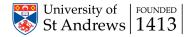
Algebraic Datatypes are Horn-Clause Theories

František Farka

University of Dundee, and University of St Andrews ff32@st-andrews.ac.uk

26 November 2015



Introduction

Logic programming

- Programming in Horn-clause logic
- Goals resolved by a search SLD resolution
- Automated theorem proving (ATP)

Functional programming

- Program specified by a term
- Type of a term is a proposition
- Interactive theorem proving (ITP)

Introduction

Logic programming

- Programming in Horn-clause logic
- Goals resolved by a search SLD resolution
- Automated theorem proving (ATP)

Functional programming

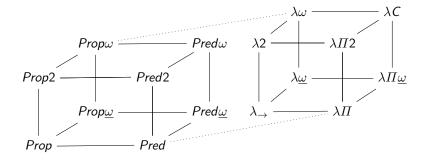
- Program specified by a term
- Type of a term is a proposition
- Interactive theorem proving (ITP)

How are the two related?

Introduction (cont)

Propositions as Types

- Due to Barendregt, 1991
- Relating lambda calculi and different logics



Propositional Logic Programming

Propositional Logic Programming

- Infinite set of elementary propositions *P*, propositions denoted nat, bool, ...
- A program is a set of Horn-clauses, i. e. clauses in the form $H \leftarrow B_0, \dots B_n$
- Resolution step:

$$\begin{array}{c|cccc} P \vdash & B_0 & , \dots, & P \vdash & B_n \\ \hline & P \vdash & & A \end{array} \qquad A \leftarrow B_0 \dots B_n \in P$$

Propositional Logic Programming

Propositional Logic Programming

- Infinite set of elementary propositions *P*, propositions denoted nat, bool, ...
- A set of clause names α, β_0, \ldots equipped with arity ($ar(\alpha) = 1, \ldots$)
- A program is a set of Horn-clauses, i. e. clauses in the form $\alpha : H \leftarrow B_0, \dots B_n$ where $ar(\alpha) = n$
- Resolution step:

$$\frac{P \vdash \beta_0 : B_0 \quad , \dots, \quad P \vdash \beta_n : B_n}{P \vdash \alpha(\beta_0, \dots, \beta_n) : A} \; \alpha : A \leftarrow B_0 \dots B_n \in P$$

A proof in PLP

- Success tree all leafs are empty goals
- Applicative term as a proof

Example

Resolution in
$$P_{nat} = \{\zeta : nat, \sigma : nat \leftarrow nat\}$$

$$\frac{\overline{P \vdash \zeta : nat}}{P \vdash \sigma(\zeta) : nat} \sigma : nat \leftarrow nat$$

A proof in PLP

- Success tree all leafs are empty goals
- Note that success tree can have infinite branches (coinductive int.)
- Applicative term as a proof

Example

Resolution in
$$P_{nat} = \{\zeta : nat , \sigma : nat \leftarrow nat\}$$

$$rac{\overline{Pdash \zeta:\mathsf{nat}}^{\zeta:\mathsf{nat}}}{Pdash \sigma(\zeta):\mathsf{nat}}\sigma:\mathsf{nat}\leftarrow\mathsf{nat}$$

$$\frac{\frac{\cdots}{P \vdash \sigma(\dots) : nat} \sigma : nat \leftarrow nat}{P \vdash \sigma(\sigma(\dots)) : nat} \sigma : nat \leftarrow nat$$

Theorem: Inductive soundness and completeness

A proposition A is in the least Herbrand model M_P of a program P iff there is a finite term π s. t. $P \vdash \pi : A$

Theorem: Coinductive soundness

A proposition A is in the greatest Herbrand model M_P^{ω} of a program P if there is a finite term π s. t. $P \vdash \pi : A$

Theorem: Inductive soundness and completeness

A proposition A is in the least Herbrand model M_P of a program P iff there is a finite term π s. t. $P \vdash \pi : A$

Theorem: Coinductive soundness

A proposition A is in the greatest Herbrand model M_P^{ω} of a program P if there is a finite term π s. t. $P \vdash \pi : A$

Herbrand models are as usual in LP

Algebraic Datatypes

Simply Typed Lambda Calculus (Λ_{\rightarrow})

- Infinite set V of variables (x, y,...), and infinite set B of type variables/identifiers: α, β,...
- Function types: $\sigma \rightarrow \tau$
- Lambda abstraction, for $y : \sigma$ the expression $(\lambda x : \tau.y)$ is of type $\tau \to \sigma$
- Application, for $x : \sigma \to \tau$ and $y : \sigma$ is $xy : \tau$

Algebraic Datatypes

Simply Typed Lambda Calculus (Λ_{\rightarrow})

- Infinite set V of variables (x, y,...), and infinite set B of type variables/identifiers: α, β,..., nat, bool
- Function types: $\sigma \rightarrow \tau$
- Lambda abstraction, for $y : \sigma$ the expression $(\lambda x : \tau.y)$ is of type $\tau \to \sigma$
- Application, for $x : \sigma \to \tau$ and $y : \sigma$ is $xy : \tau$

Algebraic Datatypes

Constructors and eliminators/destructors for algebraic data types

Algebraic Datatypes (cont.)

