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Introduction

Logic programming

Programming in Horn-clause logic
Goals resolved by a search - SLD resolution
Automated theorem proving (ATP)

Functional programming

Program specified by a term
Type of a term is a proposition
Interactive theorem proving (ITP)

How are the two related?
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Introduction (cont)

Propositions as Types

Due to Barendregt, 1991
Relating lambda calculi and different logics

λω λC

Propω Predω λ2 λΠ2

Prop2 Pred2 λω λΠω

Propω Predω λ→ λΠ

Prop Pred
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Propositional Logic Programming

Propositional Logic Programming

Infinite set of elementary propositions P, propositions denoted nat,
bool, . . .

A set of clause names α, β0, . . . equipped with arity (ar(α) = 1, . . . )

A program is a set of Horn-clauses, i. e. clauses in the form

α :

H ← B0, . . .Bn

where ar(α) = n

Resolution step:

P `

β0 :

B0 , . . . , P `

βn :

Bn

P `

α(β0, . . . , βn) :

A

α :

A← B0 . . .Bn ∈ P
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Propositional Logic Programming (cont.)

A proof in PLP

Success tree - all leafs are empty goals

Note that success tree can have infinite branches (coinductive int.)

Applicative term as a proof

Example
Resolution in Pnat = {ζ : nat , σ : nat ← nat}

P ` ζ : nat
ζ : nat

P ` σ(ζ) : nat
σ : nat ← nat

. . .

P ` σ(. . . ) : nat
σ : nat ← nat

P ` σ(σ(. . . )) : nat
σ : nat ← nat
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Propositional Logic Programming (cont.)

A proof in PLP

Success tree - all leafs are empty goals
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Propositional Logic Programming (cont.)

Theorem: Inductive soundness and completeness
A proposition A is in the least Herbrand model MP of a program P iff
there is a finite term π s. t. P ` π : A

Theorem: Coinductive soundness
A proposition A is in the greatest Herbrand model Mω

P of a program P if
there is a finite term π s. t. P ` π : A

Herbrand models are as usual in LP
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Propositional Logic Programming (cont.)
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Algebraic Datatypes

Simply Typed Lambda Calculus (Λ→)

Infinite set V of variables (x , y , . . . ), and infinite set B of type
variables/identifiers: α, β, . . .

, nat, bool

Function types: σ → τ

Lambda abstraction, for y : σ the expression (λx : τ.y) is of type
τ → σ

Application, for x : σ → τ and y : σ is xy : τ

Algebraic Datatypes

Constructors and eliminators/destructors for algebraic data types
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Algebraic Datatypes (cont.)

Algebraic Datatypes

Algebraic type is a type variable α and a set C of i constructors ci

Each constructor is equipped with arity n and with a n-tuple of types
Inference rules:

Γ ` t0 : βj,0 , . . . , Γ ` tar(cj ) : βj,ar(cj )

Γ ` ci t0 . . . tar(cj ) : α
CONcj

for j = 0, . . . i , and

Γ ` t : α
Γ, x0 : β0,0, . . . , xar(c0) : β0,ar(c0) ` s0 : γ

, . . . ,
Γ, xi : βi,0, . . . , xar(ci ) : βi,ar(ci ) ` si : γ

Γ ` case t of (s0, . . . , si ) : γ
CASEα
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Algebraic Datatypes (cont.)

Example (Algebraic Datatypes)

data Bool where
true : () → Nat
false : () → Nat

data Nat where
zero : Nat
succ : Nat → Nat

two : Nat
two = succ (succ zero)

prec : Nat → Nat
prec x = case x of

zero → zero
succ x0 → x0
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ADTs are Horn-Clause Theories

Translating ADTs to PLP, map | · |

Let there be an isomorphism of type variables B and propositions P
and of constructors and clause names
Then for each constructor ci s. t. ci : (β0, . . . , βn)→ α
|ci | = γi : A← B0, . . . ,Bn

Example (Nat and Bool)

|Nat| = {ζ : nat ; σ : nat ← nat}, |Bool | = {τ : bool ; φ : bool}

Lemma: PLP resolution for ADTs

For an ADT α and for a term t the following holds:

Γ `λ→ t : α iff |Γ | `PLP τ : A for some proof τ
and further Γ `λ→ |τ |−1

Cl : α
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Extending PLP resolution

Extending resolution step
We add a new resolution step for a goal of the shape A← B0, . . . ,Bn:
Let C be all the clauses γ0, . . . , γi of P with head A and let Bγi ,j be the
j-th preposition in the body of the clause γi

P, x0 : Bγ0,0, . . . xar(γ0) : Bγ0,ar(γ0),` δ0 : D
. . .

