
Coinductive Soundness of Corecursive Type
Class Resolution

Frantǐsek Farka1,2, Ekaterina Komendantskaya3, Kevin Hammond2, and
Peng Fu3

1 University of Dundee, Dundee, Scotland
2 University of St Andrews, St Andrews, Scotland

{ff32,kh8}@st-andrews.ac.uk
3 Heriot-Watt University, Edinburgh, Scotland

{ek19,pf7}@hw.ac.uk

Abstract. Horn clauses and first-order resolution are commonly used
for the implementation of type classes in Haskell. Recently, several core-
cursive extensions to type class resolution have been proposed, with the
common goal of allowing (co)recursive dictionary construction for those
cases when resolution does not terminate. This paper shows, for the first
time, that corecursive type class resolution and its recent extensions are
coinductively sound with respect to the greatest Herbrand models of
logic programs and that they are inductively unsound with respect to
the least Herbrand models.

Keywords: Resolution, Coinduction, Herbrand models, Type classes

1 Introduction

The type class mechanism is a popular way of implementing ad-hoc polymor-
phism and overloading in functional languages. It originated in Haskell [16, 7]
and has been further developed in dependently typed languages [6, 3]. For exam-
ple, it is convenient to define equality for all data structures in a uniform way.
In Haskell, this is achieved by introducing the equality class Eq:

class Eq x where
eq : : Eq x ⇒ x → x → Bool

and then declaring its instances as needed, e.g. for pairs and integers:

instance (Eq x, Eq y) ⇒ Eq (x, y) where
eq (x1 , y1) (x2 , y2) = eq x1 x2 && eq y1 y2

instance Eq Int where
eq x y = primtiveIntEq x y

Type class resolution is performed by the compiler and involves checking whether
the instance declarations are valid. For example, the following function triggers
a check that Eq (Int, Int) is a valid instance of the type class Eq:

test : : Eq (Int , Int) ⇒ Bool
test = eq (1 ,2) (1 ,2)

It is folklore that type class instance resolution resembles SLD-resolution from
logic programming. In particular, an alternative view of the type class instance
declarations above would be the following two Horn clauses:

Example 1 (Logic program PPair).

κ1 : eq(x), eq(y) ⇒ eq(pair(x, y))
κ2 : ⇒ eq(int)

For example, given the query ? eq(pair(int, int)), SLD-resolution terminates
successfully with the following sequence of inference steps:

eq(pair(int, int))→κ1 eq(int), eq(int)→κ2 eq(int)→κ2 ∅

A proof witness (dictionary) is constructed by the Haskell compiler: κ1κ2κ2.
This is internally treated as an executable function.

Despite the apparent similarity of type class syntax and type class resolu-
tion to Horn clauses and SLD-resolution they are not exactly the same. On the
syntactic level, type class instance declarations correspond to a restricted form
of Horn clauses, namely ones that: (i) do not overlap (i.e. whose heads do not
unify); and (ii) do not contain existential variables (i.e. variables that occur
in the bodies but not in the heads of the clauses). On the algorithmic level,
(iii) type class resolution corresponds to SLD-resolution in which unification is
restricted to term-matching. Assuming that there is a clause B1, . . . Bn ⇒ A′, a
query ? A′ can be resolved with the clause only if A can be matched against A′,
i.e. a substitution σ exists such that A = σA′. For comparison, SLD-resolution
incorporates unifiers, as well as matchers, i.e. it proceeds in resolving the above
query and clause also in those cases when σA = σA′ holds.

These restrictions derive from a desire to guarantee computation of the prin-
cipal (most general) type in type class inference. Restrictions (i) and (ii) amount
to deterministic inference by resolution, in which only one derivation is possible
for every query. Restriction (iii) means that no substitution is applied to a query
during the inference, i.e. we prove the query in an implicitly universally quan-
tified form. It is a common knowledge that, similarly to SLD-resolution, type
class resolution is inductively sound, i.e. it is sound relative to the least Herbrand
models of logic programs [12]. Moreover, it is universally inductively sound, i.e.
if a formula A is proven by type class resolution, every ground instance of A
is in the least Herbrand model of the given program. In Section 3, we estab-
lish for the first time the universal inductive soundness of type class resolution.
Unlike SLD-resolution, type class resolution is inductively incomplete, i.e. it is
incomplete relative to least Herbrand models, even for the class of Horn clauses
restricted by the conditions (i) and (ii).

Lämmel and Peyton Jones have suggested [11] an extension to type class
resolution that accounts for some non-terminating cases of type class resolution.
Consider, for example, the following mutually defined data structures:

2

data OddList a = OCons a (EvenList a)
data EvenList a = Nil | ECons a (OddList a)

and the instance declarations that they give rise to in the Eq class:
instance (Eq a, Eq (EvenList a)) ⇒ Eq (OddList a) where

eq (OCons x xs) (OCons y ys) = eq x y && eq xs ys

instance (Eq a, Eq (OddList a)) ⇒ Eq (EvenList a) where
eq Nil Nil = True
eq (ECons x xs) (ECons y ys) = eq x y && eq xs ys
eq _ _ = False

The test function below triggers type class resolution in the compiler:
test : : Eq (EvenList Int) ⇒ Bool
test = eq Nil Nil

Such inference by resolution does not terminate. Consider the Horn clause rep-
resentation of the type class instance declarations:

Example 2 (Logic program PEvenOdd).

κ1 : eq(x), eq(evenList(x)) ⇒ eq(oddList(x))
κ2 : eq(x), eq(oddList(x)) ⇒ eq(evenList(x))
κ3 : ⇒ eq(int)

The non-terminating resolution trace is given by:

eq(evenList(int))→κ2 eq(int), eq(oddList(int))→κ3 eq(oddList(int))
→κ1 eq(int), eq(evenList(int))→κ3 eq(evenList(int))→κ2 . . .

A goal eq(evenList(int)) is simplified using the clause κ2 to goals eq(int) and
eq(oddList(int)). First of these is discarded using the clause κ3. The resolution
continus by clauses κ1 and κ3 resulting in the original goal eq(evenList(int)).
It is easy to see that such process can continue infinitely and that this goal
constitutes a cycle, which is underlined.

As suggested by Lämmel and Peyton Jones [11], the compiler can terminate
the infinite inference process as soon as it detects the underlined cycle. More-
over, it can construct the corresponding proof witness in a form of a recursive
function. For the above example, such a function is given by the fixed point term
να.κ2κ3(κ1κ3α), where ν is a fixed point operator. The intuitive reading of such
a proof is that an infinite proof of the query ? eq (evenList(int)) exists, and
that its shape is fully specified by the recursive proof witness function above –
the clauses modify goals as described above in the case of the non-terminating
resolution trace and να denotes the resolution repeats recursively at the point
where α occurs. We will say that the proof is given by corecursive type class
resolution.

It has not previously been observed in the literature that corecursive type
class resolution is not sound inductively. For example, eq(evenList(int)) is

3

not in the least Herbrand model of the corresponding logic program. However,
it is (universally) coinductively sound, i.e. it is sound relative to the greatest
Herbrand models. In particular, eq(evenList(int)) is in the greatest Herbrand
model of the program. We prove this new result in Section 4. Similarly to the
inductive case, corecursive type class resolution is coinductively incomplete. Con-
sider the clause κinf : p(x)⇒ p(f(x)). It may be given an interpretation by the
greatest (complete) Herbrand models, but corecursive type class resolution does
not give rise to infinite proofs for this clause.

As might be expected, the simple method of cycle detection used in core-
cursive type class resolution does not work for all non-terminating programs.
Consider the following example, which gives the definition of a data type Bush
(for bush trees), and the corresponding instance declaration of equality class:
data Bush a = Nil | Cons a (Bush (Bush a))

instance Eq a, Eq (Bush (Bush a)) ⇒ Eq (Bush a) where
...

Type class resolution for data type Bush does not terminate, but it does not
exhibit cycles, either. Consider the Horn clause translation of the problem:
Example 3 (Logic program PBush).

