Maintainable Type Classes for Haskell

FrantiSek Farka

University of Dundee
ffarka@dundee.ac.uk

Abstract

The paper addresses a long-term maintainability problem in Haskell
type class system. In particular we study a possibility of backward-
compatible changes of existing class hierarchies. We summarize
current proposed solutions to the problem and analyze their proper-
ties. Based on this analysis we derive our own language extension.

We discuss several possible applications of the language exten-
sion and compare the extension to other solutions. As a part of the
paper we also give a proof-of-concept implementation of the exten-
sion for the GHC compiler.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and TheorySyntax;; D.3.2 [Program-
ming Languages]: Language Classifications Applicative (func-
tional) languages;

General Terms terml, term2 — Which terms should I use?

Keywords keywordl, keyword2 — Which keywords?

1. Introduction

Haskell type classes are difficult to maintain. Haskell class declara-
tion introduces a new data type class and operations — class meth-
ods — on it. The class declaration also may contain context that
specifies superclasses of the class. A change in the class definition
may case a error in compilation of source code that uses the the
class. We demonstrate this problem on somewhat simplified vari-
ants of two standard Haskell type classes, Eq’ and Ord’. Consider
a Library code provided by an author of the library with following
definitions of classes:

module Library where

class Eq’ a where
= = a — a — Bool

class Ord’ a where
(<) = a — a — Bool

The user of the library can use these definitions in his own code,
which we call Client, by providing instances for the type classes.
However it suffices to provide only instances of classes that are
actually used:

[Copyright notice will appear here once ’preprint’ option is removed.]

Superclass Default Instances for Haskell

module Client where
import Library
data Foo = ...

instance Ord’ Foo where
(<) = ...

When the author of the library realises that it is more convenient to
make Eq’ superclass of Ord’ and changes the context of Ord’

class Eq’ = 0Ord’ a where

he introduces a breaking change—the original Client code does
not compile with the new version of Library and throws an error
message

Client.hs:
No instance for (Eq’ Foo)
arising from the superclasses of an instance
declaration
In the instance declaration for 0Ord’ Foo

This issue can affect large volumes of code that uses old version
of library. There is one notoriously known example in Haskell com-
munity: The Functor-Applicative—-Monad Proposal (AMP) [9].
The Monad class is used heavily in Haskell source code. Before the
proposal it was a standalone class without any superclasses. This
proposal makes Applicative superclass of Monad. This change
breaks any code that makes use of Monad and does not provide
instances for both Functor and Applicative, for the reason we
demonstrated in the case of Eq’ — 0rd’ classes. However such
breakage is undesirable and introducing this change took nearly 2
years [2|[12] and required a compiler support in form of additional
warnings and manual adaptation of existing code. We describe this
proces in Section[2.2]

In this paper, we address a problem of introducing changes
into class hierarchy in program development cycle and an impact
of such changes on maintainability of existing source code. In par-
ticular, we claim that:

e some changes in class hierarchy are not backward compatible
and break existing code;

e fixin these breakages requires long time and significant effort in
terms of manual modifications of source code;

e an alternative way of introducing of changes into class hierar-
chy will make Haskell code more maintanable.

We give a means of introduction of such changes in backward
compatible way.

! This example is produced with The Glorious Glasgow Haskell Compila-
tion System, version 7.8.3

2015/3/11

class Functor where
fmap = (a - b) - fa—fb

N

class Functor f = Pointed f where
pure : a — f a

class Functor f = Bind f where
bind : fa — (a - fb) - £fb

class Pointed f = Applicative f where
(<>) = f (a=>b) > fa—>1£fb

/

class (Bind m, Applicative m) = Monad where

Figure 1. FPBAM class hierarchy

Haskell class hierarchy can be changed in several ways. In Sec-
tion[2.] we show that all changes can be decomposed into a small
set of primitive changes. These primitive changes are in most
cases either non-problematic by nature or can be dealt with using
compiler DEPRECATED pragma. The only problematic change is
adding a new superclass into the context of a class.

As an alternative to approach taken in case of AMP we propose
to extend Haskell with a new language construct—default super-
class instance. This construct allows author of a class definition to
specify default instances of superclasses within class itself. These
default instances are generated and used by compiler where proper
instances are missing. With this new it is possible to make changes
into class hierarchy, e. g. introduce new superclass constraints, in-
stantly and without breaking of existing source code.

Beside the already mentioned examples of type class hierarchies
— the simplistic Eq’-0rd’ hierarchy and the Functor, Applica-
tive, and Monad (FAM) hierarchy — we use two more hierarchies
as our main examples. The first one is a direct extension of FAM
hierarchy with Bind and Pointed|14] classes we refer to as FP-
BAM. This hierarchy is described in the Figure[T] The other one is
the Num class and its possible enhancements.

1.1 Previous work

Several attempts have been made to address the problem of code
breakage in case class hierarchy changes. In general we can dis-
tinguish two main trends: one focuses on type class definition and
allows some form of default superclass instance definition, e. g. [S}
4], and the other groups several classes in an alias and uses this alias
in definition of instances [[19} 4]. Default superclass instances pro-
posal gives a suitable syntax but fails to address proper semantics
of the extension. It is not obvious how to deal with cases of multi-
ple default instances. Consider the diamond in Library in Figure 2]
and Client that provides both instances for classes C and D.

It is not obvious what should happen.

Class aliases suffer with similar problem where it is not obvious
how should methods be distributed from instance of the alias into
instances of partial classes.

Conor McBride has provided [17]] implementation of superclass
default instances as a part of his Strathclyde Haskell Enhancement.
However this implementation was carried out as Haskell preproces-
sor and is limited to the scope of a single file. This implementation
also does not address issue of multiple default instances.

Superclass Default Instances for Haskell

class A where

method : ...
class A = B where

class A = C where
method : ...

method :: ...

class (B,C) = D where
method = ...

Figure 2. Diamond class hierarchy

1.2 Contributions

In this paper we extend previous solutions. We give a formal de-
scription of syntax in the style of Haskell 2010: Language Re-
port[[15] and detailed semantics. We specify the selection mecha-
nism in the case of multiple default instance declarations. Our anal-
ysis of previous attempts allows us to devise a coherent language
proposal that allows library authors to make change in their source
code without breaking the existing code that usese the library. This
makes the code—base more maintainable in the long perspective.
We also discuss possible applications of our language extensions in
other situations, as a mean of providing simplified class abstraction
with more elaborate class hierarchies.

1.3 Outline

Section [2.1] shows that arbitrary changes in class hierarchy can
be decomposed to a set of primitive changes. We describe how
these changes can be introduced into existing library while keeping
the library backward compatible. We illustrate these changes on
the above given running examples of Eq’ — Ord’ and Functor
— Applicative — Monad and provide a more elaborate example
of decomposition of the Num class.

In Section [4] our Default Superclass Proposal is used as a pri-
mary tool for arbitrary changes in class hierarchy. We address dif-
ferent options for selection mechanism in case of multiple default
instances and possible behavior of compiler notifications and warn-
ings. We describe a particular mechanism for instance selection
and argue its benefits. This section also gives a formal description
of the syntax and semantics of our extensions. The syntax follows
the style of the Haskell 2010: Language Report[15]. However the
report does not specify semantics formally and we use the style
introduced by Faxén in [8] for the specification of semantics.

