
Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Algebraic Datatypes are Horn-Clause Theories

František Farka

University of Dundee, and
University of St Andrews
ff32@st-andrews.ac.uk

26 November 2015

26 November 2015 1/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Introduction

Logic programming

Programming in Horn-clause logic
Goals resolved by a search - SLD resolution
Automated theorem proving (ATP)

Functional programming

Program specified by a term
Type of a term is a proposition
Interactive theorem proving (ITP)

How are the two related?

26 November 2015 2/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Introduction

Logic programming

Programming in Horn-clause logic
Goals resolved by a search - SLD resolution
Automated theorem proving (ATP)

Functional programming

Program specified by a term
Type of a term is a proposition
Interactive theorem proving (ITP)

How are the two related?

26 November 2015 2/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Introduction (cont)

Propositions as Types

Due to Barendregt, 1991
Relating lambda calculi and different logics

λω λC

Propω Predω λ2 λΠ2

Prop2 Pred2 λω λΠω

Propω Predω λ→ λΠ

Prop Pred

26 November 2015 3/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Propositional Logic Programming

Propositional Logic Programming

Infinite set of elementary propositions P, propositions denoted nat,
bool, . . .

A set of clause names α, β0, . . . equipped with arity (ar(α) = 1, . . .)

A program is a set of Horn-clauses, i. e. clauses in the form

α :

H ← B0, . . .Bn

where ar(α) = n

Resolution step:

P `

β0 :

B0 , . . . , P `

βn :

Bn

P `

α(β0, . . . , βn) :

A

α :

A← B0 . . .Bn ∈ P

26 November 2015 4/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Propositional Logic Programming

Propositional Logic Programming

Infinite set of elementary propositions P, propositions denoted nat,
bool, . . .
A set of clause names α, β0, . . . equipped with arity (ar(α) = 1, . . .)
A program is a set of Horn-clauses, i. e. clauses in the form
α : H ← B0, . . .Bn where ar(α) = n
Resolution step:

P ` β0 : B0 , . . . , P ` βn : Bn

P ` α(β0, . . . , βn) : A
α : A← B0 . . .Bn ∈ P

26 November 2015 4/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Propositional Logic Programming (cont.)

A proof in PLP

Success tree - all leafs are empty goals

Note that success tree can have infinite branches (coinductive int.)

Applicative term as a proof

Example
Resolution in Pnat = {ζ : nat , σ : nat ← nat}

P ` ζ : nat
ζ : nat

P ` σ(ζ) : nat
σ : nat ← nat

. . .

P ` σ(. . .) : nat
σ : nat ← nat

P ` σ(σ(. . .)) : nat
σ : nat ← nat

26 November 2015 5/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Propositional Logic Programming (cont.)

A proof in PLP

Success tree - all leafs are empty goals
Note that success tree can have infinite branches (coinductive int.)
Applicative term as a proof

Example
Resolution in Pnat = {ζ : nat , σ : nat ← nat}

P ` ζ : nat
ζ : nat

P ` σ(ζ) : nat
σ : nat ← nat

. . .

P ` σ(. . .) : nat
σ : nat ← nat

P ` σ(σ(. . .)) : nat
σ : nat ← nat

26 November 2015 5/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Propositional Logic Programming (cont.)

Theorem: Inductive soundness and completeness
A proposition A is in the least Herbrand model MP of a program P iff
there is a finite term π s. t. P ` π : A

Theorem: Coinductive soundness
A proposition A is in the greatest Herbrand model Mω

P of a program P if
there is a finite term π s. t. P ` π : A

Herbrand models are as usual in LP

26 November 2015 6/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Propositional Logic Programming (cont.)

Theorem: Inductive soundness and completeness
A proposition A is in the least Herbrand model MP of a program P iff
there is a finite term π s. t. P ` π : A

Theorem: Coinductive soundness
A proposition A is in the greatest Herbrand model Mω

P of a program P if
there is a finite term π s. t. P ` π : A

Herbrand models are as usual in LP

26 November 2015 6/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Algebraic Datatypes

Simply Typed Lambda Calculus (Λ→)

Infinite set V of variables (x , y , . . .), and infinite set B of type
variables/identifiers: α, β, . . .

