Motivation

Concieved by Church in 1932/33
A set of postulates for the foundation of logic, Annals of Mathematics (2) 33 , pp. 346-366 and 34, pp. 839-864
as model for computable fucntions. This notes are excerpt from
Abramsky S. et al., Handbook of Logic in Computer Science: Volume 2.
Background: Computational Structures, Claredon Press, 1992
in particular from chapter Lambda Calculi with Types by Henk Barendregt

Motivation - cont.

- Application use data (expresion) \mathbf{F} as an algorithm on data \mathbf{A}

(FA)

- Abstraction for expresion $\mathbf{M} \equiv \mathbf{M}[\mathbf{x}]$ possibly depending on \mathbf{x} the map

$$
x \mapsto M[x]
$$

is denoted by expression
$\lambda \mathbf{x} . \mathrm{M}[\mathrm{x}]$ or $\lambda \mathbf{x} . \mathbf{M}$

Motivation - cont.

- For example

$$
(\lambda x \cdot x+1) 3=3^{2}+1
$$

- In general we have

$$
(\lambda x \cdot M[x]) N=M[N]
$$

or preferable written as

$$
(\lambda x \cdot M[x]) N=M[x:=N]
$$

Formal description

Definition (Lambda Calculus)

The set of λ-terms Λ built up from an infinite set of variables $V=\left\{v, v^{\prime}, v^{\prime \prime}, \ldots\right\}$ is a set:

$$
\begin{aligned}
x \in V & \Rightarrow x \in \Lambda \\
M, N \in \Lambda & \Rightarrow(M N) \in \Lambda \\
M \in \Lambda, x \in V & \Rightarrow(\lambda x M) \in \Lambda
\end{aligned}
$$

i. e. in abstract syntax

$$
\begin{aligned}
& V::=v \mid v^{\prime} \\
& \Lambda::=V|(\Lambda \Lambda)|(\lambda V \Lambda)
\end{aligned}
$$

Formal description - cont.

Example

Following are λ-terms

$$
\begin{aligned}
& v \\
& \left(v v^{\prime \prime}\right) \\
& \left(\lambda v\left(v v^{\prime \prime}\right)\right) \\
& \left(\left(\lambda v^{\prime}\left(\left(\lambda v\left(v v^{\prime \prime}\right)\right) v^{\prime}\right)\right) v^{\prime \prime \prime}\right)
\end{aligned}
$$

Conventions

- z, y, z, \ldots denotes variables
- M, N, L, \ldots denotes lambda terms
- $F M_{1} M_{2} \ldots M_{n}$ stands for $\left(\ldots\left(\left(F M_{1}\right) M_{2}\right) \ldots M_{n}\right)$
- $\lambda x_{1} x_{2} \ldots x_{n} . M$ stands for $\left(\lambda x_{1}\left(\lambda \times 2\left(\ldots\left(\left(x_{n}(M)\right)\right) \ldots\right)\right)\right)$

Formal description - cont.

Definition

1. the set of free variables of M

$$
\begin{aligned}
F V(x) & =\{x\} \\
F V(M N) & =F V(M) \cup F V(N) \\
F V(\lambda x . M) & =F V(M) \backslash\{x\}
\end{aligned}
$$

other variables are bound
2. M is a closed term (combinator) iff $F V(M)=\emptyset$

Definition (Equivalence up to renaming)
$M \equiv N$ denotes that terms can be obtained from each other by renaming bound variables

Formal description - cont.

Definition

1. The principal axiom scheme called β-conversion: for all $M, N \in \Lambda$

$$
(\lambda x \cdot M[x]) N=M[x:=N]
$$

2. logical axioms and rules

$$
\begin{aligned}
& M=N \\
& M=N \Rightarrow N=M \\
& M=N, N=L \Rightarrow M=L \\
& M=M^{\prime} \Rightarrow M Z=M^{\prime} Z \\
& M=M^{\prime} \Rightarrow Z M=Z M^{\prime} \\
& M=M^{\prime} \Rightarrow \lambda x \cdot M=\lambda x \cdot M^{\prime}
\end{aligned}
$$

3. If $M=N$ is provable from axioms than we write $\lambda \vdash M=N$

Fixed point theorem

Theorem (Fixed point theorem)

1. $\forall F \in \Lambda \exists X \in \Lambda \quad \lambda \vdash F X=X$
2. There is a fixed point combinator

$$
\mathbf{Y} \equiv \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

s. t.

$$
\forall F \quad F(\mathbf{Y} F)=\mathbf{Y} F
$$

Proof.