In Section [5] we discuss possible conflicts with other language
extensions. The GHC offers a variety of language extension. Some
of these extensions involve type class system and may conflict
with our extensions, e. g., MultiParamTypeClasses, Undecidable-
Instances, or different extensions to deriving mechanism.

We also give a brief overview of our implementation of de-
scribed extension in Section [6]and introduce further, more complex
examples.

Final section concludes the paper.

The source code of our implementation is available at:

https://github.com/frantisekfarka/ghc-dsi.

2. Maintainability Problem

This chapter describes a problem of the current type classes design.
Type classes are one of the core features of the language. However,
any change in a type class hierarchy currently requires rewriting the
appropriate instance implementations. Therefore any change to the

2015/3/11

https://github.com/frantisekfarka/ghc-dsi

class Num a
@,),

abs, signum, fromInteger

e N

class Real a class Fractional a
toRational (/), fromRational

~N S

class RealFrac a
properFraction

class Integral a
quotRem, tolnteger

class Floating a
pi, exp, log,

S

class RealFloat a
exponent,

Figure 3. Standard Numeric Classes and Related Operations

hierarchy breaks backward compatibility and thus poses significant
problem to maintainability of source code.

It is often desirable to change class hierarchy. In some cases
the proper class relation is not understood at first and a superclass
of some class is missing as is the case with Monad class as we
show in Section[2.2] In other situations new concepts emerge and a
class hierarchy needs to be refactored. John Wiegly proposed [24]
to add a Semigrupoid class as a superclass of Monoid class.
In the subsequent discussion Edward Kmett pointed out that this
change would break existing code due to missing instances of
Semigrupoid where the instance of Monoid already exists.

Beside changes in existing class hierarchy there are some situ-
ations where is the behavior of superclass instance uniquely deter-
mined. Such example is the Traversable class [3]. Instances of
it’s superclasses Functor and Foldable should satisfy:

fmap f = getId o traverse (Ido f)
foldMap f = getConst o traverse (Const o f)

where Id and Const are identity applicative functor and constant
applicative funcor respectively. Although the behavior is docu-
mented, the instances still has to be written manually and may re-
sult in erroneous code in case hand written instances violates the
expected laws.

Another of standing problems regarding existing classes is the
hierarchy of the Standard Numeric Classes and Related Opera-
tions [[13]. Figure[2]shows this hierarchy.

Dylan Thurston et al. [7] have argued that the standard set of
numeric classes is limited in extensibility and violates semantics of
operations. The hierarchy is rather complex for novice user and still
does not provide means for expressing of algebraic notions, e. g.
notion of commutative group. However, the change in the hierarchy
of these classes would break existing code.

2.1 Altering Type Class Hierarchy

Previous section did not restrict changes in a class hierarchy in any
way. Various such changes may occur. Nevertheless, this section
shows that any change can be decomposed into a series of six
elementary actions. Consider following scenarios on an arbitrary
class hierarchy:

e Change existing superclass dependencies

Superclass Default Instances for Haskell

e Add a new class to the hierarchy. The class may be either
standalone or connected with the rest of the hierarchy as a
subclass or a superclass.

Remove an existing class from the hierarchy. Yet again the class
may be either standalone or connected to the hierarchy.

Refactor existing classes by either merging more existing
classes into one or by dividing an existing class into more
new classes. The new classes may be in various relations as
subclasses and superclasses.

e Move a method from a subclass to a superclass or the other way
around or add a new class method.

Our simplistic Eq’ — Ord’ example is an instance of the first
scenario. John Wiegly’s Semigrupoid is an instance of second
scenario. The Introduction have given a real world example of the
first scenario—the FAM proposal. If the Standard Numeric Classes
were to be redesigned scenarios three to five would take place in
this process.

These are complex scenarios. However, one can see certain
actions take place repeatedly. E. g. in the case of Semigrupoid
new class definition has to be provided and this class must be added
into the context of Monoid. We have identified these actions to be:

a1 add a class without methods and superclasses;

a2 remove a class without methods and superclasses;

a3 make an existing class a superclass of another existing class;
a4 remove a superclass constraint from an existing class;

as add a new method to some class;

ag remove an existing method from some class.

We call these actions elementary and refer to the set of a1 to ag as
2. Clearly it is possible to compose above stated scenarios from the
set of actions 2(. Assume the second scenario. By using action a1
for the class, action as repeatedly for any method of the class and
action a3 for any superclass or any class, to which it is a superclass,
we get the desired change in hierarchy. We deem compositions for
the rest of scenarios similarly straightforward and these are omitted.
This observation allows us to state a following theorem:

Theorem 1 (Altering a Haskell class hierarchy). It is possible to
compose any change in a Haskell class hierarchy only by actions
from the set 2

Proof. We model a Haskell class hierarchy as a directed acyclic
graph with a set of labels for every vertex where classes are vertices,
superclass relations are edges from subclass vertex to superclass
vertex, and methods are labels on vertices.

Assume two arbitrary hierarchies ¢1 and ¢2. Assume the notation
V(ti), E(ts), and L(v;) for a set of vertices, edges and labels of
vertices respectively.

Then use actions from 2 on ¢1; use ag on L(1) \ L(t2) to
remove labels, use as on E(t1) \ E(:2) to remove superclass
constraints and use a2 on V'(¢1) \ V(¢2) to remove classes; use a1
on V(u1) \ V(e2) to add new classes, use az on E(c1) \ E(i2)
to add constraints, and use as on L(c1) \ L(t2) to add labels.
This sequence of operations transforms the graph ¢, into the graph
L2.

These actions are involved with different problems when intro-
duced to existing library. In particular these are:

a1 - add a class without method and superclasses This action
does not introduce any problems but the one problem com-
mon to all programming languages - new class name may clash

2015/3/11

with other identifier. We do not provide any solution for this
particular issue and simply assume it can be avoided by careful
selection of identifiers by both author of the library and author
of source code that uses the library.

az - remove a class without methods and superclasses Class can
be removed from library only when it is not used by any source
code that we want to keep backward compatible with the li-
brary. Otherwise we get “Not in scope” error. Such class can be
attributed with DEPRECATED pragma and its removing from
library delayed. In this way, all the new code received compile
time warning that this class is not intended to be used any more
and all the existing code still can be compiled.

as - make an existing class a superclass of another existing class

This change causes the error that was demonstrated on Eq’ —
0rd’ example in the Introduction of this paper — if some source
code provides instance only for Ord’ it fails to compile with
the new version of the library. This is a serious limitation, e. g.,
it prevents of direct introduction of some abstraction. We have
already mentioned the Applicative as a superclass of Monad
and Semigrupoid as a superclass of Monoid.

a4 - remove a superclass constraint from an existing class This
change does not cause any problems. Some instances from be-
fore the change may be superfluous as these are no longer re-
quired by superclass constraint.

as - add a new method to some class The new method causes a
problem only when its name clashes with existing method in
user code causing ambiguous occurrences. This is similar to the
problem causes by action az. We assume it can be avoided by
careful identifier selection.

ae - remove an existing method from some class Existing method
cannot be removed without code breakage. This is similar to ac-
tion a2 and can be dealt with by DEPRACATION pragma in
similar manner.