κ1 : ⇒ eq(int)
κ2 : eq(x), eq(bush(bush(x)))⇒ eq(bush(x))

The derivation below shows that no cycles arise when we resolve the query
? eq(bush(int)) against the program PBush:

eq(bush(int))→κ2 eq(int), eq(bush(bush(int))→κ1 . . .→κ2

eq(bush(int)), eq(bush(bush(bush(int)))→κ1 . . .

Fu et al. [5] have recently introduced an extension to corecursive type class
resolution that allows implicative queries to be proved by corecursion and uses
the fixed point proof witness construction. For example, in the above program
the Horn formula eq(x) ⇒ eq(bush(x)) can be (coinductively) proven with the
recursive proof witness κ3 = να.λβ.κ2β(α(αβ)). If we add this Horn clause as
a third clause to our program, we obtain a proof of eq(bush(int)) by applying
κ3 to κ1. For this case, it is even more challenging to understand whether the
proof κ3κ1 of eq(bush(int)) is indeed sound: inductively, coinductively or in any
other sense. In Section 5, we establish, for the first time, coinductive soundness
for proofs of such implicative queries, relative to the greatest Herbrand models
of logic programs. As a consequence, proofs can be obtained by extending the
proof context with coinductively proven Horn clauses (e.g. like κ3 above) are
coinductively sound but inductively unsound. This result completes our study
of semantic properties of corecursive type class resolution.

Throughout this paper, we will use the formulation of corecursive type class
resolution as given by Fu et al. [5]. This extends Howard’s simply-typed lambda
calculus [8, 4] with a resolution rule and a ν-rule. The resulting calculus is general
and accounts for all previously suggested kinds of type class resolution.

4

Contributions of this paper

By presenting the described results, we answer three research questions:

(1) whether type class resolution and its two recent corecursive extensions [5,
11] are sound relative to the standard (Herbrand model) semantics of logic
programming;

(2) whether these new extensions are indeed “corecursive”, i.e. whether they are
better modelled by the greatest Herbrand model semantics rather than by
the least Herbrand model semantics; and

(3) whether the context update technique given in [5] can be brought back to
logic programming and can be re-used in its corecursive dialects such as
CoLP [14] and CoALP [10] or, even broader, can be incorporated into pro-
gram transformation techniques [2].

We answer questions (1) and (2) in the affirmative. The answer to question (3)
is less straightforward. The way the implicative coinductive lemmata are used in
proofs alongside all other Horn clauses in [5] indeed resembles a program trans-
formation method when considered from the logic programming point of view.
In reality, different fragments of the calculus given in [5] allow proofs for Horn
formulae which, when added to the initial program, may lead to inductively or
coinductively unsound extensions. We analyse this situation carefully, through-
out all of the technical sections that follow, thereby highlighting which program
transformation methods can be soundly borrowed from the existing work on
corecursive resolution.

2 Preliminaries

This section describes notation and defines the models that we use in the rest
of the paper. As is standard, a first-order signature Σ consists of the set F of
function symbols and the set P of predicate symbols, all symbols equipped with
an arity. Constants are function symbols of arity 0. We also assume a countable
set V of variables. Given Σ and V, we have the following standard definitions:

Definition 1 (Syntax of Horn formuale and logic programs).

First-order term Term ::= V | F(Term, . . . , T erm)
Atomic formula At ::= P(Term, . . . , T erm)

Horn formula (clause) CH ::= At, . . . ,At⇒ At
Logic program Prog ::= CH, . . . ,CH

We use identifiers t and u to denote terms and A,B,C to denote atomic formulae.
We use P with indicies to refer to elements of Prog. We say that a term or an
atomic formula is ground if it contains no variables. We assume that all variables
in Horn formulae are implicitly universally quantified. Moreover, the restriction
(ii) in Section 1 requires that there are no existential variables, i.e. given a clause

5

B1, . . . , Bn ⇒ A, if a variable occurs in Bi, then it occurs in A. We use the
common name formula to refer to both atomic formulae and to Horn formulae.
A substitution and the application of a substitution to a term or a formula are
defined in the usual way. We denote application of a substitution σ to a term t
or to an atomic formula A by σt and σA respectively. We denote composition of
substitutions σ and τ by σ ◦ τ . A substitution σ is a grounding substitution for
a term t if σt is a ground term, and similarly for an atomic formula.

2.1 Models of Logic Programs

Throughout this paper, we use the standard definitions of the least and greatest
Herbrand models. Given a signature Σ, the Herbrand universe UΣ is the set of
all ground terms over Σ. Given a Herbrand universe UΣ we define the Herbrand
base BΣ as the set of all atoms consisting only of ground terms in UΣ .

Definition 2 (Semantic operator). Let P be a logic program over signature
Σ. The mapping TP : 2BΣ → 2BΣ is defined as follows. Let I be a subset of BΣ.

TP (I) = {A ∈ BΣ | B1, . . . Bn ⇒ A is a ground instance of a clause in P ,
and {B1, . . . , Bn} ⊆ I}

The operator gives inductive and coinductive interpretation to a logic program:

Definition 3. Let P be a logic program.

– The least Herbrand model is the least set MP ∈ BΣ such that MP is a
fixed point of TP .

– The greatest Herbrand model is the greatest set M′
P ∈ BΣ such that M′

P

is a fixed point of TP .

In [12] the operators ↓ and ↑ are introduced, TP ↓ ω is proven to give the greatest
Herbrand model of P , and and TP ↑ ω the least Herbrand model of P . We will
use these constructions in our proofs. The validity of a formula in a model is
defined as usual. An atomic formula is valid in a model I if and only if for any
grounding substitution σ, we have σF ∈ I. A Horn formula B1, . . . , Bn ⇒ A is
valid in I if for any substitution σ, if σB1, . . . , σBn are valid in I then σA is
valid in I. We use notation P �ind F to denote that a formula F is valid inMP

and P �coind F to denote that a formula F is valid in M′
P .

Lemma 1. Let P be a logic program and let σ be a substitution. The following
holds:

a) If (⇒ A) ∈ P then both P �ind σA and P �coind σA
b) If, for all i, P �ind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �ind σA
c) If, for all i, P �coind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �coind σA

The proof can be found in the existing literature (e.g. [12]) and follows from the
fact that both MP and M′

P are fixed points of the operator TP .

6

2.2 Proof Relevant Resolution

In [5], the usual syntax of Horn formulae was embedded into a type-theoretic
framework, with Horn formulae seen as types inhabited by proof terms. In this
setting, a judgement has the form Φ ` e : F , where e is a proof term inhabiting
formula F , and Φ is an axiom environment containing annotated Horn formulae
corresponding to the given logic program. This gives rise to the following syntax,
in addition to Definition 1. We assume a set of proof term symbols K, and a set
of proof term variables U .

Definition 4 (Syntax of proof terms and axiom environments).

Proof term E ::= K | U | E E | λU.E | νU.E
Axiom environment Ax ::= · | Ax, (E : CH)

We use notation κ with indicies to refer to elements of K, α and β with indices
to refer to elements of U , e to refer to proof terms in E, and Φ to refer to axiom
environments in Ax. Having a judgement Φ ` e : F , we call F an axiom if e ∈ K,
and we call F a lemma if e /∈ K is a closed term, i.e. contains no free variables.
A proof term e is in head normal form (denoted HNF(e)), if e = λα.κ e where α
and e denote (possibly empty) sequences of variables α1, . . . , αn and proof terms
e1 . . . em respectively where n and m are know from context or unimportant.
The intention of the above definition is to interpret logic programs, seen as sets
of Horn formulae, as types. Example 1 shows how proof term symbols κ1 and
κ2 can be used to annotate clauses in the given logic program. We capture this
intuition in the following formal definition:

Definition 5. Given a logic program PA consisting of Horn clauses H1, . . . ,Hn,
with each Hi having the shape Bi1, . . . , Bik ⇒ Ai, the axiom environment ΦA is
defined as follows. We assume proof term symbols κ1, . . . , κn, and define, for
each Hi, κi : Bi1, . . . , Bik ⇒ Ai.

