Motivation

Concieved by Church in 1932/33

A set of postulates for the foundation of logic, *Annals of Mathematics* (2) 33, pp. 346-366 and 34, pp. 839-864

as model for computable fucntions. This notes are excerpt from

Abramsky S. et al., Handbook of Logic in Computer Science: Volume 2. Background: Computational Structures, Claredon Press, 1992

in particular from chapter Lambda Calculi with Types by Henk Barendregt

Motivation - cont.

> Application use data (expresion) F as an algorithm on data A

(FA)

 \blacktriangleright Abstraction for expression $M \equiv M[x]$ possibly depending on x the map

$$x \mapsto M[x]$$

is denoted by expression

 $\lambda \mathbf{x} \cdot \mathbf{M}[\mathbf{x}]$ or $\lambda \mathbf{x} \cdot \mathbf{M}$

Motivation - cont.

For example

$$(\lambda x.x+1)3=3^2+1$$

► In general we have

$$(\lambda x.M[x])N = M[N]$$

or preferable written as

$$(\lambda x.M[x])N = M[x := N]$$
 (β)

Formal description

Definition (Lambda Calculus)

The set of λ -terms Λ built up from an infinite set of variables $V = \{v, v', v'', \ldots\}$ is a set:

$$\begin{array}{rcl} x \in V & \Rightarrow & x \in \Lambda \\ M, N \in \Lambda & \Rightarrow & (MN) \in \Lambda \\ M \in \Lambda, x \in V & \Rightarrow & (\lambda x M) \in \Lambda \end{array}$$

i. e. in abstract syntax

$$V ::= v \mid v'$$

$$\Lambda ::= V \mid (\Lambda\Lambda) \mid (\lambda V\Lambda)$$

Formal description - cont.

Example

Following are λ -terms

$$v (vv'') (\lambda v(vv'')) ((\lambda v'((\lambda v(vv''))v'))v''')$$

Conventions

- ► *z*, *y*, *z*, . . . denotes variables
- M, N, L, \ldots denotes lambda terms
- $FM_1M_2...M_n$ stands for $(...(FM_1)M_2)...M_n)$
- $\lambda x_1 x_2 \dots x_n M$ stands for $(\lambda x_1(\lambda x_2(\dots((x_n(M)))\dots))))$

Formal description - cont.

Definition

1. the set of free variables of M

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

other variables are bound

2. M is a closed term (combinator) iff $FV(M) = \emptyset$

Definition (Equivalence up to renaming)

 $M \equiv N$ denotes that terms can be obtained from each other by renaming bound variables

Formal description - cont.

Definition

1. The principal axiom scheme called β -conversion: for all $M, N \in \Lambda$

$$(\lambda x.M[x])N = M[x := N]$$
 (\beta)

2. logical axioms and rules

$$M = N$$

$$M = N \Rightarrow N = M$$

$$M = N, N = L \Rightarrow M = L$$

$$M = M' \Rightarrow MZ = M'Z$$

$$M = M' \Rightarrow ZM = ZM'$$

$$M = M' \Rightarrow \lambda x.M = \lambda x.M'$$

3. If M = N is provable from axioms than we write $\lambda \vdash M = N$

Fixed point theorem

Theorem (Fixed point theorem)

- 1. $\forall F \in \Lambda \exists X \in \Lambda \quad \lambda \vdash FX = X$
- 2. There is a fixed point combinator

$$\mathbf{Y} \equiv \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$$

s. t.

$$\forall F \quad F(\mathbf{Y}F) = \mathbf{Y}F$$

Proof.

