a ⇒

Bar a where

xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class

2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class

Eq a ⇒

Bar a where

class Bar a ⇒ Baz a where

xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class

3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class

Eq a ⇒

Bar a where

class Bar a ⇒ Baz a where

xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint

4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where

xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint

5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where

xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method

6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where
qux :: a → ...
xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where
qux :: a → ...
xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where
qux :: a → ...
xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where
qux :: a → ...
xyz :: a → ...

Actions 1,4, and 5 are non-breaking

Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where
qux :: a → ...
xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle

Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where
qux :: a → ...
xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Problem (cont.)
We can show that the problem can be decomposed to primitive operations

1. Add an empty class
2. Remove an empty class
3. Add a superclass constraint
4. Remove a superclass constraint
5. Add a new method
6. Remove an existing method

class Foo a where

class Eq a ⇒ Bar a where

class Bar a ⇒ Baz a where
qux :: a → ...
xyz :: a → ...

Actions 1,4, and 5 are non-breaking
Actions 2 and 6 can be dealt with by a deprecation cycle
Action 4 is the only problem

�here are two
hard thing¢ in computer

science: cache invalidatio
n, naming

thing¢, and
off-by-one error¢

Frantǐsek Farka Maintainable type classes March 25, 2015 5 / 18



Previous solution attempts

There are some attempts to deal with the problem:
I Arbitrary change with the compiler support –

Functor–Applicative–Monad proposal.

I Various language extension proposals, none of them implemented.
Most of them lacks formal description.

I The Strathclyde Haskell Enhancement[8]

Frantǐsek Farka Maintainable type classes March 25, 2015 6 / 18



Previous solution attempts

There are some attempts to deal with the problem:
I Arbitrary change with the compiler support –

Functor–Applicative–Monad proposal.
I Various language extension proposals, none of them implemented.

Most of them lacks formal description.

I The Strathclyde Haskell Enhancement[8]

Frantǐsek Farka Maintainable type classes March 25, 2015 6 / 18



Previous solution attempts

There are some attempts to deal with the problem:
I Arbitrary change with the compiler support –

Functor–Applicative–Monad proposal.
I Various language extension proposals, none of them implemented.

Most of them lacks formal description.
I The Strathclyde Haskell Enhancement[8]

Frantǐsek Farka Maintainable type classes March 25, 2015 6 / 18



Arbitrary change with compiler support

Three phase process:

I Phase 1: Introduce compiler warnings aka “Applicative/Monad
proposal related warnings (AMP phase 1)”[1],

ticket opened 20 and closed 17 months ago

I Phase 2: Prepare Hackage
I Phase 3: Do the change aka “Implement Functor =>Applicative

=>Monad Hierarchy (aka AMP phase 3)”[6],

ticket opened 4 years ago, yet to be closed

Frantǐsek Farka Maintainable type classes March 25, 2015 7 / 18



Arbitrary change with compiler support

Three phase process:
I Phase 1: Introduce compiler warnings aka “Applicative/Monad

proposal related warnings (AMP phase 1)”[1],

ticket opened 20 and closed 17 months ago

I Phase 2: Prepare Hackage
I Phase 3: Do the change aka “Implement Functor =>Applicative

=>Monad Hierarchy (aka AMP phase 3)”[6],

ticket opened 4 years ago, yet to be closed

Frantǐsek Farka Maintainable type classes March 25, 2015 7 / 18



Arbitrary change with compiler support

Three phase process:
I Phase 1: Introduce compiler warnings aka “Applicative/Monad

proposal related warnings (AMP phase 1)”[1],

ticket opened 20 and closed 17 months ago

I Phase 2: Prepare Hackage

I Phase 3: Do the change aka “Implement Functor =>Applicative
=>Monad Hierarchy (aka AMP phase 3)”[6],

ticket opened 4 years ago, yet to be closed

Frantǐsek Farka Maintainable type classes March 25, 2015 7 / 18



Arbitrary change with compiler support

Three phase process:
I Phase 1: Introduce compiler warnings aka “Applicative/Monad

proposal related warnings (AMP phase 1)”[1],

ticket opened 20 and closed 17 months ago

I Phase 2: Prepare Hackage
I Phase 3: Do the change aka “Implement Functor =>Applicative