This list shows that only problematic change in class hierarchy is
introducing new superclass constraint. Other can in our opinion be
dealt with by careful section of identifiers and by DEPRECIATION
pragma. One can oblige that semantics of moving a method from
one class to another is different from removing a method from one
class and adding a new method to another class. However, the result
of both is structurally identical. We deal with semantics of moving
of a method in Section 4]

There are currently two ways of introducing superclass con-
straint. We briefly describe doth of these.

2.2 Deprecation with Compiler Support

Haskell does heavily use the Monad class—it is tightly incorporated
into the language through the do notation. Although it is known that
every Monad is, in principle, a subclass of Applicative [9], it was
not true so in the standard Prelude before GHC 7.10. Changing the
Monad class into subclass of Applicative breaks any client code
that uses the class and does not instantiate Applicative.

A three phase process was adopted by The Glorious Glasgow
Haskell Compilation System (GHC) in order to avoid it. In the first
phase, the compiler was patched such that it issues warnings in
case of missing instances [2] of Applicative and Functor where
an instance of Monad exist. In the second phase all authors were
expected to fix their code using the new compiler warnings. In the
third phase the change was applied [[12].

The three phase process illustrates what is in our opinion the
major problem of any considerable changes in type class hierarchy:
it is a long lasting process that requires a vast amount of manual
work and still can result in broken source code as in case of the

Superclass Default Instances for Haskell

AMP and code that failed to provide an instance of Applicative
in the phase two.

This procedure is in principle — with some generalised support
of deprecation of missing instances from a compiler — possible with
any such change in a class hierarchy. Though, it requires manual
effort and some transitional period of time for users of the affected
library to implement missing instances.

2.3 Subclass to Superclass Instance

A superclass instance may be provided, in some cases, from a
subclass instance when we allow the FlexibleInstances and
UndecidableInstances. Assume following simplified classes
Functor’ and Monad’:

{-# LANGUAGE FlezibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

class Functor’ f where
fmap’ = (@ - b) - fa—£fb

class Functor’ m = Monad’ m where
return’ @ a — m a
=) "ma—>(a—>mb) >mb

With relaxes conditions on instances of the language extension
following is a valid instance:

instance Monad’ m = Functor’ m where
fmap’ f a = a>= (return’ of)

Now the client code may instantiate only the Monad class:
data Id a = Id a deriving (Show)

instance Monad’ Id where
return’ a = Id a
(Ida)>=f=fa

useFmap = fmap’ (+1) (Id 5)

However, the GHC documentation [10] describes some problems
that may arise with the two extensions, e. g., compiler may not be
able to resolve the instance.

2.4 Design Goals of a Solution

We have described a problem with the current design of Haskell
type classes and presented different solutions that are available.
We believe that neither of the solutions addresses the problem in
a sufficient manner.

The first approach (2.2) is not straightforward and requires man-
ual adaptation of existing code. The second approach requires
some additional language extension that may cause compiler to re-
ject the instances.

Based on these observations we state that any approach that
aims to solve above given problem should address following goals:

e The approach should allow changes to a class hierarchy. In
particular adding new classes and changing structure of existing
hierarchies should be possible.

e The approach should not break any existing code, i. e., the
changes should be backward compatible.

e The approach should not introduce any problems to the program
compilation, e. g. undecidability of instances.

These design goals lead us to proposing a nre language extension
in Sectiond]

2015/3/11

3. Previous Work

This section addresses previous work and points out particular
shortcomings. Three main lines of ideas can be identified in pre-
vious work:

Default instances as described in [5] and [[17]
Default method implementation as described in [4].
Class aliases as described in [[19]], [22]], and [4]

3.1 Default Instances

Glasgow Haskell Compiler presents proposal [5] of a language
extension that enables programmer write implementations of sub-
classes that imply their superclass implementations. Using our Eq’
—0rd’ example the proposed syntax is:

class Eq’ a = 0Ord’ a where
(<) = a — a — Bool

instance Eq’ a where
x=y=x < y&y < x

Give this language construct default instance for Eq’ is provided by
compiler. The proposal requires each default superclass instance to
be an instance of a different class. The proposal also discusses an
opt-out mechanism to prevent generating of a default instance. It is
done with a syntactic construct hiding as follows:

instance Ord’ a where
hiding instance Eq’

This construct allows user defined instance of Super. The other
discussed variant is a quiet exclusion policy with following variants
of dealing with intrinsic instances and explicit instance clashes:

e rejecting duplicate instance declaration

e allowing explicit instance supersede intrinsic default with a
warning

e allowing explicit instance supersede intrinsic default without
any warning

Second variant is considered by authors to be a pragmatic choice.
However, proposal fails to recognize that there can be multiple de-
fault instances. Assume that following class is added to the hierar-
chy:

class Eq’ = Dro’ a where
(>) = a — a — Bool

instance Eq’ a where
X=y=x >2y&&y > x

When using (=) on a data type for which user provided both
instances of Ord’ and Dro” it is not obvious which default instance
to use. There are two candidates—one instance generated in Ord’
and other in Dro’. We consider a pragmatic choice to select such
instance that is:

e Common to all paths from class where is the method introduced
to any class for which is the ordinary instance provided.

e [s last among such instances when we consider topological
order on the directed acyclic graph of the hierarchy in Library.

The ratio behind the first rule is to select an instance among
all the candidates that is consistent. A subclass is viewed as a
specialization of a superclass and thus the common ancestor is seen
as an abstract enough class to provide implementation sufficing all
candidates. The second rules adheres to this specialization in the

Superclass Default Instances for Haskell

manner that a subclass has more specific information on the data
for which is the instance provided and thus can be implemented in
a more efficient way. Under such assumptions it is reasonable to
choose the candidate for default instance which originates later in
the hierarchy.

These rules are generally not guaranteed to result in selection
of a single candidate. We discuss this issue further in our proposal
bellow.

3.2 Default Method Implementation

Class System Extension Proposal presented in [4] endorses the idea
of providing default implementation of any ancestor method di-
rectly in class. This approach may derive suitable method definition
from subclass instance:

class Eq’ a = 0Ord’ a where
(<) : a — a — Bool

a=b=(a < b) && (b < a)
The behavior of method implementation is specified as:

¢ Class and instance declarations allow implementation of any
method in a class or any superclass.

e Whenever an instance declaration is visible, there is always a
full set of instance declarations for all superclasses. This is done
by supplementing the set of explicitly given visible instance
declarations by automatically generated implicit instance dec-
larations.

e The extension proposes the policy of the most specific method
implementation. This means using explicit instance over the
default one and using subclass method over superclass method.

e Modules export only specific instance declarations.

Proposal observes that the resolution of an overloaded method
depends on the visible instances in the module where method is
called. Therefore, overloading needs to be resolved before merg-
ing the modules together, in particular inlined method overloading
needs to be resolved before the method is inlined.

Proposal also indicates that with the aforementioned changes
a compiler has to consider all the predicates in the context to
determine the source of the overloaded function, whereas now it
is sufficient to look only for particular instance.

There is a certain issue with this approach. Assume following
library code which defines classes Eq’, Ord’, and Bounded’:

class Eq a where
(= = a — a — Bool

class Eq’ a = 0Ord’ a where
(<) = a — a — Bool

class Bounded’ a where
minBound, maxBound : a

And a client code which uses the class Bounded’:

data MyData = ...

instance Bounded’ MyData where
minBound = ...
maxBound = ...