Revising Example 1 we can say that it shows the result of translation of the pro-
gram PPair into ΦPair and ΦPair is an axiom environment for the logic program
PPair. In general, we say that ΦA is an axiom environment for a logic program
PA if and only if there is a translation of PA into ΦA. We drop the index A where
it is known or unimportant. The restriction (i) in Section 1 requires that axioms
in an axiom environment do not overlap. However, a lemma may overlap with
other axioms and lemmata—only axioms are subject to the restriction (i). We
refer the reader to [5] for complete exposition of proof-relevant resolution. In the
following sections, we will use this syntax to gradually introduce inference rules
for proof-relevant corecursive resolution. We start with its “inductive” fragment,
i.e. the fragment that is sound relative to the least Herbrand models, and then
in subsequent sections consider its two coinductive extensions (sound relative to
the greatest Herbrand models).

7

3 Inductive Fragment of Type Class Resolution

In this section, we introduce the inductive fragment of the calculus for the ex-
tended type class resolution introduced by Fu et al. [5]. We reconstruct the
standard theorem of universal inductive soundness for the resolution rule. The
resolution rule alone was not sufficient for some of the Fu et al.’s examples, It
was thus extended with a rule that allowed Horn formulae to be proved, i.e.
to prove lemmata. Both axioms and lemmata could be used as a part of a en-
vironment. In logic programming terms, programs were transformed by adding
already proven Horn formulae. We prove the soundness of this method relative to
the least Herbrand models, and show that it is not sound relative to the greatest
Herbrand models.

Definition 6 (Type class resolution).

if (e : B1, . . . , Bn ⇒ A) ∈ Φ
Φ ` e1 : σB1 · · · Φ ` en : σBn

Φ ` e e1 · · · en : σA (Lp-m)

If, for a given atomic formula A, and a given environment Φ, Φ ` e : A is derived
using the Lp-m rule we say that A is entailed by Φ and that the proof term e
witnesses this entailment. We define derivations and derivation trees resulting
from applications of the above rule in the standard way (cf. Fu et al. [5]).

Example 4. Recall the logic program PPair in Example 1. The inference steps
for eq(pair(int, int)) correspond to the following derivation tree:

ΦP air ` κ2 : eq(int) ΦP air ` κ2 : eq(int)
ΦP air ` κ1κ2κ2 : eq(pair(int, int))

The above entailment is inductively sound, i.e. it is sound with respect to the
least Herbrand model of PPair:

Theorem 1. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : A hold. Then P �ind A.

Proof. By structural induction on the derivation tree and construction of the
least Herbrand model, using Lemma 1. ut

The rule Lp-m also plays a crucial role in the coinductive fragment of type class
resolution, as will be discussed in Sections 4 and 5. Now, we turn to discussion
of the other rule present in the work of Fu et al. [5]. The rule that allows Horn
formulae to be proved is:

Definition 7.

Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) ` e : A
Φ ` λβ1, . . . , βn.e : B1, . . . , Bn ⇒ A

(Lam)

8

Example 5. To illustrate the use of the Lam rule, consider the following program:
Let P consist of two clauses: A⇒ B and B ⇒ C. Both the least and the greatest
Herbrand model of P are empty. Equally, no formula can be derived from the
corresponding axiom environment by the Lp-m rule. However, we can derive
A⇒ C by using a combination of the Lam and Lp-m rules. Let Φ = (κ1 : A⇒
B), (κ2 : B ⇒ C). The following is then a derivation tree for a formula A⇒ C:

Φ, (α : ⇒ A) ` α : A
Φ, (α : ⇒ A) ` κ1α : B

Φ, (α : ⇒ A) ` κ2(κ1α) : C
Lam

Φ ` λα.κ2(κ1α) : A ⇒ C

When there is no label on right-hand side of an inference step, the inference is
by the rule Lp-m. We follow this convention throughout the paper.

We can show that the calculus comprising the rules Lp-m and Lam is again
(universally) inductively sound.

Lemma 2. Let P be a logic program and let A, B1, . . . , Bn be atomic formulae.
If P, (⇒ B1), . . . , (⇒ Bn) �ind A then P �ind B1, . . . , Bn ⇒ A.

Proof. Assume that P, (⇒ B1), . . . , (⇒ Bn) �ind A. From the Definition 2
there is the least n such that for any grounding substitution τ , (τ ◦ σ)A ∈
TP ,(⇒B1),...,(⇒Bn) ↑ n. Consider and substitution σ and suppose that for
all i, P � σBi. From the definition of validity for any grounding τ for all i,
(τ ◦ σ)Bi ∈ MP hence there is the least m such that (τ ◦ σ)Bi ∈ TP ↑ m. From
the assumption, for any grounding substitution τ also (τ ◦ σ)A ∈ TP ↑ (n+m)
and P � σA. Hence P �ind B1, . . . , Bn ⇒ A. ut

Theorem 2. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ ` e : F be by the Lp-m and Lam rules. Then P �ind F .

Proof. By structural induction on the derivation tree using Lemmata 1 & 2. ut

Related Program Transformation Methods For Fu et al. [5], the main
purpose of introducing the rule Lam was to increase expressivity of the proof
system. In particular, obtaining an entailment Φ ` e : H of a Horn formula H
enabled the environment Φ to be extended with e : H, which could be used in
future proofs. We show that transforming (the standard, untyped) logic programs
in this way is inductively sound. The following theorem follows from Lemma 2:

Theorem 3. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : F for a formula F by the Lp-m and Lam rules. Given a formula F ′,
P �ind F ′ iff P, F �ind F ′.

Note, however, that the above theorem is not as trivial as it looks, in particular,
it would not hold coinductively, i.e. if we changed �ind to �coind in the statement
above. Consider the following proof of what seems to be a trivial formula A⇒ A:

9

Example 6. Using the Lam rule one can prove ∅ ` λα.α : A⇒ A:

(α : ⇒ A) ` α : A
Lam∅ ` λα.α : A ⇒ A

Indeed, M∅ = ∅ and by definition of validity, ∅ �ind A⇒ A. Assume a program
consisting of a single formula A⇒ B. Both the least and the greatest Herbrand
model of this program are empty. However, adding the formula A⇒ A to the pro-
gram results in the greatest Herbrand model {A,B}. Thus, M′

P 6=M′
P,(A⇒A).

4 Universal Coinductive Soundness

The Lp-m rule may result in non-terminating resolution. This can be demon-
strated by the program PEvenOdd and the query ? eq(evenList(Int)) from Sec-
tion 1. Lämmel and Peyton Jones observed [11] that in such cases there is a
cycle in the inference that can be detected. This treatment of cycles amounts
to coinductive reasoning and results in building a corecursive proof witness—or
(co-)recursive dictionary.

Definition 8 (Coinductive type class resolution).

if HNF(e)
Φ, (α : ⇒ A) ` e : A

Φ ` να.e : A (Nu’)

The side condition of Nu’ requires the proof witness to be in head normal form.
Since, in this section, we are working with a calculus consisting of the rules Lp-
m and Nu’, there is no way to introduce a λ-abstraction into a proof witness.
Therefore, in this section, we restrict ourselves to head normal form terms of the
form κ e.

Example 7. Recall the program PEvenOdd in Example 2. The originally non-
terminating resolution trace for the query ? eq(evenList(int)) is resolved using
the Nu’ rule as follows:

κ3 : eq(int)
` κ3 : eq(int)

κ3 : eq(int)
` κ3 : eq(int)

α : ⇒ eq(evenList(int))
` α : eq(evenList(int))

ΦEvenOdd, α : ` κ1κ3α : eq(oddList(int))
ΦEvenOdd, α : ` κ2κ3(κ1κ3α) : eq(evenList(int))

Nu’
ΦEvenOdd ` να.κ2κ3(κ1κ3α) : eq(evenList(int))

Note that we abbreviate formulae in the environment where these repeat by an
underscore and we use this notation in the rest of the paper.