=>Monad Hierarchy (aka AMP phase 3)”[6],

ticket opened 4 years ago, yet to be closed

Frantǐsek Farka Maintainable type classes March 25, 2015 7 / 18



Arbitrary change with compiler support

Three phase process:
I Phase 1: Introduce compiler warnings aka “Applicative/Monad

proposal related warnings (AMP phase 1)”[1],

ticket opened 20 and closed 17 months ago

I Phase 2: Prepare Hackage
I Phase 3: Do the change aka “Implement Functor =>Applicative

=>Monad Hierarchy (aka AMP phase 3)”[6],

ticket opened 4 years ago, yet to be closed

Frantǐsek Farka Maintainable type classes March 25, 2015 7 / 18



Various language extension proposals

I Dates back to 2006

I None implemented, only incomplete specifications
I Three line of ideas:

I Superclass default instances
I Default methods
I Class aliases

Frantǐsek Farka Maintainable type classes March 25, 2015 8 / 18



Various language extension proposals

I Dates back to 2006
I None implemented, only incomplete specifications

I Three line of ideas:

I Superclass default instances
I Default methods
I Class aliases

Frantǐsek Farka Maintainable type classes March 25, 2015 8 / 18



Various language extension proposals

I Dates back to 2006
I None implemented, only incomplete specifications
I Three line of ideas:

I Superclass default instances
I Default methods
I Class aliases

Frantǐsek Farka Maintainable type classes March 25, 2015 8 / 18



Various language extension proposals

I Dates back to 2006
I None implemented, only incomplete specifications
I Three line of ideas:

I Superclass default instances

I Default methods
I Class aliases

Frantǐsek Farka Maintainable type classes March 25, 2015 8 / 18



Various language extension proposals

I Dates back to 2006
I None implemented, only incomplete specifications
I Three line of ideas:

I Superclass default instances
I Default methods

I Class aliases

Frantǐsek Farka Maintainable type classes March 25, 2015 8 / 18



Various language extension proposals

I Dates back to 2006
I None implemented, only incomplete specifications
I Three line of ideas:

I Superclass default instances
I Default methods
I Class aliases

Frantǐsek Farka Maintainable type classes March 25, 2015 8 / 18



The Strathclyde Haskell Enhancement

I by Connor McBride

I a language preprocessor
I limited version of Default Superclass Instances proposal

eg. instance visible only within one module

Frantǐsek Farka Maintainable type classes March 25, 2015 9 / 18



The Strathclyde Haskell Enhancement

I by Connor McBride
I a language preprocessor

I limited version of Default Superclass Instances proposal
eg. instance visible only within one module

Frantǐsek Farka Maintainable type classes March 25, 2015 9 / 18



The Strathclyde Haskell Enhancement

I by Connor McBride
I a language preprocessor
I limited version of Default Superclass Instances proposal

eg. instance visible only within one module

Frantǐsek Farka Maintainable type classes March 25, 2015 9 / 18



Our solution - Default Superclass Instances

The instance may be generated automatically:

class

Eq’ ⇒

Ord’ a where
(<′) :: a → a → Bool
(>′) :: a → a → Bool

default instance Eq’ a where
a ≡′ b = (a ≤′ b) && (b ≤′ a)

We provide the formal syntax and the semantics.

Frantǐsek Farka Maintainable type classes March 25, 2015 10 / 18



Our solution - Default Superclass Instances

The instance may be generated automatically:

class

Eq’ ⇒

Ord’ a where
(<′) :: a → a → Bool
(>′) :: a → a → Bool

default instance Eq’ a where
a ≡′ b = (a ≤′ b) && (b ≤′ a)

We provide the formal syntax and the semantics.

Frantǐsek Farka Maintainable type classes March 25, 2015 10 / 18



Our solution - Default Superclass Instances

The instance may be generated automatically:

class Eq’ ⇒ Ord’ a where
(<′) :: a → a → Bool
(>′) :: a → a → Bool

default instance Eq’ a where
a ≡′ b = (a ≤′ b) && (b ≤′ a)

We provide the formal syntax and the semantics.

Frantǐsek Farka Maintainable type classes March 25, 2015 10 / 18



Our solution - Default Superclass Instances

The instance may be generated automatically:

class Eq’ ⇒ Ord’ a where
(<′) :: a → a → Bool
(>′) :: a → a → Bool

default instance Eq’ a where
a ≡′ b = (a ≤′ b) && (b ≤′ a)

We provide the formal syntax and the semantics.