- 1. Define $W \equiv \lambda x.F(xx)$ and $X \equiv WW$. Then $X \equiv WW \equiv (\lambda x.F(xx))W = F(WW) \equiv FX$.
- 2. By the proof of (1). $\mathbf{Y} = (\lambda x.F(xx))(\lambda x.F(xx)) \equiv X$

Booleans

Definition (Booleans, conditional)

1. true
$$\equiv \lambda xy.x$$
, false $\equiv \lambda xy.y$

2. If B is either true ot false

if B then P else Q

can be represented as BPQ

It holds that true PQ = P and false PQ = Q

Church numerals

Definition

1. $F^n(M)$ with $n \in \mathbb{N}$ and $F, M \in \Lambda$, is defined:

$$F^0(M) \equiv M$$

 $F^{n+1}(M) \equiv F(F^n(M))$

2. The *Church numerals* c_0, c_1, \ldots are defined:

$$c_n \equiv \lambda f x. f^n(x)$$

Church numerals - cont.

Lemma (Rosser) Define

$$egin{aligned} &A_+\equiv\lambda xypq.xp(ypq\ &A_*\equiv\lambda xyz.x(yz)\ &A_{exp}\equiv\lambda xy.yx \end{aligned}$$

then for all $n, m \in \mathbb{N}$

- 1. $A_{+}c_{m}c_{n} = c_{m+n}$
- 2. $A_*c_mc_n = c_{mn}$
- 3. $A_{exp}c_mc_n = c_{(m^n)}$, except for m = 0

In order to program in the language we need to equip it with a semantics. We use operational semantics here. This computatinal aspect is expressed as

$$(\lambda x.x^2+1)3 \rightarrow 10$$

and reads ,, $(\lambda x.x^2 + 1)3$ reduces to 10".

β -reduction

Definition

The binary relations \rightarrow_{β} , $\twoheadrightarrow_{\beta}$, and $=_{\beta}$ are defined

1. (a)
$$(\lambda x.M)N \rightarrow_{\beta} M[x := N]$$

(b) $M \rightarrow_{\beta} N \Rightarrow ZM \rightarrow_{\beta} ZN, MZ \rightarrow_{\beta} NZ$ and $\lambda x.M \rightarrow_{\beta} \lambda x.N$
2. (a) $M \rightarrow_{\beta} M$
(b) $M \rightarrow_{\beta} N \rightarrow M \rightarrow_{\beta} N$
(c) $M \rightarrow_{\beta} N, N \rightarrow_{\beta} L \Rightarrow M \rightarrow_{\beta} L$

3. (a)
$$M \rightarrow_{\beta} M \Rightarrow M =_{\beta} N$$

(b) $M =_{\beta} M \Rightarrow N =_{\beta} M$
(c) $M =_{\beta} N, N =_{\beta} L \Rightarrow M =_{\beta} L$

and read β -reduces in one step to, β -reduces to, and is β convertible to.

Lemma

$$M =_{\beta} N \Leftrightarrow \lambda \vdash M = N$$

 β -reduction - cont.

Definition

1. A β -redex is a term of the form

 $(\lambda x.M)N$

and in this case

$$M[x := N]$$

is its contractum

- 2. A λ -term M is in a β -normal form it it does not have a β -redex as subexpression
- 3. A term M has a β -normal form if $M =_{\beta} N$ and N is in a β -nf, for some N

Theorem (Church-Rosser)

If $M \twoheadrightarrow_{\beta} N_1$ and $M \twoheadrightarrow_{\beta} N_2$ then for some N_3 one has $N_1 \twoheadrightarrow_{\beta} N_3$ and $N_2 \twoheadrightarrow_{\beta} N_3$:

Corollary

- 1. If $M =_{\beta} N$ then there is an L s. t. $M \twoheadrightarrow_{\beta} L$ and $N \twoheadrightarrow_{\beta} L$
- 2. If M has N as β -nf then $M \rightarrow_{\beta} N$
- 3. A λ -term has at most one β -nf

Definition

- 1. The main symbol of $(\lambda x.M)N$ is the first λ .
- 2. Let R_1, R_2 be two redexes in M. Then R_1 is to the left of R_2 if the main symbol of R_1 is to the left of R_2
- 3. We write $M \rightarrow_I N$ if N results from M by contracting the leftmost redex M. The reflexive transitive closure is denoted \rightarrow_I

Theorem (Curry)

If M has a β -normal form then $M \twoheadrightarrow_I N$