We now come to the discussion of the coinductive soundness of the rule Nu’,
i.e. its soundness relative to the greatest Herbrand models. We note that, not
surprisingly (cf. [13]), the rule Nu’ is inductively unsound. Given a program

10

consisting of just one clause: κ : A⇒ A, we are able to use the rule Nu’ to entail
A (the derivation will be similar, albeit a lot simpler than in the above example).
However, A is not in the least Herbrand model of this program. Similarly, the
formula eq(oddList(int)) proven above is not inductively sound, either. Thus,
the coinductive fragment of the extended corecursive resolution is only coin-
ductively sound. When proving the coinductive soundness of the Nu’ rule, we
carefully choose the proof method by which we proceed. Inductive soundness of
the Lp-m rule was proven by induction on the derivation tree and the construc-
tion of the least Herbrand models by iterations of TP . Here, we give an analogous
result, where coinductive soundness is proven by structural coinduction on the
iterations of the semantic operator TP .

In order for the principle of structural coinduction to be applicable in our
proof, we must ensure that the construction of the greatest Herbrand model is
completed within ω steps of iteration of TP . This does not hold in general for
the greatest Herbrand model construction, as was shown e.g. in [12]. However,
it does hold for the restricted shape of Horn clauses we are working with. It
was noticed by Lloyd [12] that Restriction (ii) from Introduction implies that
TP operator converges in at most ω steps. We will capitalise on this fact. The
essence of coinductive soundness of the rule Nu’ is captured by the following
lemma:

Lemma 3. Let P be a logic program, let σ be a substitution, and let A, B1,
. . . , Bn be atomic formulae. If, ∀i ∈ {1, . . . , n}, P, (⇒ σA) �coind σBi and
(B1, . . . , Bn ⇒ A) ∈ P then P �coind σA.

Proof. Consider now the construction of the greatest Herbrand model for the
program P and proceed by coinduction with coinductive hypothesis: for all n,
for any grounding substitution τ , (τ ◦σ)A ∈ TP ↓ n. Since, for any τ , (τ ◦σ)A ∈
TP ↓ n the set TP ↓ n is by definition of the operator TP the same as the
set TP ,(⇒σA) and from the assumptions of the lemma and monotonicity of TP
also, for all i, for any grounding substitution τ , (τ ◦ σ)Bi ∈ TP ↓ n. Since
B1, . . . , Bn ⇒ A ∈ P also (τ ◦σ)A ∈ TP ↓ (n+1). We now apply the coinduction
hypotheses to conclude that the same will be true for all subsequent iterations
of TP . But then all instances of σA will be in the greatest Herbrand model of
this program. Hence P �coind σA ut

Finally, Theorem 4 states universal coinductive soundness of the coinductive
type class resolution:

Theorem 4. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ ` e : F be by the Lp-m and Nu’ rules. Then Φ �coind F .

Proof. By structural induction on the derivation tree using Lemmata 1 & 3. ut

Choice of Coinductive Models. Perhaps the most unusual feature of the se-
mantics given in this section is the use of greatest Herbrand models rather than

11

the greatest complete Herbrand models that is usual in the literature on coinduc-
tion in logic programming [12, 10, 14]. The greatest complete Herbrand models
are obtained as the greatest fixed point of the semantic operator T ′

P on the com-
plete Herbrand base, i.e. the set of all finite and infinite ground atomic formulae
formed by the signature of the given program. This construction is preferred in
the literature for two reasons. Firstly, T ′

P reaches its greatest fixed point in at
most ω steps, whereas TP may take more than ω steps in the general case. This is
due to compactness of the complete Herbrand base. Moreover, greatest complete
Herbrand models give a more natural characterisation for programs like the one
given by the clause κinf : p(x)⇒ p(f(x)). The greatest Herbrand model of that
program is empty, but its greatest complete Herbrand model contains the infinite
formula p(f(f(...)). However, restrictions (i) – (iii) imposed by type class reso-
lution mean that the greatest Herbrand models regain those same advantages
as complete Herbrand models. It was noticed by Lloyd [12] that restriction (ii)
implies that the semantic operator converges in at most ω steps. Restrictions (i)
and (iii) imply that proofs by type class resolution have universal interpretation,
i.e. they hold for all finite instances of queries. Therefore, we never have to talk
about programs for which only one infinite instance of a query is valid.

5 Universal Coinductive Soundness of Extended
Resolution

The class of problems that can be resolved by coinductive type class resolution
is limited to problems where a coinductive hypothesis is in atomic form. Fu
et al. [5] extended coinductive type class resolution with implicative reasoning
and adjusted the rule Nu’ such that this restriction of coinductive type class
resolution is relaxed:

Definition 9 (Extended coinductive type class resolution).

if HNF(e)
Φ, (α : B1, . . . , Bn ⇒ A) ` e : B1, . . . , Bn ⇒ A

Φ ` να.e : B1, . . . , Bn ⇒ A
(Nu)

The side condition of the Nu rule requires the proof witness to be in head normal
form. However, unlike coinductive type class resolution, extended coinductive
type class resolution also uses the Lam rule and a head normal term is of the
form λα.κe for possibly non-empty sequence of proof term variables α. First,
let us note that extended coinductive type class resolution indeed extends the
calculus of Section 4:

Proposition 1. The inference rule Nu’ is admissible in the extended coinduc-
tive type class resolution.

Further, this is a proper extension. The Nu rule allows queries to be entailed
that were beyond the scope of coinductive type class resolution. In Section 1, we
demonstrated a derivation for query ? eq(bush(int)) where no cycles arise and
thus the query cannot be resolved by coinductive type class resolution.

12

Example 8. Recall the program PBush in Example 3. The query ? eq(bush(int))
is resolved as follows:

ΦBush `
κ1 : eq(int)

(β : ⇒ eq(x))
` β : eq(x)

(β : ⇒ eq(x)) ` β : eq(x)
(α : eq(x) ⇒ eq(bush(x))), (β :) `

αβ : eq(bush(x))
(α :), (β :) ` α(αβ) : eq(bush(bush(x)))

ΦBush, (α :), (β :) ` κ2β(α(αβ)) : eq(bush(x))
Lam

ΦBush, (α :) ` λβ.κ2β(α(αβ)) : eq(x) ⇒ eq(bush(x))
Nu

ΦBush ` να.λβ.κ2β(α(αβ)) : eq(x) ⇒ eq(bush(x))
ΦBush ` (να.λβ.κ2β(α(αβ)))κ1 : eq(bush(int))

Before proceeding with the proof of soundness of extended type class reso-
lution we need to show two intermediate lemmata. The first lemma states that
inference by the Nu rule preserves coinductive soundness:

Lemma 4. Let P be a logic program, let σ be a substitution, and let A, B1, . . . ,
Bn, C1, . . . , Cm be atomic formulae. If, for all i, P,B1, . . . , Bn, (B1, . . . , Bn ⇒
σA) �coind σCi and (C1, . . . , Cm ⇒ A) ∈ P then P �coind B1 . . . Bn ⇒ σA.

Proof. Consider the construction of the greatest Herbrand model of the pro-
gram P and proceed by coinduction with coinductive hypothesis: for all n,
B1, . . . , Bn ⇒ σA is valid in TP ↓ n. Assume that, for a groundig substitu-
tion τ , for all i, τBi ∈ TP ↓ n. Then also (τ ◦ σ)A ∈ TP ↓ n. For the defi-
nition of the semantic operator, from its monotonicity, and from assumptions
of the lemma it follows that (τ ◦ σ)Ci ∈ TP ↓ n. Since C1, . . . , Cn ⇒ A ∈ P
also (τ ◦ σ)A ∈ TP ↓ (n + 1). If the assumption does not hold the from the
monotonicity of TP it follows that, for all i, τBi 6∈ TP ↓ (n + 1). Therefore,
B1, . . . , Bn ⇒ σA is valid id TP ↓ (n + 1). We apply the coinductive hypothe-
sis to conclude that the same holds for all subsequent iterations of TP . Hence
whenever, for a substitution τ , all instances of τB1 to τBn are in the greatest
Herbrand model then also all instances of (τ ◦ σ)A are in the greatest Herbrand
models. Hence P �coind B1, . . . , Bn ⇒ A. ut

The other lemma that we need in order to prove coinductive soundness of ex-
tended type class resolution states that inference using Lam preserves coinduc-
tive soundness, i.e. we need to show the coinductive counterpart to Lemma 2:

Lemma 5. Let P be a logic program and A, B1, . . . , Bn atomic formulae. If
P, (⇒ B1), . . . (⇒ Bn) �coind A then P �coind B1, . . . , Bn ⇒ A.