If we want to add the class context of Ord’ to the class Bounded’
in such manner this change does not break the existing client code
we need to provide instance of Ord’ MyData and Eq’ MyData
transitively. The solution provided in [4] is to always generate
automatically full set of instance declarations for all superclasses.
This solution does not deal with the problem. Assume that we the
alter the class definition in the following manner:

2015/3/11

class Eq’ a where
= = a — a — Bool

class Eq’ a = 0Ord’ a where
(<) = a — a — Bool

-- default method for Eq’. &)
X=y=...

class Ord’ a = Bounded’ a where
minBound, maxBound : a

-- default method for Eq’. &)

X=y= ...
When using this version of the module providing that default in-
stances are generated it is not obvious which version of = should
be used. Possible options are:

e compilation results in an error due to ambiguous occurrence of
the method

e compilation uses some default policy for which method to use

The first option is not favorable as it result in code breakage. The
second option requires reasonable policy for selecting one imple-
mentation among all candidates even in case of more elaborate
class hierarchies than the hierarchy in the example.

3.3 Class Aliases

Class aliases are presented in several different proposals [[19] 4] 22].
Aliases are proposed both as a mean of providing default method
implementation and single name for multiple classes. In order to
maintain backward compatibility class aliases are neccessary be-
sides default superclass methods. This problem is hinted in pro-
posal [22]. Assume following classes Applicative and Monad:

class Functor f = Applicative f where
pure ta— fa
(<) =f(a—Db) »>fa—>=£fb

class Monad m where
return @ a — m a
= tma— (a—>mb) >mb

These two classes are independent of each other and it is sufficient
when using them in client code to define instance just for Monad:

data MyData =o ..

instance Monad MyData where
m>=k = ...
return k = ...

Using class alias as a mean of providing default implementation is
in this case problematic. Assume we want to add Applicative
into the context of Monad in such way the change is backward
compatible. In this case we need to provide new class e. g. Monad_
which implements this change and keep Monad as an alias for both
Applicative and new Monad._ classes:

class Applicative m = Monad_ m where

return @ a — m a
(o> tma— (a—mb) - mb

class alias Monad m = (Applicative m, Monad_ m) where
fmap s (a—=Db) 2ma—>mb
fmap f ma = ma>= (A\a — return (f a))

pure T a—ma
pure a = return a

(<x>) =2m(a—>b) > >ma—>mb
mf <«> ma = mf >=A\f — ma>>=)\a — return (f a)

Superclass Default Instances for Haskell

This works fine considering original code which uses Monad and
does not instantiate Applicative. However we now have two
different names for Monad and it is not obvious which one should
user who is aware of their existence use.

On the other hand class aliases are useful when dividing class
into two new. Assume that we want to subdivide class Monad from
previous example into classes Pointed and Bind:

class Pointed a where
return = a — f a

class Bind a where
G2 :tma— (a—>mb) >mb

In this case we do not need class Monad — there is no method
which should this class contain. Instead class alias provides both
backward compatibility and is handy to use with new code that is
aware of Pointed and Bind:

class alias Monad m = (Bind m, Pointed m)

The other significant feature of class alias is that it enables pro-
grammer to provide single instance that gives declarations of meth-
ods of multiple classes. This in turn allows instantiation without the
necessity of renaming of the methods. Assume two related classes
LowerBounded and UpperBounded and a class alias Bounded:

class LowerBounded a where
minBound ::

class UpperBounded a where
maxBound ::

class alias Bounded a = (LowerBounded a,
UpperBounded a)

instance Bounded MyData where
minBound = ...
maxBound = ...

The two instances for alias are generated accordingly. Without the
alias functionality the Bounded must by a class with superclasses
LowerBounded and UpperBounded. The instances for these two
may be defaulted, but methods minBound and maxBound must be
renamed s it is not possible to have a method of same name in class
and its superclass.

4. Language Extension Proposal

In this section we give a proposal of new language extension that
solves problem described in Section 2] Based on the conclusions in
the Chapter [3] and the observations in previous section we derive
our own proposal which aims to address issues described in the
Section 2.1} i. e.:

e Add or remove a superclass into the context of a class without
breaking a client code, where is the class already use. Client
code may or may not instantiate the superclass.

e Create a new class or remove an existing class that is not either
a superclass or a subclass of any other class.

e Move a method from a class into either a superclass or a sub-
class.

e Add or remove a class method.

In the Section[2.T]we argued that these actions are sufficient enough
to compose arbitrary change in the hierarchy. In this section we
describe possible issues with such actions on existing code and
discuss effects of the change when writing a new code.

When adding a superclass into a context of subclass we distin-
guish several situations. Assume two classes, a class Foo and Bar,

2015/3/11

that were not (indirect) subclass of each other and we want to add
the Bar into the context of Foo such that Foo is a subclass of the
class Bar. Assume that there is already a client code where Foo is
brought into the scope and then subsequently used, i. e. some in-
stance is provided. Then if there is also an instance of Bar in the
client code everything works fine.

On the other hand when the instance of Bar is missing compi-
lation results in an error message similar to:

No instance for (Foo MyData)

arising from the superclasses of an instance
declaration
Possible fix: add an instance declaration for
(Foo MyData)
In the instance declaration for ‘Bar MyData’

Also without an instance any method of Bar is guaranteed not to
be used in this scope, thus there can be class methods or functions
with the same local name and occurrences of these methods can
become ambiguous if the class Bar was not in the scope before the
change in the hierarchy. The possible fix to this issue is to provide
an implicit instance of Bar as we discussed earlier. However, this
approach have several problems of its own. First, what to do with
instance methods. We can either

e provide a default implementation in the class definition, or

® not to provide any definitions.

The first approach requires an active change in the class definition
whereas later results in an error when method without definition
is used. The last situation which can occur when adding the class
Bar into the context of the class Foo is that only the class Bar is
used in a client code. In this situation the client code works without
any problems.

Assume the converse situation, i. e. there is a superclass Bar, its
subclass Foo, and we want to remove the context of Bar from Foo.
This action does not result in any problems with respect to the old
client code.

Adding a new class that is neither superclass nor subclass of any
other class also does not bring any problems beside the obvious is-
sues with the name clashes. It is possible to minimize such issues
by placing new class into separate submodule. Conservative treat-
ment of export list of the module can also mitigate some problems.

Removing of an existing class that is neither superclass not
subclass of any other class is possible as long as the class is
not used. In the case the class is rendered obsolete it should be
deprecated by a pragma mechanism [[10]]. But in cases where the
class is to be deleted as a result of the other action discussed, e. g.
the class was split into two, it is necessary to provide it both for
backward compatibility and for use in new code. It is possible to
provide a class of the same name with the classes in which it was
split as superclasses and default implementation original methods—
which are now in superclasses. The other way is to provide a class
alias of the same name as the original class aliasing the classes in
which it was split. We consider the second approach superior as it
result in shorter, more readable code.

When moving a method from a superclass to a subclass or the
other way around it is important to distinguish whether the change
occurs also with the change in class hierarchy as described in first
scenario. In such case the method implementation for the subclass
can be provided in the default instance. In the other case there can
be an old code expecting original layout of method in classes and
the change is not possible. In our opinion this case is better solved
by deprecation pragmas.