, nat, bool

Function types: σ → τ

Lambda abstraction, for y : σ the expression (λx : τ.y) is of type
τ → σ

Application, for x : σ → τ and y : σ is xy : τ

Algebraic Datatypes

Constructors and eliminators/destructors for algebraic data types

26 November 2015 7/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Algebraic Datatypes

Simply Typed Lambda Calculus (Λ→)

Infinite set V of variables (x , y , . . .), and infinite set B of type
variables/identifiers: α, β, . . . , nat, bool
Function types: σ → τ

Lambda abstraction, for y : σ the expression (λx : τ.y) is of type
τ → σ

Application, for x : σ → τ and y : σ is xy : τ

Algebraic Datatypes

Constructors and eliminators/destructors for algebraic data types

26 November 2015 7/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Algebraic Datatypes (cont.)

Algebraic Datatypes

Algebraic type is a type variable α and a set C of i constructors ci

Each constructor is equipped with arity n and with a n-tuple of types
Inference rules:

Γ ` t0 : βj,0 , . . . , Γ ` tar(cj) : βj,ar(cj)

Γ ` ci t0 . . . tar(cj) : α
CONcj

for j = 0, . . . i , and

Γ ` t : α
Γ, x0 : β0,0, . . . , xar(c0) : β0,ar(c0) ` s0 : γ

, . . . ,
Γ, xi : βi,0, . . . , xar(ci) : βi,ar(ci) ` si : γ

Γ ` case t of (s0, . . . , si) : γ
CASEα

26 November 2015 8/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Algebraic Datatypes (cont.)

Example (Algebraic Datatypes)

data Bool where
true : () → Nat
false : () → Nat

data Nat where
zero : Nat
succ : Nat → Nat

two : Nat
two = succ (succ zero)

prec : Nat → Nat
prec x = case x of

zero → zero
succ x0 → x0

26 November 2015 9/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

ADTs are Horn-Clause Theories

Translating ADTs to PLP, map | · |

Let there be an isomorphism of type variables B and propositions P
and of constructors and clause names
Then for each constructor ci s. t. ci : (β0, . . . , βn)→ α
|ci | = γi : A← B0, . . . ,Bn

Example (Nat and Bool)

|Nat| = {ζ : nat ; σ : nat ← nat}, |Bool | = {τ : bool ; φ : bool}

Lemma: PLP resolution for ADTs

For an ADT α and for a term t the following holds:

Γ `λ→ t : α iff |Γ | `PLP τ : A for some proof τ
and further Γ `λ→ |τ |−1

Cl : α

26 November 2015 10/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

ADTs are Horn-Clause Theories

Translating ADTs to PLP, map | · |

Let there be an isomorphism of type variables B and propositions P
and of constructors and clause names
Then for each constructor ci s. t. ci : (β0, . . . , βn)→ α
|ci | = γi : A← B0, . . . ,Bn

Example (Nat and Bool)

|Nat| = {ζ : nat ; σ : nat ← nat}, |Bool | = {τ : bool ; φ : bool}

Lemma: PLP resolution for ADTs

For an ADT α and for a term t the following holds:

Γ `λ→ t : α iff |Γ | `PLP τ : A for some proof τ
and further Γ `λ→ |τ |−1

Cl : α

26 November 2015 10/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Extending PLP resolution

Extending resolution step
We add a new resolution step for a goal of the shape A← B0, . . . ,Bn:
Let C be all the clauses γ0, . . . , γi of P with head A and let Bγi ,j be the
j-th preposition in the body of the clause γi

P, x0 : Bγ0,0, . . . xar(γ0) : Bγ0,ar(γ0),` δ0 : D
. . .

P, x0 : Bγi ,0, . . . xar(γi) : Bγi ,ar(γi),` δi : D
P ` λh.case h of (δ0, . . . , δi) : D ← A

γ0 . . . γi

Observation

Under the translation | · | the set C is exactly the set of constructors
of an ADT

26 November 2015 11/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Extending PLP resolution

Extending resolution step
We add a new resolution step for a goal of the shape A← B0, . . . ,Bn:
Let C be all the clauses γ0, . . . , γi of P with head A and let Bγi ,j be the
j-th preposition in the body of the clause γi

P, x0 : Bγ0,0, . . . xar(γ0) : Bγ0,ar(γ0),` δ0 : D
. . .