Proof. Assume that, for an arbitrary substitution σ, for all i, σBi is valid in
M′

P . Then, for any grounding substitution τ , from the definition of the semantic
operator and from the assumption of the lemma it follows that (τ ◦ σ)A ∈M′

P .
Therefore, σA is valid in M′

P . The substitution σ is choosen arbitrary whence,
for any σ, if, for all i, σBi are valid in P then also σA is valid in P . From the
definition of validity it follows that P �coind B1, . . . , Bn ⇒ A. ut

13

Now, the universal coinductive soundness of extended coinductive type class
resolution follows straightforwardly:

Theorem 5. Let Φ be an axiom environment for a logic program P , and let be
Φ ` e : F for a formula F by the Lp-m, Lam, and Nu rules. Then P �coind F .

Proof. By induction on the derivation tree using Lemmata 1, 4, & 5. ut

Related Program Transformation Methods Let us conclude this section
with a discussion of program transformation with Horn formulae that are entailed
by the rules Lam and Nu.

By the fact that the rule Nu’ is inductively unsound (as discussed in the
previous section), it is clear that using program transformation techniques based
on lemmata proven by the rules Lam and Nu would be inductively unsound.
However, a more interesting result is that adding such program clauses will not
change the coinductive soundness of the initial program:

Theorem 6. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : F for a formula F by the Lp-m, Lam and Nu rules such that HNF(e).
Given a formula F ′, P �coind F ′ iff (P, F) �coind F ′.

The above result is possible thanks to the head normal form condition. With it,
it is impossible to derive A⇒ A from the empty context by the rule Lam. It is
also impossible to make such derivation within the proof term e itself and then
derive A by the the rule Nu from A ⇒ A. The resulting proof term will fail
to satisfy the head normal form condition of the rule Nu. Since this condition
guards against any such cases, we can be sure that this program transformation
method is coinductively sound and hence is safe to use with any coinductive
dialect of logic programming, e.g. with CoLP [14].

6 Related Work

The standard approach to type inference for type classes, that corresponds to
type class resolution as studied in this paper, was described by Stuckey and
Sulzman [15]. Type class resolution was further studied by Lämmel and Peyton
Jones [11], who described what we call coinductive type class resolution. The
description of extended calculus of Section 5 was first presented by Fu et al. [5].
Generally, there is a body of work that focused on allowing for infinite data
structures in logic programming. Logic programming with rational trees [1, 9]
was studied from both an operational semantics and a declarative semantics
point of view. Simon et al. [14] introduced co-logic programming (co-LP) that
also allows for terms that are rational infinite trees and hence have infinite
proofs. Appropriate models of these paradigmata are the least Herbrand model
and stratified alternating fixed-point co-Herbrand model respectively. On the
other hand, corecursive resolution, as studied in this paper, is more expressive
than co-LP: while also allowing infinite proofs, closing of coinductive hypothesis
is less constrained.

14

7 Conclusions and Future Work

In this paper, we have addressed three research questions. First, we provided
a uniform analysis of type class resolution in both inductive and coinductive
settings and proved its soundness relative to (standard) least and greatest Her-
brand models. A feature of this paper is the choice of greatest Herbrand models
for coinductive analysis that is allowed by properties of type class resolution.
Secondly, we demonstrated on several examples that coinductive resolution is
indeed coinductive—that is, it is not sound relative to least Herbrand models.
Finally, we addressed the question of whether the methods listed in this paper
can be brought back to coinductive dialects of logic programming via soundness
preserving program transformations. As future work, we intend to establish the
completeness properties of extended type class resolution. Our conjecture is that
coinductive completeness of extended type class resolution can be established for
a certain fragment of described calculus.

Acknowledgements

This work has been partially supported by the EU Horizon 2020 grant “RePhrase:
Refactoring Parallel Heterogeneous Resource-Aware Applications - a Software
Engineering Approach” (ICT-644235), by COST Action IC1202 (TACLe), sup-
ported by COST (European Cooperation in Science and Technology), and by
EPSRC grant EP/K031864/1-2.

15

References

1. Colmerauer, A.: Equations and inequations on finite and infinite trees. In: FGCS.
pp. 85–99 (1984)

2. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Proving correctness
of imperative programs by linearizing constrained horn clauses. TPLP 15(4-5),
635–650 (2015)

3. Devriese, D., Piessens, F.: On the bright side of type classes: instance arguments in
agda. In: Proc. of ICFP 2011, Tokyo, Japan, September 19-21, 2011. pp. 143–155

4. Fu, P., Komendantskaya, E.: Operational semantics of resolution and productivity
in horn clause logic. Formal Aspect of Computing (2016), forthcoming

5. Fu, P., Komendantskaya, E., Schrijvers, T., Pond, A.: Proof relevant corecursive
resolution. In: Proc. of FLOPS 2016, Kochi, Japan, March 4-6, 2016 (2016)

6. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof
automation less ad hoc. In: Proc. of the 16th ACM SIGPLAN international con-
ference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011. pp. 163–175 (2011)

7. Hall, C.V., Hammond, K., Jones, S.L.P., Wadler, P.: Type classes in haskell. ACM
Trans. Program. Lang. Syst. 18(2), 109–138 (1996)

8. Howard, W.: The formulae-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus,
and Formalism. pp. 479–490. Academic Press, NY, USA (1980)

9. Jaffar, J., Stuckey, P.J.: Semantics of infinite tree logic programming. Theor. Com-
put. Sci. 46(3), 141–158 (1986)

10. Komendantskaya, E., Johann, P.: Structural resolution: a framework for coinduc-
tive proof search and proof construction in horn clause logic. ACM Transcations
on Computational Logic submitted (2016)

11. Lämmel, R., Peyton Jones, S.L.: Scrap your boilerplate with class: extensible
generic functions. In: Proc. of ICFP 2005, Tallinn, Estonia, September 26-28, 2005.
pp. 204–215

12. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
13. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-

gram. Lang. Syst. 31(4), 15:1–15:41 (May 2009)
14. Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-logic programming: Extending

logic programming with coinduction. In: Proc. of ICALP 2007, Wroclaw, Poland,
July 9-13, 2007. pp. 472–483 (2007)

15. Stuckey, P.J., Sulzmann, M.: A theory of overloading. ACM Trans. Program. Lang.
Syst. 27(6), 1216–1269 (2005)

16. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proc. of
POPL ’89. pp. 60–76. ACM, New York, NY, USA (1989)

16

A Ommited Proofs

In this appendix, we state omited proofs in their fullness.

Lemma 1. Let P be a logic program and let σ be a substitution. The following
holds:

a) If (⇒ A) ∈ P then both P �ind σA and P �coind σA
b) If, for all i, P �ind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �ind σA
c) If, for all i, P �coind σBi and (B1, . . . , Bn ⇒ A) ∈ P then P �coind σA

Proof. a) Let P be a logic program such that (⇒ A) ∈ P . By Definition 2 of the
semantic operator, for any grounding substitution τ , τA ∈ TP (MP). Since MP

is a fixed point of TP also τA ∈ MP and by definition of validity of a formula,
P �ind A and also, for any substitution σ, P �ind σA. Since we do not use the
fact that MP is the least fixed point the proof for coinductive case is identical.

b) Let be P , A, B1, . . . , Bn as above. Assume, for all i, P �ind Bi whence, for
all i, for any grounding substitution σ, σBi ∈ MP . By Definition 2 of semantic
operator, σA ∈ TP (MP). Since MP is a fixed point also σA ∈MP and P �ind
σA.

c) Note that the proof of b) does not make any use of the fact that MP is
the least fixed point. Therefore use the proofs of and b) mutatis mutandis. ut

Theorem 1. Let Φ be an axiom environment for a logic program P , and let
Φ ` e : A hold. Then P �ind A.