1. Define $W \equiv \lambda x . F(x x)$ and $X \equiv W W$. Then

$$
X \equiv W W \equiv(\lambda x \cdot F(x x)) W=F(W W) \equiv F X
$$

2. By the proof of $(1) . \mathbf{Y}=(\lambda x \cdot F(x x))(\lambda x \cdot F(x x)) \equiv X$

Booleans

Definition (Booleans, conditional)

1. true $\equiv \lambda x y . x$, false $\equiv \lambda x y . y$
2. If B is either true ot false

if B then P else Q

can be represented as $B P Q$
It holds that true $P Q=P$ and false $P Q=Q$

Church numerals

Definition

1. $F^{n}(M)$ with $n \in \mathbb{N}$ and $F, M \in \Lambda$, is defined:

$$
\begin{aligned}
F^{0}(M) & \equiv M \\
F^{n+1}(M) & \equiv F\left(F^{n}(M)\right)
\end{aligned}
$$

2. The Church numerals c_{0}, c_{1}, \ldots are defined:

$$
c_{n} \equiv \lambda f x . f^{n}(x)
$$

Church numerals - cont.

Lemma (Rosser)
Define

$$
\begin{aligned}
A_{+} & \equiv \lambda x y p q \cdot x p(y p q) \\
A_{*} & \equiv \lambda x y z \cdot x(y z) \\
A_{e x p} & \equiv \lambda x y \cdot y x
\end{aligned}
$$

then for all $n, m \in \mathbb{N}$

1. $A_{+} c_{m} c_{n}=c_{m+n}$
2. $A_{*} c_{m} c_{n}=c_{m n}$
3. $A_{\text {exp }} c_{m} c_{n}=c_{\left(m^{n}\right)}$, except for $m=0$

Operational semantics

In order to program in the language we need to equip it with a semantics. We use operational semantics here. This computatinal aspect is expressed as

$$
\left(\lambda x \cdot x^{2}+1\right) 3 \rightarrow 10
$$

and reads ,,($\left.\lambda x \cdot x^{2}+1\right) 3$ reduces to $10^{\prime \prime}$.

β-reduction

Definition

The binary relations $\rightarrow_{\beta}, \rightarrow_{\beta}$, and $=_{\beta}$ are defined

1. (a) $(\lambda x . M) N \rightarrow_{\beta} M[x:=N]$
(b) $M \rightarrow_{\beta} N \Rightarrow Z M \rightarrow_{\beta} Z N, M Z \rightarrow_{\beta} N Z$ and $\lambda x . M \rightarrow_{\beta} \lambda x . N$
2. (a) $M \rightarrow{ }_{\beta} M$
(b) $M \rightarrow_{\beta} N \rightarrow M \rightarrow{ }_{\beta} N$
(c) $M \rightarrow{ }_{\beta} N, N \rightarrow{ }_{\beta} L \Rightarrow M \rightarrow{ }_{\beta} L$
3. (a) $M \rightarrow{ }_{\beta} M \Rightarrow M={ }_{\beta} N$
(b) $M={ }_{\beta} M \Rightarrow N={ }_{\beta} M$
(c) $M={ }_{\beta} N, N={ }_{\beta} L \Rightarrow M={ }_{\beta} L$
and read β-reduces in one step to, β-reduces to, and is β convertible to.
Lemma

$$
M={ }_{\beta} N \Leftrightarrow \lambda \vdash M=N
$$

β-reduction - cont.

Definition

1. A β-redex is a term of the form

$$
(\lambda x \cdot M) N
$$

and in this case

$$
M[x:=N]
$$

is its contractum
2. $\mathrm{A} \lambda$-term M is in a β-normal form it it does not have a β-redex as subexpression
3. A term M has a β-normal form if $M={ }_{\beta} N$ and N is in a β-nf, for some N

Theorem (Church-Rosser)

If $M \rightarrow{ }_{\beta} N_{1}$ and $M \rightarrow{ }_{\beta} N_{2}$ then for some N_{3} one has $N_{1} \rightarrow{ }_{\beta} N_{3}$ and $N_{2} \rightarrow{ }_{\beta} N_{3}:$

Corollary

1. If $M={ }_{\beta} N$ then there is an L s. $t . M \rightarrow{ }_{\beta} L$ and $N \rightarrow_{\beta} L$
2. If M has N as β-nf then $M \rightarrow_{\beta} N$
3. $A \lambda$-term has at most one β-nf

Definition

1. The main symbol of $(\lambda x . M) N$ is the first λ.
2. Let R_{1}, R_{2} be two redexes in M. Then R_{1} is to the left of R_{2} if the main symbol of R_{1} is to the left of R_{2}
3. We write $M \rightarrow_{I} N$ if N results from M by contracting the leftmost redex M . The reflexive transitive closure is denoted \rightarrow,

Theorem (Curry)
If M has a β-normal form then $M \rightarrow$ । N