Frantǐsek Farka Maintainable type classes March 25, 2015 10 / 18



Applications
I Functor–Applicative–Monad classes

I Introduce Bind and Pointed classed
I Provide Functor and Foldable default superclasses instances of

Traversable

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

default instance Applicative m where
pure x = return x
pf (<*>) px = px >>= \ x -> pf

>>= \ f -> return (f x)

default instance Functor m where
fmap f x = pure f >>= \ g -> return (g x)

Frantǐsek Farka Maintainable type classes March 25, 2015 11 / 18



Applications
I Functor–Applicative–Monad classes
I Introduce Bind and Pointed classed

I Provide Functor and Foldable default superclasses instances of
Traversable

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

default instance Applicative m where
pure x = return x
pf (<*>) px = px >>= \ x -> pf

>>= \ f -> return (f x)

default instance Functor m where
fmap f x = pure f >>= \ g -> return (g x)

Frantǐsek Farka Maintainable type classes March 25, 2015 11 / 18



Applications
I Functor–Applicative–Monad classes
I Introduce Bind and Pointed classed
I Provide Functor and Foldable default superclasses instances of

Traversable

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

default instance Applicative m where
pure x = return x
pf (<*>) px = px >>= \ x -> pf

>>= \ f -> return (f x)

default instance Functor m where
fmap f x = pure f >>= \ g -> return (g x)

Frantǐsek Farka Maintainable type classes March 25, 2015 11 / 18



Applications
I Functor–Applicative–Monad classes
I Introduce Bind and Pointed classed
I Provide Functor and Foldable default superclasses instances of

Traversable

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

default instance Applicative m where
pure x = return x
pf (<*>) px = px >>= \ x -> pf

>>= \ f -> return (f x)

default instance Functor m where
fmap f x = pure f >>= \ g -> return (g x)

Frantǐsek Farka Maintainable type classes March 25, 2015 11 / 18



Applications
I Functor–Applicative–Monad classes
I Introduce Bind and Pointed classed
I Provide Functor and Foldable default superclasses instances of

Traversable

class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

default instance Applicative m where
pure x = return x
pf (<*>) px = px >>= \ x -> pf

>>= \ f -> return (f x)

default instance Functor m where
fmap f x = pure f >>= \ g -> return (g x)

Frantǐsek Farka Maintainable type classes March 25, 2015 11 / 18



Applications
I Functor–Applicative–Monad classes
I Introduce Bind and Pointed classed
I Provide Functor and Foldable default superclasses instances of

Traversable

class Functor
fmap :: (a→ b)→ f a→ f b

class Pointed
pure :: a→ f a

class Bind
bind :: f a→ (a→ f b)→ f b

class Applicative
(<∗>) :: f (a→ b)→ f a→ f b

class Monad
return :: a→ f a

(>>=) :: f a→ (a→ f b)→ f b

Figure: Refactored class structure

Frantǐsek Farka Maintainable type classes March 25, 2015 12 / 18



Applications (cont.)
{-# LANGUAGE SuperclassDefaultInstance #-}
newtype Id a = Id { getId :: a }
newtype Const a = Const { getConst :: a }

instance Functor Identity where
fmap f (Id x) = Id (f x)

instance Traversable (Const m) where
traverse _ (Const m) = pure (Const m)

class (Functor t, Foldable t) => Traversable t where
...
default instance Functor t where

fmap f = getId . traverse (Id . f)
default instance Foldable t where

foldMap f = getConst . traverse (Const . f)

Frantǐsek Farka Maintainable type classes March 25, 2015 13 / 18



GHC implementation

Proof-of-concept implementation of our
proposal.

Enables a new language extension
SuperclassDefaultInstances

source.hs

Parse

Rename

Typecheck

Desugar

. . .

Frantǐsek Farka Maintainable type classes March 25, 2015 14 / 18



GHC implementation

Proof-of-concept implementation of our
proposal.

Enables a new language extension
SuperclassDefaultInstances

source.hs

Parse

Rename

Typecheck

Desugar

. . .

Frantǐsek Farka Maintainable type classes March 25, 2015 14 / 18



GHC implementation

Proof-of-concept implementation of our
proposal.

Enables a new language extension
SuperclassDefaultInstances

source.hs

Parse

Rename

Typecheck

Desugar

. . .