P, x0 : Bγi ,0, . . . xar(γi ) : Bγi ,ar(γi ),` δi : D
P ` λh.case h of (δ0, . . . , δi) : D ← A

γ0 . . . γi

Observation

Under the translation | · | the set C is exactly the set of constructors
of an ADT
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ADTs ad Horn-Clause Theories (cont.)

Extending map | · |

For an extension of a program P with a hypothesis - ADT constructor
ci : (β0, . . . , βn)→ α let

P, |ci | = P ∪
n⋃

j=0
{xci ,j : |βj |}

Lemma: PLP resolution for functions

For a function α→ β where α, β are ADTs, and for a term t the
following holds:

Γ `λ→ t : α→ β iff |Γ | `PLP τ : B ← A

for some proof τ
and further Γ `λ→ |τ |−1 : α→ β
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Resolution with And-Or Trees

And-Or Trees

Due to Komendantskaya and Johann, 2015

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even

even

ζ : even ε : even← odd

odd

⊥ζ ⊥o ε : odd ← even

even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε
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Resolution with And-Or Trees (cont.)

Inductive success

A finite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
ε(o(ζ))

ε(o(ζ)) :even

ζ : even ε : even← odd

o(ζ) :odd

⊥ζ ⊥o ε : odd ← even

ζ :even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε
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Resolution with And-Or Trees (cont.)

Inductive success

A finite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
ε(o(ζ))

ε(o(ζ)) : even

ζ : even ε : even← odd

o(ζ) : odd

⊥ζ ⊥o ε : odd ← even

ζ : even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε

26 November 2015 15/22



Introduction Calculi Resolution for ADTs Induction and Coinduction Future Work Discussion

Resolution with And-Or Trees (cont.)

Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
νh.σεh = ε(o(σ(ε(. . . ))))

CH1 = ∅ CH2 = {even} CH3 = {even, odd}

ε(o(. . . )) :even

ζ : even ε : even← odd

ε(. . . ) :odd

⊥ζ ⊥o ε : odd ← even

h :even

ζ : even ε : even← odd

. . .

⊥ε

⊥ε
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Resolution with And-Or Trees (cont.)

Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
νh.σεh = ε(o(σ(ε(. . . ))))

CH1 = ∅ CH2 = {even}

CH3 = {even, odd}

ε(o(. . . )) :evenCH1

ζ : even ε : even← odd

ε(. . . ) :oddCH2

⊥ζ ⊥o ε : odd ← even

h :evenCH3

ζ : even ε : even← odd

. . .

⊥ε

⊥ε
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Resolution with And-Or Trees (cont.)

Coinductive success

An infinite subtree; all children in and-nodes any one child in or-nodes.

Example
For a program P:

ζ : even
ε : even← odd
o : odd ← even

resolve goal even with
νh.εoh = ε(o(ε(o(. . . ))))

CH1 = ∅ CH2 = {even}

CH3 = {even, odd}

ε(o(. . . )) : evenCH1

ζ : even ε : even← odd

o(. . . ) : oddCH2

⊥ζ ⊥o ε : odd ← even

h : evenCH3

ζ : even ε : even← odd

. . .

⊥ε

⊥ε
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Resolution with And-Or Trees (cont.)

Theorem: Closing Infinite Branches with Coinductive Hypothesis

For every infinite branch in a resolution tree T there is an or node A
s. t. A ∈ CHA, and
the subtree TA in the node A is isomorphic to T .

Observation: Inductive solutions

Therefore each coinductively closed hypothesis generates inductive
solution of the form

σ(µih.τ(h))υ

where σ, τ , and υ are finite terms and µi denotes i iterations.
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Future Work

Future Current work

Get this worked out formally . . .
Figure out how to treat nested function types
Figure out how to treat function types in constructor fields
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Future Work

Future work

Second and higher order logic (λProlog - Miller, Nadathur, et alii ;
αProlog - Cheney, Urban)

brings in polymorphism
Predicate logic (S-resolution - Komendantskaya, Johann et alii

brings in dependent types
see difference in resolution by term matching and by unification gives

λω λC

Propω Predω λ2 λΠ2

Prop2 Pred2 λω λΠω

Propω Predω λ→ λΠ

Prop Pred
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Discussion

Thank you
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