Algebraic Datatypes

- Algebraic type is a type variable α and a set C of i constructors c_i
- Each constructor is equipped with arity *n* and with a n-tuple of types
- Inference rules:

$$\frac{\Gamma \vdash t_0 : \beta_{j,0} \quad , \dots, \quad \Gamma \vdash t_{ar(c_j)} : \beta_{j,ar(c_j)}}{\Gamma \vdash c_i t_0 \dots t_{ar(c_j)} : \alpha} \text{ CON} c_j$$

for $j = 0, \ldots i$, and

Algebraic Datatypes (cont.)

Example (Algebraic Datatypes)

```
data Bool where
     true : () \rightarrow Nat
     false : () \rightarrow Nat
data Nat where
     zero : Nat
     \texttt{succ} : \texttt{Nat} \rightarrow \texttt{Nat}
two : Nat
two = succ (succ zero)
prec : Nat \rightarrow Nat
prec x = case x of
     zero \rightarrow zero
     succ x_0 \rightarrow x_0
```

ADTs are Horn-Clause Theories

Translating ADTs to PLP, map $|\cdot|$

- \blacksquare Let there be an isomorphism of type variables B and propositions $\mathcal P$ and of constructors and clause names
- Then for each constructor c_i s. t. $c_i : (\beta_0, \ldots, \beta_n) \to \alpha$ $|c_i| = \gamma_i : A \leftarrow B_0, \ldots, B_n$

Example (Nat and Bool)

$$\blacksquare |\mathsf{Nat}| = \{\zeta : \mathsf{nat} ; \ \sigma : \mathsf{nat} \leftarrow \mathsf{nat}\}, \ |\mathsf{Bool}| = \{\tau : \mathsf{bool} ; \ \phi : \mathsf{bool}\}$$

ADTs are Horn-Clause Theories

Translating ADTs to PLP, map $|\cdot|$

- \blacksquare Let there be an isomorphism of type variables B and propositions $\mathcal P$ and of constructors and clause names
- Then for each constructor c_i s. t. $c_i : (\beta_0, \ldots, \beta_n) \to \alpha$ $|c_i| = \gamma_i : A \leftarrow B_0, \ldots, B_n$

Example (Nat and Bool)

$$\blacksquare |\mathsf{Nat}| = \{\zeta : \mathsf{nat} ; \ \sigma : \mathsf{nat} \leftarrow \mathsf{nat}\}, \ |\mathsf{Bool}| = \{\tau : \mathsf{bool} ; \ \phi : \mathsf{bool}\}$$

Lemma: PLP resolution for ADTs

For an ADT α and for a term t the following holds:

$$\Gamma \vdash_{\lambda \rightarrow} t : \alpha \quad \text{iff} \quad |\Gamma| \vdash_{\textit{PLP}} \tau : A \text{ for some proof } \tau$$

• and further $\Gamma \vdash_{\lambda \to} |\tau|_{Cl}^{-1} : \alpha$

Extending PLP resolution

Extending resolution step

We add a new resolution step for a goal of the shape $A \leftarrow B_0, \ldots, B_n$: Let *C* be all the clauses $\gamma_0, \ldots, \gamma_i$ of *P* with head *A* and let $B_{\gamma_i,j}$ be the j-th preposition in the body of the clause γ_i

$$P, x_0 : B_{\gamma_0,0}, \dots, x_{ar(\gamma_0)} : B_{\gamma_0,ar(\gamma_0)}, \vdash \delta_0 : D$$

$$\dots$$

$$P, x_0 : B_{\gamma_i,0}, \dots, x_{ar(\gamma_i)} : B_{\gamma_i,ar(\gamma_i)}, \vdash \delta_i : D$$

$$P \vdash \lambda h. \text{case } h \text{ of } (\delta_0, \dots, \delta_i) : D \leftarrow A$$

Extending PLP resolution

Extending resolution step

We add a new resolution step for a goal of the shape $A \leftarrow B_0, \ldots, B_n$: Let *C* be all the clauses $\gamma_0, \ldots, \gamma_i$ of *P* with head *A* and let $B_{\gamma_i,j}$ be the j-th preposition in the body of the clause γ_i

$$P, x_0: B_{\gamma_0,0}, \dots, x_{ar(\gamma_0)}: B_{\gamma_0,ar(\gamma_0)}, \vdash \delta_0: D$$

$$\dots$$

$$P, x_0: B_{\gamma_i,0}, \dots, x_{ar(\gamma_i)}: B_{\gamma_i,ar(\gamma_i)}, \vdash \delta_i: D$$

$$P \vdash \lambda h. \text{case } h \text{ of } (\delta_0, \dots, \delta_i): D \leftarrow A$$

$$\gamma_0 \dots \gamma_i$$

Observation

 \blacksquare Under the translation $|\cdot|$ the set C is exactly the set of constructors of an ADT

ADTs ad Horn-Clause Theories (cont.)