Frantǐsek Farka Maintainable type classes March 25, 2015 14 / 18



Summary

I What is the problem?
I Maintainability of hierarchies

I Can we provide a solution?
I Yes, Superclass Default Instances

I Is it a good solution?
I It is up to the community
I We have an implementation to test it

Frantǐsek Farka Maintainable type classes March 25, 2015 15 / 18



Summary

I What is the problem?

I Maintainability of hierarchies
I Can we provide a solution?

I Yes, Superclass Default Instances
I Is it a good solution?

I It is up to the community
I We have an implementation to test it

Frantǐsek Farka Maintainable type classes March 25, 2015 15 / 18



Summary

I What is the problem?
I Maintainability of hierarchies

I Can we provide a solution?
I Yes, Superclass Default Instances

I Is it a good solution?
I It is up to the community
I We have an implementation to test it

Frantǐsek Farka Maintainable type classes March 25, 2015 15 / 18



Summary

I What is the problem?
I Maintainability of hierarchies

I Can we provide a solution?

I Yes, Superclass Default Instances
I Is it a good solution?

I It is up to the community
I We have an implementation to test it

Frantǐsek Farka Maintainable type classes March 25, 2015 15 / 18



Summary

I What is the problem?
I Maintainability of hierarchies

I Can we provide a solution?
I Yes, Superclass Default Instances

I Is it a good solution?
I It is up to the community
I We have an implementation to test it

Frantǐsek Farka Maintainable type classes March 25, 2015 15 / 18



Summary

I What is the problem?
I Maintainability of hierarchies

I Can we provide a solution?
I Yes, Superclass Default Instances

I Is it a good solution?

I It is up to the community
I We have an implementation to test it

Frantǐsek Farka Maintainable type classes March 25, 2015 15 / 18



Summary

I What is the problem?
I Maintainability of hierarchies

I Can we provide a solution?
I Yes, Superclass Default Instances

I Is it a good solution?
I It is up to the community
I We have an implementation to test it

Frantǐsek Farka Maintainable type classes March 25, 2015 15 / 18



Frantǐsek Farka Maintainable type classes March 25, 2015 16 / 18



Applicative/Monad proposal related warnings (AMP phase 1).
Online. July 2014. url:
https://ghc.haskell.org/trac/ghc/ticket/8004.
Applicative/Monad proposal related warnings (AMP phase 1).
Online. Feb. 2015. url:
https://ghc.haskell.org/trac/ghc/wiki/Prelude710.
Default superclass instances. Online. July 2014. url:
https://ghc.haskell.org/trac/ghc/wiki/
DefaultSuperclassInstances?version=30.
Karl-Filip Faxén. “A static semantics for Haskell”. In: Journal of
Functional Programming 12 (2002), pp. 295 –357.
Functor–Applicative–Monad Proposal. Online. July 2014. url:
http:
//www.haskell.org/haskellwiki/index.php?title=Functor-
Applicative-Monad_Proposal&oldid=58553.

Frantǐsek Farka Maintainable type classes March 25, 2015 17 / 18

https://ghc.haskell.org/trac/ghc/ticket/8004
https://ghc.haskell.org/trac/ghc/wiki/Prelude710
https://ghc.haskell.org/trac/ghc/wiki/ DefaultSuper classInstances?version=30
https://ghc.haskell.org/trac/ghc/wiki/ DefaultSuper classInstances?version=30
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553


Implement Functor => Applicative => Monad Hierarchy (aka AMP
phase 3). Online. Feb. 2015. url:
https://ghc.haskell.org/trac/ghc/ticket/4834.
Simon Marlow. Haskell 2010 Language Report. Tech. rep. June
2010. url:
http://www.haskell.org/onlinereport/haskell2010/.
Connor McBride. the Strathclyde Haskell Enhancement. Online. July
2014. url: https:
//personal.cis.strath.ac.uk/conor.mcbride/pub/she/.
John Meacham. Class Aliases. Online. url:
http://repetae.net/recent/out/classalias.html.

Frantǐsek Farka Maintainable type classes March 25, 2015 18 / 18

https://ghc.haskell.org/trac/ghc/ticket/4834
http://www.haskell.org/onlinereport/haskell2010/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
http://repetae.net/recent/out/classalias.html

	Introduction
	Motivation
	The Problem
	Superclass Default Instances
	Applications
	Implementation
	Summary