Adding a method to a class does not cause a problem in cur-
rent Haskell. Such action results in an incomplete instance in the

Superclass Default Instances for Haskell

code where the class is instantiated and consecutively in compiler
warning. Nevertheless, the compiled code works as expected. Re-
moving a method represents a similar problem to the removing a
class scenario. Yet again we prefer deprecation of the method over
deleting.

Based on these possible situations we want to devise a new
language extension proposal. With accordance to the design goals
we specified in the Section 2.I] we consider most significant the
changes in the class hierarchy. We consider an extension that en-
ables programmer to make such changes a significant benefit to the
maintainability of any existing codebase. Problems which are not
ceased by changes in hierarchy can be in our opinion solved by
careful choice of identifier names and export lists.

Our proposal consist of two independent language modifica-
tions. We devise a mechanism for providing default instances of
superclasses and mechanism of class aliasing. We describe these
modifications in the two separate chapters.

4.1 Superclass Default Instances

We propose to add a new syntax construct into the class definition
as described in the [[15]. Programmer may provide a default super-
class instance in the class method for any of it’s superclasses, e.

g

class Functor f = Applicative f where
pure : a — f a
(<) = f (a—>b) - fa—>1=fhb

default instance Functor f where
fmap = (a =+ b) - fa > £fb
fmap f x = pure f <> x

For any instance of Applicative the compiler generates the
implicit default superclass instance of the class Functor. This in-
stance is used when there is no ordinary instance of Functor.
When there is both superclass default instance and ordinary in-
stance the later is used. This behavior and a selection mecha-
nism among multiple default instances is formally described below.
An instance of the class does not change in any manner.

Hasekll Language Report 2010 [[15]] describes formal syntax of
type class declaration. With respect to the proposed change we
adjust formal syntax as shown in the Figure [d] This adjustment
allows a new language contruct:

A class declaration now contains nested default instance decla-
ration of the general form:

class cz = D u where
default instance C u where cdecls

This introduces new default superclass instance of the class C. The
class C must be an (indirect) superclass of D. The nested default
superclass instance declaration rules dinst, didecls, and didecl re-
spects syntactic structure of instance declaration and restrictions
on instance declarations hold accordingly. In particular » must take
a form of a type constructor to simple type variables u1, ..., Un.,
type constructor must not by a type synonym and u; must be all
distinct.

The context is more complicated. A context of ordinary instance
is expressed through set of classes and superclasses of these classes
are present implicitly in this context due to the behavior of instance
declarations. The context of a default instance contains only the
class of its declaration, all indirect superclasses are included im-
plicitly, but without all classes for which is any default instance
declaration present in the class. Assume that dis is a set of classes
that are being provided with default instance in the class D and that
a id the type variable of the class. The context di; of each instance
from dis is:

2015/3/11

+

topdecl class [scontext =>] tycls tyvar
[where cdecls]
stmpleclass
(simpleclass; , ... ,
simpleclassy)
qtycls tyvar
{ecdecl; 5 ...
cdecly }
gendecl
(funlhs | var) rhs
default instance qtycls dinst
[where didecls]
gtycon
(gtycon tyvar; ... tyvar
) (k > 0, tyvars distinct)
| (tyvar; , ... , tyvar
) (k > 2, tyvars distinct)
| [tyvar]
| (tyvar; —> tyvars
) (tyvar; and tyvars distinct)
{idecl; ; ... ; idecl, } (n>0)
(funlhs | var) rhs

scontext

—

(n>0)
simpleclass
cdecls

(n>0)
cdecl

—4 14

dinst

—

didecls —
didecl —
\

(empty)

Figure 4. Class declarations

d’ii =Da
This allows programmer to use any method from class or superclass
but those being defined in default instances, and allows instance
resolving.

The declaration of default superclass instance may contain bind-
ing only for the class methods of C. If no binding is given for some
method default method in the class declaration is used. If there is
no such method the method of the instance is bound to undefined.
The declaration of a default instance does not contain any signa-
tures or fixity declarations. These were provided in the superclass
that is instantiated.

We do not change the declaration of ordinary instance. How-
ever there can be both ordinary instance and either one or multiple
default instances in the same scope. There cannot be more ordi-
nary instances due to overlapping instances restriction. We con-
sider the graph of all classes in scope. This graph is required to be
acyclic [[15]] and has natural ordering <’ generated by class depen-
dencies.

Definition 1. For C, D classes let <’ be
c<'cC
and
C <" D ¢ Cis an immediate superclass of D

We introduce ordering on all classes < as a transitive closure of
’

<
Definition 2 (Class ordering). For A, B classes let < be
A<C < A< BVv3IC:A<'CAC<B

Assume the set consisting of ordinary instance (if there is one)
and all superclass default instances. We call this a set of candidate
instances or candidates for short. The instance selection mecha-
nism applies following rules on the set of candidates:

Rule 1 If there is an ordinary instance select this instance.

Superclass Default Instances for Haskell

Rule 2 Select all instances /; a such that for any other instance /,, a
holds

Lia<I,a or I,a<1I;a

Rule 3 Select an instance I; a such that for any other instance I, a
holds

I.a<1I;a

The motivation for the Rule 1 is to preserve backward compatible
behavior, i. e. to select existing instances, and to enable user to
provide his own implementation of the instance. We propose to
issue a warning when a proper instance is selected over default
instance.

The motivation for the Rule 2 is to decide between two instances
that are not superclass of each other. In this case we omit them both
and try to select their common ancestor. We expect the ancestor
to be general-or abstract—enough to provide sufficient default in-
stance.

In the Rule 3 we have possibly several instances that are all
either a superclass or a subclass of each other. The ratio behind
the rule is to select the instance which is the least abstract, i.
e. the most specific. We expect this instance to provide possibly
better implementation regarding the performance as it has the most
specific problem related information.

5. Relation to the Language Platform

In this section we put our work into broader perspective. We discuss
several topics that are not necessarily mutually related but each of
the topics is directly connected to our proposal. In particular we
focus on a relation to other language extension and applications of
our work to the actual language platform.

5.1 Relation to the Existing Language Extensions

The Haskell language has evolved beyond the specification pro-
vided by The Report. The GHC, upon which we build our imple-
mentation (see Section [6), contains variety of additional language
extensions that can be looked up in [10].

We consider important to assess possible clashes with other ex-
tensions even though proper testing should be provided. Neverthe-
less, such testing is extremely time consuming due to the great
number of the extensionﬂ In sight of this fact we do not list all the
extension but only the extension we evaluated as possible clashes
during the implementation. E. g. our implementation does not seem
to be involved with any of the syntactic extension anyhow and thus
we do not consider these here.

5.1.1 Multi-parameter Type Classes

The GHC allows to declare multi-parameter type classes with the
extension MultiParamTypeClasses. This is not a standard fea-
ture of Haskell2010 and we do not provide support for superclass
default instances of such classes.

Note that in the case the superclass default instance is being
provided in a class that has more type variables then its superclass
it is necessary to address an issue of possibly ambiguous type.