Proof. By structural induction on the derivation tree.
Base case: Let the derivation be

Φ ` κ : A for an atomic formula A′, a
proof term symbol κ, and a substitution σ such that A = σA′. By definition of
the rule Lp-m there is a clause (κ : ⇒ A′) ∈ Φ and from the Definition 5 of
axiom environment also ⇒ A′ ∈ P . From the Lemma 1 part a) follows that
P �ind σA′.

Inductive case: Let the last step in the derivation tree be
Φ ` e1 : σB1 . . . Φ ` en : σBn

Φ ` κe1 . . . en : σA′ for atomic formulae A′, B1, . . . , Bn, a proof

term symbol κ, a substitution σ and proof witneses e1, . . . , en such that A = σA′.
From the definition of the rule Lp-m there is a clause (κ : B1, . . . Bn ⇒ A′) ∈ Φ
and from the Definition 5 of axiom environment also B1, . . . , Bn ⇒ A′ ∈ P . From
the induction assumption, for i ∈ {1, . . . , n}, P �ind σBi and by the Lemma 1
part b), P �ind σA′. ut

Lemma 2. Let P be a logic program and let A, B1, . . . , Bn be atomic formulae.
If P, (⇒ B1), . . . , (⇒ Bn) �ind A then P �ind B1, . . . , Bn ⇒ A.

Proof. Assume that P, (⇒ B1), . . . , (⇒ Bn) �ind A. From the Definition 2
there is the least n such that for any grounding substitution τ , (τ ◦ σ)A ∈
TP ,(⇒B1),...,(⇒Bn) ↑ n. Consider and substitution σ and suppose that for
all i, P � σBi. From the definition of validity for any grounding τ for all i,

17

(τ ◦ σ)Bi ∈MP hence there is the least m such that (τ ◦ σ)Bi ∈ TP ↑ m. From
the assumption, for any grounding substitution τ also (τ ◦ σ)A ∈ TP ↑ (n+m)
and P � σA. Hence P �ind B1, . . . , Bn ⇒ A. ut

Theorem 2. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ ` e : F be by the Lp-m and Lam rules. Then P �ind F .

Proof. By structural induction on the derivation tree.
Base case: Let the derivation be

Φ ` κ : A for an atomic formula A′, a
constant symbol κ, and a substitution σ such that A = σA′. By definition of
the rule Lp-m there is a clause (κ : ⇒ A′) ∈ Φ and from the Definition 5 of
axiom environment also ⇒ A′ ∈ P . From the Lemma 1 part a) follows thet
P �ind σA′.

Inductive case: Let the last step in the derivation tree be by the rule Lp-m
thus of the form Φ ` e1 : σB1 . . . Φ ` en : σBn

Φ ` κe1 . . . en : σA for atomic formulae A′, B1,
. . . , Bn, a proof term symbol κ, a substitution σ and proof witnesses e1, . . . , en.
From the definition of the rule Lp-m there is a clause (κ : B1, . . . Bn ⇒ A) ∈ Φ
and from the Definition 5 of axiom environment also B1, . . . , Bn ⇒ A′ ∈ P . From
the induction assumption, for i ∈ {1, . . . , n}, Φ �ind σBi and by the Lemma 1
part b), P �ind σA′.

Let the last step of the derivation be by the rule Lam thus of the form
Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) ` e : A

Φ ` λβ1, . . . , βn.e : B1, . . . , Bn ⇒ A
for atomic formulae A, B1, . . . ,

Bn, proof term e, and variables b1, . . . , bn. From the induction assumption,
P, (⇒ B1), . . . , (⇒ Bn) � A and from the Lemma 2 also P �ind A. ut

Lemma 3. Let P be a logic program, let σ be a substitution, and let A, B1,
. . . , Bn be atomic formulae. If, ∀i ∈ {1, . . . , n}, P, (⇒ σA) �coind σBi and
(B1, . . . , Bn ⇒ A) ∈ P then P �coind σA.

Proof. Consider now the construction of the greatest Herbrand model for the
program P and proceed by coinduction with coinductive hypothesis: for all n,
for any grounding substitution τ , (τ ◦σ)A ∈ TP ↓ n. Since, for any τ , (τ ◦σ)A ∈
TP ↓ n the set TP ↓ n is by definition of the operator TP the same as the
set TP ,(⇒σA) and from the assumptions of the lemma and monotonicity of TP
also, for all i, for any grounding substitution τ , (τ ◦ σ)Bi ∈ TP ↓ n. Since
B1, . . . , Bn ⇒ A ∈ P also (τ ◦σ)A ∈ TP ↓ (n+1). We now apply the coinduction
hypotheses to conclude that the same will be true for all subsequent iterations
of TP . But then all instances of σA will be in the greatest Herbrand model of
this program. Hence P �coind σA ut

Theorem 4. Let Φ be an axiom environment for a logic program P and F a
formula. Let Φ ` e : F be by the Lp-m and Nu’ rules. Then Φ �coind F .

Proof. By structural induction on the derivation tree.
Base case: Let the derivation be with empty assumptions. Then it is by the

rule Lam and of the form
Φ ` κ : σA for an atomic formula A, a constant

18

symbol κ, and a substitution σ. By definition of the rule Lp-m there is a clause
(κ : ⇒ A) ∈ Φ. By Lemma 1 c), Φ �coind σA.

Inductive case: Let the last step be by the rule Lp-m and of the form
Φ ` e1 : σB1 . . . Φ ` en : σBn

Φ ` κe1 . . . en : σA for an atomic formulae A, B1, . . . , Bn a con-
stant symbol κ, a substitution σ and proof witnesses e1, . . . , en. By definition
of the rule Lp-m there is a clause (κ : B1, . . . Bn ⇒ A) ∈ Φ.

By the induction assumption, for i ∈ {1, . . . , n}, Φ �coind Bi and by Lemma 1
d), Φ �coind σA.

Let the last step be by the rule Nu’ and of the form
Φ, (α : ⇒ A) ` e : A

Φ ` να.e : A
for an atomic formula A, a variable α and a proof witness e in the head normal
form. W.l.o.g. let e = κe1 . . . en. Therefore there is (the previous? depends on

h.n.f.) inference step of the form
Φ ` e1 : σB′

1 . . . Φ ` en : σB′
n

Φ ` κe1 . . . en : σA′ for σA′ = A

and (κ : B′
1, . . . B

′
n ⇒ A′) ∈ Φ. By the induction assumption, for all i, Φ, (α : ⇒

A) � Bi. By Lemma 3, Φ �coind A. ut

Proposition 1. The inference rule Nu’ is admissible in the extended coinduc-
tive type class resolution.

Proof. Let Φ be an environment, let A be an atomic formula and let Φ, (α : ⇒
A) ` e : A where e is in head normal form. Then by the Lam rule Φ, (α : ⇒ A) `
λβ.e : ⇒ A where β is an empty sequence of variables. Therefore Φ, (α : ⇒
A) ` e : ⇒ A. Since e is in head normal form by the Nu rule also Φ ` να.e : A.

ut

Lemma 4. Let P be a logic program, let σ be a substitution, and let A, B1, . . . ,
Bn, C1, . . . , Cm be atomic formulae. If, for all i, P,B1, . . . , Bn, (B1, . . . , Bn ⇒
σA) �coind σCi and (C1, . . . , Cm ⇒ A) ∈ P then P �coind B1 . . . Bn ⇒ σA.

Proof. Consider the construction of the greatest Herbrand model of the pro-
gram P and proceed by coinduction with coinductive hypothesis: for all n,
B1, . . . , Bn ⇒ σA is valid in TP ↓ n. Assume that, for a groundig substitu-
tion τ , for all i, τBi ∈ TP ↓ n. Then also (τ ◦ σ)A ∈ TP ↓ n. For the defi-
nition of the semantic operator, from its monotonicity, and from assumptions
of the lemma it follows that (τ ◦ σ)Ci ∈ TP ↓ n. Since C1, . . . , Cn ⇒ A ∈ P
also (τ ◦ σ)A ∈ TP ↓ (n + 1). If the assumption does not hold the from the
monotonicity of TP it follows that, for all i, τBi 6∈ TP ↓ (n + 1). Therefore,
B1, . . . , Bn ⇒ σA is valid id TP ↓ (n + 1). We apply the coinductive hypothe-
sis to conclude that the same holds for all subsequent iterations of TP . Hence
whenever, for a substitution τ , all instances of τB1 to τBn are in the greatest
Herbrand model then also all instances of (τ ◦ σ)A are in the greatest Herbrand
models. Hence P �coind B1, . . . , Bn ⇒ A. ut

Lemma 5. Let P be a logic program and A, B1, . . . , Bn atomic formulae. If
P, (⇒ B1), . . . (⇒ Bn) �coind A then P �coind B1, . . . , Bn ⇒ A.