Extending map $|\cdot|$

For an extension of a program P with a hypothesis - ADT constructor $c_i : (\beta_0, \ldots, \beta_n) \to \alpha$ let

$$P, |c_i| = P \cup \bigcup_{j=0}^n \{x_{c_i,j} : |\beta_j|\}$$

Lemma: PLP resolution for functions

For a function $\alpha \rightarrow \beta$ where α , β are ADTs, and for a term t the following holds:

$$\Gamma \vdash_{\lambda_{\rightarrow}} t : \alpha \to \beta \text{ iff } |\Gamma| \vdash_{PLP} \tau : B \leftarrow A$$

for some proof $\boldsymbol{\tau}$

• and further $\Gamma \vdash_{\lambda_{\rightarrow}} |\tau|^{-1} : \alpha \to \beta$

Resolution with And-Or Trees

Due to Komendantskaya and Johann, 2015

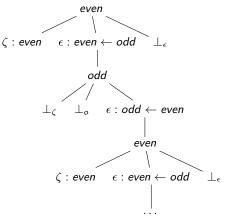
Example

For a program P:

 ζ : even

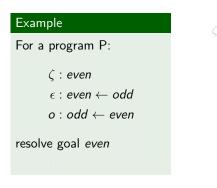
- $\epsilon: \textit{even} \leftarrow \textit{odd}$
- $\textit{o}:\textit{odd} \leftarrow \textit{even}$

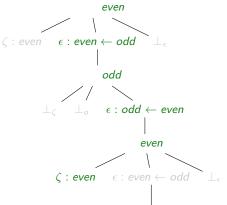
resolve goal even



Inductive success

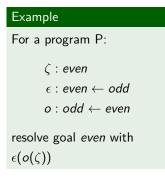
A finite subtree; all children in and-nodes any one child in or-nodes.

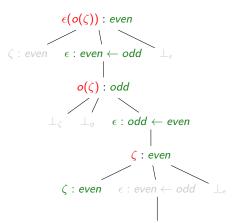




Inductive success

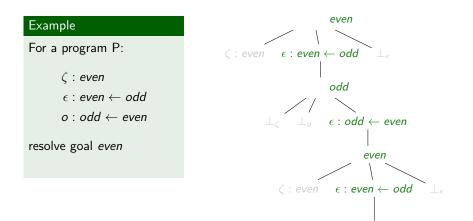
A finite subtree; all children in and-nodes any one child in or-nodes.





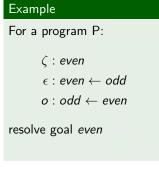
Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.



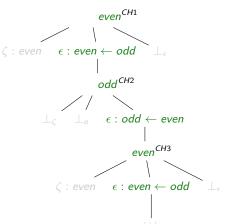
Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.



$$CH1 = \emptyset$$
 $CH2 = \{even\}$
 $CH3 = \{even, odd\}$

26 November 2015



Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.

Example

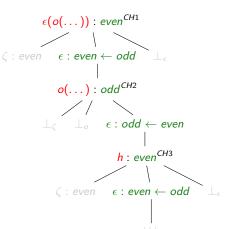
For a program P:

- ζ : even
- ϵ : even \leftarrow odd o : odd \leftarrow even

resolve goal *even* with $\nu h.\epsilon oh = \epsilon(o(\epsilon(o(\dots))))$

$$CH1 = \emptyset \ CH2 = \{even\}$$

 $CH3 = \{even, odd\}$



Theorem: Closing Infinite Branches with Coinductive Hypothesis

- For every infinite branch in a resolution tree T there is an or node A s. t. $A \in CH_A$, and
- the subtree T_A in the node A is isomorphic to T.

Observation: Inductive solutions

Therefore each coinductively closed hypothesis generates inductive solution of the form

 $\sigma(\mu_i h. \tau(h)) \upsilon$

where σ , τ , and v are finite terms and μ_i denotes *i* iterations.

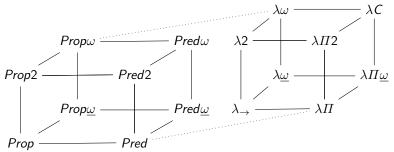
Future Current work

- Get this worked out formally ...
- Figure out how to treat nested function types
- Figure out how to treat function types in constructor fields

Future Work

Future work

- Second and higher order logic (λProlog Miller, Nadathur, et alii ; αProlog - Cheney, Urban)
 - brings in polymorphism
- Predicate logic (S-resolution Komendantskaya, Johann et alii
 - brings in dependent types
 - see difference in resolution by term matching and by unification gives



Thank you