5.1.2 Default Method Signatures

The extension DefaultSignatures allows to specify different
signature of default method of the class. The syntax of this exten-
sion collides with the syntax of our extension and causes reduce/re-

2 Currently the GHC data type ExtensionFlag that describes available
extensions contains 89 constructors.

2015/3/11

duce conflict in the parser. However, this is an implementational
detail and does not involve any use of our extension.

5.1.3 Functional Dependencies

The FunctionalDependencies extension allows programmer to
constrain parameters of type classes. This requires the Multi-
ParamTypeClasses extension to be active thus same approach as
in the case of later extension applies.

5.1.4 Flexible Instances and Undecidable Instances

These two extensions relax constraints on instance context. A con-
text of a superclass default instance is dependent on a class where is
this instance declared and is described in the Section[d1] This con-
text is restricted enough in the terms of Haskell 2010 and further
relaxation on constraints does not involve our extension.

5.2 Comparison of Current Solutions to Default Superclass
Instances

In this section we provide alternatives to the solutions presented in
the Section [2] We discuss merits of our extension compared to the
original solution.

5.2.1 Deprecation with Compiler Support

This solution presented in the case of Functor—Applicative—-Monad
instance is possible to overcome by adding the Applicative into
the context of the class Monad and providing appropriate superclass
default instances:

{-# LANGUAGE SuperclassDefaultInstances #-}

class Applicative m = Monad m where

c= Vab.ma— (a—>mb) > mb
) tVab.ma—mb—mb
return T a—>ma

fail : String — m a

m>k=m>=_ =k
fail s = error s

default instance Fmap m where
fmap f a = a>= (A\x — return (f x))

default instance Applicative m where
pure a = return a
(<>) = f (a—=+b) = fa—£fDb
f<s>a=a>=0Ox — fmap (\g — g x) f)

This change in the library is backward compatible thus it can be
deployed immediately. The advantage is there is no transitional
period with deprecation we discussed in the Section[2.2]

5.2.2 Subclass to Superclass Instance

Our solution allows programmer to provide the same functionality
as the solution in the Section[2.3] Unlike that solution our approach
does not require problematic UndecidableInstances extension.

5.3 Applications of Proposed Extension

In this section we given three examples of concrete changes in the
hierarchy of standard classes, were already discussed throughout
Haskell community, that our extension makes possible.

5.3.1 Bind and Pointed

Edward Kmett has pointed out [14] that although current classes
Functor, Applicative, and Monad may be refactored into more
convenient structure from categorical point of view it is not to the
benefit of programmer without some kind of superclass default
instance mechanism. The new structure is shown in Figure |1} Our
mechanism allows such refactoring.

Superclass Default Instances for Haskell

{-# LANGUAGE SuperclassDefaultInstances #-}

class Functor f where
fmap = (a - b) - fa—=>fb

class Functor f = Pointed f where
pure : a — f a

class Functor f = Bind f where
bind : fa —- (a - fb) - fb

class Pointed f = Applicative f where
(<>) s fa—f(a—=>b) = £fb
default instance Functor f where

fmap f a = a <> pure f

class (Bind m, Applicative m) = Monad m
return @ m a
G 2ma— (a—mb) > mb

default instance Bind m where
bind = &=

default instance Pointed m where
pure = return

default Applicative Bind m where
mf (<k>) ma =mf >=\ f — ma>=
A a — return (f a)

User of the library can provide instance of Monad with methods
return and (>>=), which are distributed to superclasses via de-
fault superclass instances. Note that it is necessary to use place-
holder name bind in the Bind class in order to allow ordinary in-
stance of Monad.

5.3.2 Standard Numeric Classes

There has been discussion on the design of standard numeric
classes. According to 7, 23] there are several problems—one of
them that standard classes are not finely-grained enough. With our
extension it is possible to refactor current structure in a more apt
one and maintain backward compatibility.

One of the issues of the critique was the Num class. It couples
operation for addition and multiplication. It is possible to separate
these operations into specific classes:

{-# LANGUAGE SuperclassDefaultInstances #-}

class Additive r where
add :r - r = r

class Multiplicative r where
mul @ r - r = T

class (Eq a, Show a) = Num a where
P, *x) or - r > r

default instance Applicative a where
x ‘add* y=x (P y

default instance Multiplicative a where
x ‘mul‘ y=x (%) y

The Num class here is simplified for illustrations purposes. Note
that this example also demonstrates other problem with numeric
classes, it is not obvious whether the operation (+) is commu-
tative. On the other hand it is possible to define, e. g., instance
of Additive for functions of type Int -> Int and semantics
(f + 9)(xz) = f(x) + g(z), which is not possible for the class
Num due to Eq and Show superclass constraints.

2015/3/11

5.3.3 Traversable

The documentation of Traversable package [18] currently states
properties that instance of the class is expected to satisfy with
respect to the classes Foldable and Functor. However, it is up
to the programmer to ensure this. It is possible with the Superclass
Default Instances extension to provide instances satisfying these
rules automatically and thus avoid possible inconsistencies:

{-# LANGUAGE SuperclassDefaultInstance #-}
newtype Id a = Id { getId = a }

newtype Const a = Const { getConst : a }

instance Functor Id where
fmap £ (Id x) = Id (f %)

instance Traversable (Const m) where
traverse _ (Const m) = pure (Const m)

class (Functor t, Foldable t) = Traversable t where

default instance Functor t where
fmap f = getId o traverse (Ido f)

default instance Foldable t where
foldMap = getConst o traverse (Const o f)

This example is incomplete and serves only the illustrative pur-
poses. The full example is provided in the enclosed implementa-
tion.

6. Implementation

In this section we briefly describe an implementation details of the
language proposal we described in the Section[d] We have selected
the GHC as a compiler into which we incorporate our extension.
According to the [[13] it is currently the only compiler that supports
Haskell 2010 specification. We also consider the GHC [[10] docu-
mentation on compiler internals and compiler development supe-
rior to other compilers (e. g. Utrecht Haskell Compiler [6]).

6.1 Compiler Architecture

In this section we refer chiefly to description of the compiler by the
main authors, Marlow and Peyton-Jones, in [[16]. They state mod-
ularity and the openness to the research and compiler extension to
be one of the project goals. The modularity allows us to described
the architecture and consecutively the changes to the compiler in
several detached steps.

In general the GHC project involves more than just the compiler
itself. Precisely it contains

e the compiler,
e the basic libraries that the compiler depends upon, and

e The Runtime System (RTS) that handles running the compiled
code.

We do not need to take care of the architecture of neither li-
braries nor the RTS. The libraries contain general data structures,
e. g. Data.Map, and although we make use of them, we do not need
to make any changes. The compiler processes source program into
Haskell core, a variant of system F called FC [21].

Any higher syntactic construct are translated into the core at
first and the code generation follows after this process. Thus we
do not need to take the RTS into account when describing our
implementation as no adjustments to it take place.

The compiler is further divided into three parts:

e The compilation manager handles compilation of multiple
source files. Its task is to decide which files need to be recom-

Superclass Default Instances for Haskell

source.hs

|

Parse
leSyn RdrName

Rename
leSyn Name

Typecheck
leSyn Id

Desugar

Core Expr

The Simplifier
Rewrite rules
Strictness analysis

Simplify

Core Expr

CoreTidy

!