19

Proof. Assume that, for an arbitrary substitution σ, for all i, σBi is valid in
M′

P . Then, for any grounding substitution τ , from the definition of the semantic
operator and from the assumption of the lemma it follows that (τ ◦ σ)A ∈M′

P .
Therefore, σA is valid in M′

P . The substitution σ is choosen arbitrary whence,
for any σ, if, for all i, σBi are valid in P then also σA is valid in P . From the
definition of validity it follows that P �coind B1, . . . , Bn ⇒ A. ut

Theorem 5. Let Φ be an axiom environment for a logic program P , and let be
Φ ` e : F for a formula F by the Lp-m, Lam, and Nu rules. Then P �coind F .

Proof. By structural induction on the derivation tree.
Base case: Let the derivation be with empty assumptions. Then it is by the

rule Lam and of the form
Φ ` κ : σA for an atomic formula A, a constant

symbol κ, and a substitution σ. By definition of the rule Lp-m there is a clause
(κ : ⇒ A) ∈ Φ. By Lemma 1 c), Φ �coind σA.

Inductive case: Let the last step be by the rule Lp-m and of the form
Φ ` e1 : σB1 . . . Φ ` en : σBn

Φ ` κe1 . . . en : σA for an atomic formulae A, B1, . . . , Bn a con-
stant symbol κ, a substitution σ and proof witnesses e1, . . . , en. By definition
of the rule Lp-m there is a clause (κ : B1, . . . Bn ⇒ A) ∈ Φ.

By the induction assumption, for i ∈ {1, . . . , n}, Φ �coind Bi and by Lemma 1
d), Φ �coind σA.

Let the last step of the derivation be by the rule Lam. Then it is of the form
Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn) ` e : A

Φ ` λβ1, . . . , βn.e : B1, . . . , Bn ⇒ A
for atomic formulae A, B1, . . . ,

Bn, proof term e, and variables b1, . . . , bn. By the induction assumption, Φ, (β1 : ⇒
B1), . . . , (βn : ⇒ Bn) �coind A and by Lemma 5 also Φ �coind B1, . . . , Bn ⇒ A.

Let the last step be by the rule Nu and of the form
Φ, (α : B1, . . . , Bn ⇒ A) ` e : B1, . . . Bn ⇒ A

Φ ` να.e : B1, . . . , Bn ⇒ A
for an atomic formulae A, B1,

. . . , Bn, a variable α and a proof witness e in the head normal form. W.l.o.g. let
e = λβ1 . . . βn.κe1 . . . em. Therefore there is inference step of the form

Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn), (α : B1, . . . , Bn ⇒ A) ` e1 : σC ′
1

. . .
Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn), (α : B1, . . . , Bn ⇒ A) ` em : σC ′

m

Φ, (β1 : ⇒ B1), . . . , (βn : ⇒ Bn), (α : B1, . . . , Bn ⇒ A) ` κe1 . . . en : σA′

for σA′ = A and (κ : C ′
1, . . . C

′
m ⇒ A′) ∈ Φ. By the induction assumption,

for all i, Φ, (β1 : B1), . . . , (βn : Bn), (α : B1, . . . , Bn ⇒ A) � Ci. By Lemma 4
Φ �coind B1, . . . , Bn ⇒ A. ut

20

B Reviews

Review 1

Overall evaluation: 2 (accept)

Reviewer’s confidence: 4 (high)

Direct acceptance to LNCS proceedings: yes

Review: The paper introduces a proof calculus, called corecursive type class
resolution, for proving coinductive properties for Haskell type classes encoded
as a particular class of logical programs. The soundness of the proof system is
proved.

The paper is well written and the reported results are consistent. The inves-
tigated problem is clearly defined and well motivated by illustrative examples. I
didn’t deeply check the proofs, but the results seems plausible.

The paper fits the conference topics since it investigates how the co-logic pro-
gramming paradigm can be used to solve an important problem from functional
programming, namely type class resolution. Therefore I think that it deserves
to be accepted and presented at LOPSTR 2016.

Nothing to answer/comment on in the above.
Detailed comments:

– p. 1: ”we study coinductive properties of proofs” - I think that ”coinduc-
tive properties of type classes” is studied in the paper. The above text got
reformulated

– p. 5: explicitly mention the Horn clause A⇐ B1, ..., Bn in the restriction.
Mention also that FV(A) denotes the set of free variables of A. The restric-
tion was reformulated

– p. 6, Def. 2: The a mapping → Then a mapping Done
– p.6, in the definition for the validity of a Horn formula: I guess that it should

be ”for any substitution σ” instead of ”for σ a substitution” Done
– p.6, Lemma 1: Mention that σ is a substitution and give a reference where

a proof can be found. We refer to Lloyd [12] for proof
– p. 9, 12: the rules (Mu’) and (Mu) are similar to the circularity rule from

the circular coinduction proof system, which allows to use the property you
have to prove as a hypothesis in a sound way. I guess that the guarded
condition HNF(e) plays a role similar to that of the freezing operator in
circular coinduction, namely to forbid the unsound use of the coinductive
hypothesis. Here is a reference for the circular coinduction:

Grigore Rosu and Dorel Lucanu. Circular coinduction — a proof theoretical
foundation. In CALCO 2009, volume 5728 of Lecture Notes in Computer
Science, pages 127–144. Springer, 2009.

21

– I suggest to use ν instead of µ in the definition of the proof terms; usually, µ
is used for the least fixpoint and ν for the greatest fixpoint. The coinductive
reasoning is related to the greatest fixpoint. Done

– p. 10: ”We note that the rule Mu’ is inductively unsound.” This is not so
surprising. According to

Davide Sangiorgi. An Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, 2012. A preliminary version of Chapter 2 from which
we adapt paterial can be found at http://www.cs.unibo.it/˜sangio/DOC_
public/corsoFL.pdf.

– the least fixpoint includes elements built with finite proff trees and the great-
est fixpoint includes elements built with both finite and infinite proof trees.
The cycles discarded by (Mu’) could be part of infinite inferences. I added
a reference to Sangiorgi [13] (different paper than the paper mention by the
referee)

– p. 11: greatest greatest → greatest done

Response to Review 1 The reviewer provided detailed comments on formu-
lations of several sentences in our paper and noticed some typographical errors,
e.g. repeated words. We would like to thank the reviewer for these comments.
We made the suggested changes in several places and we reformulated the text
in the other also due to the comments of other reviewers. We do not discus these
comments in a further detail.

However, the reviewer suggested two further references. In the first reference,

Grigore Rosu and Dorel Lucanu. Circular coinduction — a proof theoretical foun-
dation. In CALCO 2009, volume 5728 of Lecture Notes in Computer Science,
pages 127–144. Springer, 2009.

authors present a proof system for circular coinduction. In the referenced paper,
Rosu and Lucanu state that they do not prove soundness with respect to any
model. Although we believe that the reviewers suggestion on similarity of guard-
edness condition and freezing operator is correct we do not think this paper is
the right place to discuss it as we are interested here in soundness with respect
to Herbrand models.

The other reference the reviewer provides is the

Davide Sangiorgi. An Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2012. A preliminary version of Chapter 2 from which we adapt
paterial can be found at http://www.cs.unibo.it/˜sangio/DOC_public/corsoFL.
pdf.

We already cite one of the Sangiorgi’s papers [13] and we include this reference
where the reviewer suggests to include the above one as we believe it servers the
purpose the reviewer intended.