P, x0 : Bγi ,0, . . . xar(γi) : Bγi ,ar(γi),` δi : D
P ` λh.case h of (δ0, . . . , δi) : D ← A

γ0 . . . γi

Observation

Under the translation | · | the set C is exactly the set of constructors
of an ADT

26 November 2015 11/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

ADTs ad Horn-Clause Theories (cont.)

Extending map | · |

For an extension of a program P with a hypothesis - ADT constructor
ci : (β0, . . . , βn)→ α let

P, |ci | = P ∪
n⋃

j=0
{xci ,j : |βj |}

Lemma: PLP resolution for functions

For a function α→ β where α, β are ADTs, and for a term t the
following holds:

Γ `λ→ t : α→ β iff |Γ | `PLP τ : B ← A

for some proof τ
and further Γ `λ→ |τ |−1 : α→ β

26 November 2015 12/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees

And-Or Trees

Due to Komendantskaya and Johann, 2015

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even

even

ζ : even ε : even← odd

odd

⊥ζ ⊥o ε : odd ← even

even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε

26 November 2015 13/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees (cont.)

Inductive success

A finite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
ε(o(ζ))

ε(o(ζ)) :even

ζ : even ε : even← odd

o(ζ) :odd

⊥ζ ⊥o ε : odd ← even

ζ :even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε

26 November 2015 14/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees (cont.)

Inductive success

A finite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
ε(o(ζ))

ε(o(ζ)) : even

ζ : even ε : even← odd

o(ζ) : odd

⊥ζ ⊥o ε : odd ← even

ζ : even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε

26 November 2015 15/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees (cont.)

Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
νh.σεh = ε(o(σ(ε(. . .))))

CH1 = ∅ CH2 = {even} CH3 = {even, odd}

ε(o(. . .)) :even

ζ : even ε : even← odd

ε(. . .) :odd

⊥ζ ⊥o ε : odd ← even

h :even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε

26 November 2015 16/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees (cont.)

Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
νh.σεh = ε(o(σ(ε(. . .))))

CH1 = ∅ CH2 = {even}

CH3 = {even, odd}

ε(o(. . .)) :evenCH1

ζ : even ε : even← odd

ε(. . .) :oddCH2

⊥ζ ⊥o ε : odd ← even

h :evenCH3

ζ : even ε : even← odd

. . .

⊥ε

⊥ε

26 November 2015 17/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees (cont.)

Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
νh.εoh = ε(o(ε(o(. . .))))

CH1 = ∅ CH2 = {even}

CH3 = {even, odd}

ε(o(. . .)) : evenCH1

ζ : even ε : even← odd

o(. . .) : oddCH2

⊥ζ ⊥o ε : odd ← even

h : evenCH3

ζ : even ε : even← odd

. . .

⊥ε

⊥ε

26 November 2015 18/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees (cont.)

Theorem: Closing Infinite Branches with Coinductive Hypothesis

For every infinite branch in a resolution tree T there is an or node A
s. t. A ∈ CHA, and
the subtree TA in the node A is isomorphic to T .

Observation: Inductive solutions

Therefore each coinductively closed hypothesis generates inductive
solution of the form

σ(µih.τ(h))υ

where σ, τ , and υ are finite terms and µi denotes i iterations.

26 November 2015 19/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Future Work

Future Current work

Get this worked out formally . . .
Figure out how to treat nested function types
Figure out how to treat function types in constructor fields

26 November 2015 20/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Future Work

Future work

Second and higher order logic (λProlog - Miller, Nadathur, et alii ;
αProlog - Cheney, Urban)

brings in polymorphism
Predicate logic (S-resolution - Komendantskaya, Johann et alii

brings in dependent types
see difference in resolution by term matching and by unification gives

λω λC

Propω Predω λ2 λΠ2

Prop2 Pred2 λω λΠω

Propω Predω λ→ λΠ

Prop Pred
26 November 2015 21/22

Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Discussion

Thank you

26 November 2015 22/22

	Introduction
	Calculi
	Resolution for ADTs
	Induction and Coinduction
	Future Work
	Discussion