Code generation Interface file generation

Figure 5. The compilation phases

piled because some of the dependencies have changed since the
last compilation.

e The Haskell compiler (Hsc) that handles compilation of single
file.

e The pipeline composes any external programs (e. g. C prepro-
cessor) with the Hsc.

Only the Hsc is of our concern as we do not change behavior
of multiple file compilation nor manipulate with any external pro-
grams.

6.2 The Haskell Compiler

Compiling a Haskell source file proceeds sequentially in several
phases. The structure of the phases is illustrated in the Figure[6.2]

6.2.1 Parser

In this phase the Haskell source file is converted into abstract
syntax. The lexical analyser and parser are involved. The abstract
syntax data type is the HsSyn t for some type of identifier t. The
parses produces the original string names RdrName from source
code. Hence, the type of abstract syntax is HsSyn RdrName.

This part of compiler uses the Alex library [1f] for generating
lexical analyser and the Happy library [11] as a parser generator.

2015/3/11

6.2.2 Renamer

This compilation phase all identifiers into the fully qualified names.
The identifier types are resolved from RdrName to references to
particular entity Name. Therefore, the resulting abstract syntax has
type HsSyn Name.

6.2.3 Type checker

The type checker verifies that the Haskell program is type-correct.
The type checker resolves the types of identifiers resulting in con-
version of Name type in abstract syntax to Id type.

6.2.4 Desugaring and simplification

Desugaring translates all higher language constructs into basic core
language. Then the core code is simplified through optimization, e.
g., dead code elimination and case expression reduction.

After these phases the target code generation follows. Particular
behavior depends on compiler settings—either native machine code,
LLVM code, or C code may be produced. In this process GHC also
generates interface files in order to support separate compilation.

6.3 Changes to the Compiler

In this section we briefly document changes to the compiler and
design of our implementation. In the description of the changed we
follow sequential architecture of the compiler and discuss each part
of the compiler respective to the compilation phase separately.

6.4 Extension Flag

Before proceeding with the implementation have we added the
Extension Flag and registered the flag with a command line option.
This allows programmer to enable the extension from source code
and from the command line respectively. The appropriate data types
are located in the file main/DynFlags.hs.

data ExtensionFlag

= Opt_Cpp
| Opt_Overlappinglnstances

-- | Our eztension flag
| Opt_SuperclassDefaultInstances
deriving (Eq, Enum, Show)

xFlags :: [FlagSpec ExtensionFlag]
xFlags = [
(n CPP n .

Opt_Cpp, nop),

-- Our extension
("SuperclassDefaultInstances",
Opt_SuperclassDefaultInstances, nop)

This allows us to recognise whether the extension is enable from
compilation context.

6.5 Parser

Our extension dost not add nor any keywords nor new lexical forms
to the language. Thus we do not alter the lexer. We incorporate
changes into the language grammar to the parser definition, which
is stored in parser/Parser.y.pp. Particularly we modify the
class declaration rule with our default instance branch

: at_decl_cls { LL (unitOL $1) }
| decl {813}

decl_cls

| >default’ dinst_decl {J%
hintSuperclassDefaultInstances (getLoc $1)
return ...

Superclass Default Instances for Haskell

and introduced default instance rule:

-- Default instances
dinst_decl : ’instance’ inst_type where_inst {o .. }

Note that the function hintSuperclassDefaultInstances is a
new helper that checks the extension flag and causes appropriate
compilation error if the flag is not present. For technical reasons
we require user to explicitly state the context of default instance.

6.6 Renamer

We have introduced the method rnClsDefInstDecl in rename/
RnSource.lhs. The method handles renaming in the case of
superclass default instances. It is modeled after the appropriate
method that handles ordinary instance renaming.

6.7 Type Checker

We have modified basic data types representing declarations in
the file hsSyn/ HsDecls.lhs. Particularly we have modified the
ClassDecl constructor of TyCl1Decl data type, which represents
type or class declaration, in such manner it now carries the infor-
mation about superclass default instances. We have also introduced
a data type that represents superclass default instance:

data ClsDefInstDecl name = ClsDefInstDecl {
-- Context = Class Instance-type
cdid_poly_ty : LHsType name
, cdid_binds : LHsBinds name
, cdid_sigs [LSig name] --user supplied
-- 7 type family instances
, cdid_tyfam_insts : [LTyFamInstDecl name]
-- " data family instances
, cdid_datafam_insts :: [LDataFamInstDecl name]
, cdid_overlap_mode : Maybe OverlapMode
}

deriving (Data, Typeable)

We have also enriched global environment TcGblEnv with de-
fault instance environment tcg_dinst_env and list of default in-
stances tcg_dinsts:

data TcGblEnv
= TcGblEnv {
tcg_inst_env :: InstEnv,
-- " Instance envt for all /home-package/ modules;
-- Includes the dfuns in tcg_insts
tcg_dinst_env :: InstEnv,
-— " Ditto for default instances

[ClsInst],
[ClsInst],

-- Instances
-- Default Instances

tcg_insts
tcg_dinsts

This allows us to collect default instances separately from ordi-
nary instances.

6.8 Desugaring

We use existing machinery that handles desugaring of ordinary
instances also for desugaring of superclass default instances.

7. Further work

The future work related to this thesis embodies mostly in two direc-
tions. There is a great deal of work ahead consisting of a proper im-
plementation of the extensions. Such implementation must adhere
to GHC coding standards in order to be acceptable into the com-
piler. Such implementation must also contain extensive test cases
for use with GHC testing platform. Following such implementa-
tion and its acceptance into compiler there are changes to be made
in the standard library with the use of our extensions.

2015/3/11

Beside the practical work there is also the other direction. The
more theoretical direction of the work consists of possible opt-out
mechanism for default instances. We do not discuss these in out
work although they are considered in the previous proposals. There
are also some other language proposals that are loosely related to
the default instances, e. g. quantified contexts [20]. Identification of
these proposals and their relation to superclass defaults seems to us
as a solid base for further work on the language extension that the
language and its users could benefit from.

Conclusion

We have described a maintainability problem with Haskell type
classes that occurs in practice. We have summarized previous at-
tempts to solve this problem and analysed different features of this
approaches.

Based on this analysis we have derived a proposal for two lan-
guage extensions—the Superclass Defaults Extension and Class
Aliases extensions. The first proposal allows programmer to de-
clare default instance of a superclass within a class declaration.
The other extension allows to provide an instance over a set of
classes. We have demonstrated on several examples how the super-
class default instances solve the problem under our consideration.
The Class Aliases are only a supplementary extension to Superclass
Defaults but works nicely with it and allows cleaner expression of
some class hierarchies.

We have discussed relations of our extensions to existing exten-
sions and provided sample solutions to discussed problem. We have
also implemented the first of the extensions as a proof-of-concept
and described the main design choices of this implementation.

The given implementation of our proposal show that our pro-
posal is solid and can be implemented in practice. Listed sample
solutions only cover a small set of problems whether the real ap-
plication of our work could be much wider. Introduction of these
language extensions into mainstream compiler would allow on one
hand to correct some existing problems in class dependencies and
on the other hand the authors of libraries would have more freedom
in the design of such libraries knowing that any design choice can
be corrected in future.

References
[1]

Alex: A lexical analyser generator for Haskell. Tech. rep.
http://www.haskell.org/alex/|

Applicative/Monad proposal related warnings (AMP phase
1). Online. Feb. 2015. URL: https://ghc.haskell.org/
trac/ghc/ticket/8004.

