
Proof-relevant structural resolution for type-inference
František Farka <ff32@st-andrews.ac.uk> Supervisor: Kevin Hammond

School of Computer Science, University of St Andrews

Motivation
The importance of formal verification and modern verifi-
cation tools in software development is widely acknowl-
edged. There are two major approaches to verification:
in the first approach verification problems are specified
in an automated prover, e.g. SMT solver or logic pro-
gramming system. An alternative is software verification
driven by types, the interesting properties are recorded
in types of functions in the program. This approach is
more trustworthy as the function, thanks to Curry-Howard
isomorphism, represents a checkable proof of the prop-
erty encoded by a type whereas there is no such proof in
the automated-prover approach. However, the automated-
prover approach seems to be more readily-integrabel to
existing languages as is demonstrated by e.g. Liquid
Haskell and F*.
We propose to use a recent extension to standard reso-
lution in logic programming—a proof-relevant structural
resolution—to replace an SMT solver that is used by a
static verification tool Liquid Haskell [3, 4] with a proof-
relevant logic programming. Not only we obtain a system
that produces machine-checkable proofs but due to prop-
erties of structural resolution we can also easily reason
about inductive and coinductive properties of programs
adapting techniques of coinductive logic programming
(CoALP) [2].

Proof-relevant structural resolution
Structural resolution is a newly proposed alternative to
SLD-resolution in first-order Horn-clause logic. Structural
resolution allows for not only traditional inductive proof
search but also for coinductive proof search. It can be

extended such that, besides a resulting substitution, it
also captures a proof object. The signature of a program
is extended with a set of function symbols Θ and there is
one symbol assigned to each clause in a program. The
big-step semantics accounts for these symbols:

P � x1 : σB1, . . . P � xn : σBn

P � s(x1, . . . , xn) : σA

where P is a logic program such that s ∈ Θ and s : A←
B1, . . . , Bn ∈ P . For proof objects (terms) x1, . . . , xn the
term s(x1, . . . , xn) proves σA in P . This explicit handling
of proof also allows for better handling of coinductive
hypothesis.

Liquid Haskell
Liquid Haskell is a static verifier for the Haskell program-
ming language based on liquid types [3]. The current
implementation takes an annotated Haskell program and
generates a set of constraints that is solved by an SMT

source.hs Liquid Haskell

SMT solver CoALP

type errors

generated constraints

type evidence

solver. This approach suffers from the above described
problem—the SMT solver does not provide any checkable
proof that the property that is being verified indeed holds.
We propose to replace an SMT solver step with the proof-
relevant structural resolution. This will bring the following
improvements over the current approach:
• The verification tools will provide a machine check-

able proof of properties that are verified,
• CoALP resolution is done in parallel and promises

improvement in performance, and
• the generated evidence can be further used for type-

inference when integrated with a compiler, e.g. for
construction of type class dictionaries[1].

References
[1] Peng Fu et al. ‘Proof Relevant Corecursive Resolution’. In: Func-

tional and Logic Programming - 13th International Symposium,
FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Ed. by
Oleg Kiselyov et al. Vol. 9613. Lecture Notes in Computer Science.
Springer, 2016, pp. 126–143.

[2] Ekaterina Komendantskaya et al. ‘Structural Resolution: a Frame-
work for Coinductive Proof Search and Proof Construction in Horn
Clause Logic’. In: ACM Transcations in Computational Logic sub-
mitted (2015).

[3] Patrick Maxim Rondon et al. ‘Liquid types’. In: Proceedings of
the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008.
Ed. by Rajiv Gupta et al. ACM, 2008, pp. 159–169.

[4] Niki Vazou et al. ‘Abstract Refinement Types’. In: Programming
Languages and Systems - 22nd European Symposium on Pro-
gramming, ESOP 2013, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16-24, 2013. Proceedings. Ed. by Matthias Felleisen
et al. Vol. 7792. Lecture Notes in Computer Science. Springer,
2013, pp. 209–228.