22

Review 2

Overall evaluation: 1 (weak accept)

Reviewer’s confidence: 3 (medium)

Direct acceptance to LNCS proceedings: -

Review: This work advances recent work by the last author at FLOPS 2016.
Said previous work focused on enhancing corecursive type-class resolution by
providing a general approach to proof-style resolution which specifically included
an idea of adding horn formula resolvents to the proof environment. This new
work focuses on showing (proving) that the extensions of the previous work are
(co)inductively sound relative to the (least) greatest Herbrand models of logic
programs.

The new paper very much overlaps with the previous paper, but I don’t
think that this needs to be a problem. The original aspects seem to consist of,
specifically, the soundness-related theorems and sections 3.1, 4.1, and 5.1. The
research on transformation techniques relates very well to LOPSTR.

The amount of reuse of material from the previous publication is very sig-
nificant. Thus, I am not fully convinced. The authors don’t carefully enough
pronounce their contribution and the significance of it—in relation to their pre-
vious work.

Detailed comments:

– .2, l.-3: Is there a type class-relevant counterpart for the⇒ q(f(x)) example?
I removed the example

– p. 3: Regarding the resolution trace for eq(evenList(int)): The style is not
clear. For instance, there are two subsequent terms that mention oddList. I
added a para of explanation

– p. 3-4: The development along these pages seems to suggest a point at which
lambdas for proof terms become necessary. They suddenly arise with the
bush example; some explanation as to when lambdas are needed is appreci-
ated.

– p. 4: citation [11] is mentioned for its ”recent corecursive extension”. This is
not clear—given that [11] deals with logic programming (dealing very well
with SYB) with no immediate contribution to type-class resolution. Please
clarify. It was a typo, the coorect citation is Lämmel and Peyton Jones [11]

– p. 5; l. -7: The Bi and the A in the restriction (ii) come out of nowhere. We
reformulated the restriction

– p. 7: Regarding ”However, a lemma may overlap with other axioms and
lemmata.” This was not clear.

– p. 7: The notion of sequence for proof terms was a bit puzzling. There is
only application. Likewise, the notion of sequence of lambda variables has
not been explained, but, arguably, it is more established.

23

– The section structure throughout sections 3-5 is strange with just one sub-
section 3.1, 4.1, 5.1. Why is that and how can you better clarify your con-
tributions?

Typos:

– Commas around ”e.g.” and ”i.e.” are preferred. We use british grammar,
commas depend on paritucular occurence of “e.g. and” “i.e.”

– p. 5: ”I this section”. Done.
– p. 6: ”any σ grounding subsitution”. Done.
– p. 13: ”preservers”. Done.
– p. 13: ”by discussion” → ”by a discussion”. Done.
– p. 14: ”On more general level”. Not in the text any more.

Response to Review 2 The reviewer raised a question of novelty of material
in the paper and its overlap with Fu’s et al. paper [5]. We changed closing of the
introduction of our paper to state more clearly that our paper studies soundness
of the calculus of extended corecursive type class resolution, which is not present
in Fu et al., and also soundness of preexisting calculi. The novelty of our paper
are the theorems of coinductive soundness of the calculi in Section 4 and Section
5 and soundness of program transformation methods.

We address the detailed comments the reviewer made as follows: The re-
viewer noted that some explanation why lambdas arise with the Bush example
is appreciated. We include a reference that clarifies why such an extension of
resolution mechanism is necessary.

The reviewer noted that the sentence “However, a lemma may overlap with
other axioms and lemmata” was not clear. We clarified our definitions of an
axiom and a lemma in the context of axiom environment and we clarified the
definition of overlapping in the restrictions in the Section 1.

Furthermore, the reviewer pointed out several formulations that were not
clear and some typographical errors. We clarified suggested parts of the text
and we fixed the typographical errors. We do not discuss these in further detail.

Review 3

Overall evaluation: 1 (weak accept)

Reviewer’s confidence: 4 (high)

Direct acceptance to LNCS proceedings: -

24

Review: This paper proposes a nice application of the theory of Logic Program-
ming to Type Theory. In particular, it considers some recent extensions of type
class resolution that allow certain forms of co-inductive proofs, and proves vari-
ous soundness and unsoundness results with respect to the least and the greatest
(standard) Herbrand models.

On the negative side, I think there is a problem with the paper, namely
Theorem 6 seems incorrect. The same counterexample given at the end of Section
3.1 should hold also for the statement of Theorem 6, since the only difference
between Theorem 6 and the situation analyzed in Section 3.1 is the presence
of the MU rule, which does not play any role in the counterexample. Anyway,
Theorem 6 is just a side result, so even if it is incorrect, it can be removed
(together with the whole Section 5.1 which is just about this result) without
affecting the rest of the paper.

Another problem is that I find a bit disappointing that the question of com-
pleteness is not addressed. More precisely, it is dismissed at the end of Page 2
using the fact that type class resolution performs instantiation instead of full
resolution, thus it won’t be able to prove non-trivial existential formulas. This
is true, but obviously one should consider whether these extensions are power-
ful enough to derive universal formulas when they are true in the least (resp.
greatest) Herbrand model. I suspect that it should not be too difficult to analyze
at least the case of atomic formulas, and that the answer should be yeas in the
inductive (least model) case, and no in the co-inductive case.

Despite the above problems, I still think that it is a nice paper, and I am in
favor for accepting it.

MINOR REMARKS FOR THE AUTHORS
– In the introduction, after Exampe 1, ? eq(int, int) should be ? eq(pair(int,int))

Typo, done.
– Page 3: Please explain what the notation µα.κ2κ3(κ1κ3α) represents. Are
κ1, κ2 and κ3 the “witness” of the logic programming clauses? And what is
the result of, for instance, applying κ3 to α ?

– Page 11, Second line of Section 4.1: greatest greatest Herbrand model Done.

Response to Review 3 The reviewer suggested there is a problem with the
statement of the Theorem 6. Indeed, a necessary condition was missing in the
statement of the theorem in the previously submitted version of the paper. We
amended the statement of the theorem and extended the explanation to make
the use of this condition clear. Furthermore, the reviewer noted that we do not
address the question of completeness. He provided several conjectures of com-
pleteness results in inductive and coinductive case. We believe that the question
of completeness is an interesting one and that his conjectures are in concordance
with the future work we project in the Section 7. However, we do not think that
the page limit of the paper allows for proper analysis of the issue and we omit
any partial analysis in favour of more thorough discussion of soundness results.

The reviewer also made some minor remarks. We incorporated these into the
text and we do not discuss them further.

25

C Completeness

Example 9. The calculus of Lp-m and Lam is not complete in the inductive case.
Consider the following program with a function symbol f:

κ1 : ⇒ A(f)
κ2 : ⇒ B(f)

The least Herbrand model MP = {A(f), B(f)}. Therefore P �ind B(x)⇒ A(x).
However, any proof of B(x)⇒ A(x) needs to show that:

. . .
(P, α : ⇒ B(x)) ` e : A(x)

Lam
P ` λα.e : B(x) ⇒ A(x)

where e is a proof term. Since A(x) is not an implication and cannot proceed by
the rule Lam. However, neither B(x), nor any of heads of the clauses in P does
match the goal A(x). Therefore the proof cannot proceed by the rule Lp-m.

The same example show incompletness of the calculus of Lp-m, Lam, and
Nu in the coinductive case. The greatest Herbrand model M′

P is the same and
although the rule Nu allows to begin the the above proof with another step, it
does not instantiate the goal A(x) anyhow and therefore neither of the clauses
κ1 nor κ2 will be allicable in later steps. Therefore there is no way how to
construct an proof term e such that HNF(e) in order to make coinductively
sound conclusion.

As for the completness for atomic formulate, consider the following example:

Example 10. Let Σ be signature with one predicate symbol A and two function
symbols f and g, the first unary and the other nullary.

κ1 : ⇒ A(f(x))
κ2 : ⇒ A(g)

The least Herbrand model MP = {A(g), A(f(g)), A(f(f(g))), . . .}. Therefore
P �ind A(x). However, neither the clause κ1 nor the clause κ2 math A(x) and
there is no way how to proceed with the proof

. . . Lp-m
P ` e : A(x)

A similar argument holds in the coinductive case.

26