Richard Bird et al. “Understanding Idiomatic Traversals
Backwards and Forwards”. In: Proceedings of the 2013 ACM
SIGPLAN Symposium on Haskell. Haskell *13. New York,
NY, USA: ACM, 2013, pp. 25-36.

Class system extension proposal. Online. Mar. 2012. URL:
http://www.haskell.org/haskellwiki/index.php?
title=Class_system_extension_proposal&oldid=
44718

Default superclass instances. Online. July 2014. URL: http:
/ / ghc . haskell . org / trac / ghc / wiki / Default /
SuperclassInstances?version=30.

Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. “The
Structure of the Essential Haskell Compiler, or Coping with
Compiler Complexity.” In: IFL. Ed. by Olaf Chitil, Zoltn
Horvth, and Viktria Zsk. Vol. 5083. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 57-74.

Mikael Johansson Dylan Thurston Henning Thielemann.
The numeric-prelude package. July 2014. URL: http://

(2]

(3]

(4]

(5]

(6]

(7]

Superclass Default Instances for Haskell

(8]
(9]

[10]
(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

hackage . haskell . org/package /numeric-prelude-
0.4.1.

Karl-Filip Faxn. “A static semantics for Haskell”. In: Journal
of Functional Programming 12 (2002), pp. 295 -357.
Functor-Applicative—-Monad Proposal. Online. July 2014.
URL: http://www.haskell.org/haskellwiki/index.
php?title=Functor-Applicative-Monad_Proposal&
01did=58553|

GHC Documentation. Tech. rep. July 2014. URL: http://
www.haskell.org/ghc/docs/7.8.3/html/|

Happy: The Parser Generator for Haskell. Tech. rep. http:
//www.haskell.org/happy/.

Implement Functor = Applicative = Monad Hierarchy (aka
AMP phase 3). Online. Feb. 2015. URL: https: //ghc.
haskell.org/trac/ghc/ticket/4834.

Implementations. Online. Jan. 2014. URL: http : / /www .
haskell . org / haskellwiki / index . php 7 title =
Implementations&oldid=57412,

Edward Kmett. Lens based classy prelude. Online. Sept.
2013.

Simon Marlow. Haskell 2010 Language Report. Tech. rep.
June 2010. URL: http://www . haskell . org/online/
report/haskel12010/.

Simon Marlow and Simon Peyton-Jones. “The Glasgow
Haskell Compiler”. In: The Archicture of Open Source Appli-
cations, Volume II: Structure, Scale, and a Few More Fear-
less Hacks. Ed. by Greg Wilson and Amy Brown. Vol. ii. Self
published, Apr. 2012. Chap. 3.

Conor McBride. the Strathclyde Haskell Enhancement. On-
line. July 2014. URL: https://personal.cis.strath.
ac.uk/conor.mcbride/pub/she/.

Conor McBride and Ross Paterson. Data.Traversable. On-
line. 2005. URL: https : / / hackage . haskell . org/
package/base-4.7.0.0/docs/Data-Traversable.
html.

John Meacham. Class Aliases. Online, July 2014. URL:
http://repetae.net/recent/out/classalias.html,
Quantified contexts. Online. May 2010. URL: http : / /
www . haskell . org/haskellwiki/index .php?title=
Quantified_contexts&oldid=34638.

Martin Sulzmann et al. “System F with type equality coer-
cions.” In: TLDI. Ed. by Franois Pottier and George C. Nec-
ula. ACM, 2007, pp. 53-66.

Superclass defaults. Online. Dec. 2007. URL: http : / /
www . haskell . org/haskellwiki/index .php?title=
Superclass_defaults&oldid=17441,

Henning Thielemann. “How to Refine Polynomial Func-
tions”. In: I/WMIP 10.3 (2012).

John Wiegley. Proposal: Add Data.Semigroup to base, as a
superclass of Monoid. June 2013.

2015/3/11

http://www.haskell.org/alex/
https://ghc.haskell.org/trac/ghc/ticket/8004
https://ghc.haskell.org/trac/ghc/ticket/8004
http://www.haskell.org/haskellwiki/index.php?title=Class_system_extension_proposal&oldid=44718
http://www.haskell.org/haskellwiki/index.php?title=Class_system_extension_proposal&oldid=44718
http://www.haskell.org/haskellwiki/index.php?title=Class_system_extension_proposal&oldid=44718
http://ghc.haskell.org/trac/ghc/wiki/Default/SuperclassInstances?version=30
http://ghc.haskell.org/trac/ghc/wiki/Default/SuperclassInstances?version=30
http://ghc.haskell.org/trac/ghc/wiki/Default/SuperclassInstances?version=30
http://hackage.haskell.org/package/numeric-prelude-0.4.1
http://hackage.haskell.org/package/numeric-prelude-0.4.1
http://hackage.haskell.org/package/numeric-prelude-0.4.1
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/ghc/docs/7.8.3/html/
http://www.haskell.org/ghc/docs/7.8.3/html/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
https://ghc.haskell.org/trac/ghc/ticket/4834
https://ghc.haskell.org/trac/ghc/ticket/4834
http://www.haskell.org/haskellwiki/index.php?title=Implementations&oldid=57412
http://www.haskell.org/haskellwiki/index.php?title=Implementations&oldid=57412
http://www.haskell.org/haskellwiki/index.php?title=Implementations&oldid=57412
http://www.haskell.org/online/report/haskell2010/
http://www.haskell.org/online/report/haskell2010/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Traversable.html
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Traversable.html
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Traversable.html
http://repetae.net/recent/out/classalias.html
http://www.haskell.org/haskellwiki/index.php?title=Quantified_contexts&oldid=34638
http://www.haskell.org/haskellwiki/index.php?title=Quantified_contexts&oldid=34638
http://www.haskell.org/haskellwiki/index.php?title=Quantified_contexts&oldid=34638
http://www.haskell.org/haskellwiki/index.php?title=Superclass_defaults&oldid=17441
http://www.haskell.org/haskellwiki/index.php?title=Superclass_defaults&oldid=17441
http://www.haskell.org/haskellwiki/index.php?title=Superclass_defaults&oldid=17441

	Introduction
	Previous work
	Contributions
	Outline

	Maintainability Problem
	Altering Type Class Hierarchy
	Deprecation with Compiler Support
	Subclass to Superclass Instance
	Design Goals of a Solution

	Previous Work
	Default Instances
	Default Method Implementation
	Class Aliases

	Language Extension Proposal
	Superclass Default Instances

	Relation to the Language Platform
	Relation to the Existing Language Extensions
	Multi-parameter Type Classes
	Default Method Signatures
	Functional Dependencies
	Flexible Instances and Undecidable Instances

	Comparison of Current Solutions to Default Superclass Instances
	Deprecation with Compiler Support
	Subclass to Superclass Instance

	Applications of Proposed Extension
	Bind and Pointed
	Standard Numeric Classes
	Traversable

	Implementation
	Compiler Architecture
	The Haskell Compiler
	Parser
	Renamer
	Type checker
	Desugaring and simplification

	Changes to the Compiler
	Extension Flag
	Parser
	Renamer
	Type Checker
	Desugaring

	Further work
	Conclusion

