
Proof-Relevant Resolution for Constructive
Automation

František Farka

April 26, 2019

Hi thank you for having me, it is my pleasure to be here. I hope you will enjoy
the talk.

The talk I am going to deliver today is about PRR, a framework for constructive
automation. Let me start with what is the context of the talk; or what are we
going to automate. Automation is just a tool, a means. It is not the end in
itself. The context of the talk is programming languages. And for me, that
means programming languages with strong typing discipline. A lot of people is
interested in safety and security of software, in verification. There are different
ways how to approach verification of software and one of the ways is by types.
An expressive type system allows you to encode specifications as types and a
type checker then ensures that the code adheres to specification.

Let us have a look at an example.

1

1 Automation for Programming Languages

Type inference, term synthesis, and type classes

-- type inference, term synthesis
data maybeA : Bool → Set where

nothing : maybeA false
just : A → maybeA true

fromJust : maybeA true → A
fromJust (just x) = x
fromJust = ń (m : maybeA true) →

elimmaybeA true m
-- nothing

(ń (w : true ≡ false)

→ elim≡ w)

-- just x
(ń (w : true ≡ true) (x : A)
→ x)

-- type class resolution
class Eq a where

eq : a → a → Bool

instance Eq Int where
eq x y = . . .

instance (Eq a, Eq b) ⇒ Eq (Pair a b)
where
eq (x1, x2) (y1, y2) =

eq x1 y1 ∧ eq x2 y2

test : Eq (Pair Int Int) ⇒ Bool
test = eq (1, 2) (1, 3)

test : Bool
test = eq { κPair κInt κInt } (1, 2) (1, 3)

19

First, consider this simple example (on the left). If you are familiar with Haskell,
you will know the maybe data type that allows you to store a value or indicate
its absence. You might recognise it from other languages as option. This is its
dependent version, it carries a boolean index in the type that indicates whether
the value is present or not.

In Haskell, the data type comes with function fromJust with signature maybe→
A that allows you to extract the value. Such function is partial, when the value
of the data type is nothing, there is nothing to extract. Calling the function
with value nothing will raise an error in runtime, which is something we would
like to avoid. Here come dependent types to rescue. Our version of maybe is
indexed and we can specify that fromJust can be called only with arguments
that actually contain a value of the underlying type.

However, guaranteeing such properties does not come for free. Most often, a
type-checker, or a tool in general, translates the surface representation into an
internal calculus of a type theory. The internal representation of the function
fromJust needs to satisfy a range of obligations raised by the technical nature of
type theory. For example, here the definiton by pattern matching is internally
represented using an induction principle. Note that some information that is re-

2

quired in the internal representation, like the term for absurd case of constructor
nothing, does not occure in the above definition. Similarly, certain types need
to be provided, like the types in positions of ?A and ?B . We will understand
these as metavariables.

This is the task for automation – to provide this missing information in such
terms. Obviously, this is a very simplistic example and you can imaging the code
geting arbitrarily complex. Also, such automation is not necessarly limited to
translation of a surface language to an internal representation. A similar prob-
lem occurs in the interactive style of depenent type programming, for example
in Agda or Idris, where you expect the development environment to inhabit
holes in your programs upon request

Consider one more example. Perhaps you are familiar with type class mecha-
nism in Haskell. Type class mechanism is a mechanism that provides ad-hoc
polymorpishm. You can declare a class of types, in this example a type of class
equipped with equality. A class provides certain methods that are defined for
members of the class. Types are identified as members of the class via instance
mechanism. In our example, instance of the typeclass for Int is carried out by
some primitive notion of equality for integers. In the case of pairs, we can see
the compositionality of the mechanism, equality for pairs is defined assuming
there are instances for types of each component. The implementation is then
the obvious, pairwise.

In a use site, like the function test in our example, compiler automatically com-
poses in a process called type class resolution the available instances to obtain
instance of the desired type. Again, the compiler translates Haskell program to
an internal representation. There, type classes are elaborated away. In technical
terms, the type class method is given an extra argument, a dictionary, that wit-
nesses that a type is member of the type class. In use site, type class resolution
provides a dictionary of the required type. Again, this is a clear use-case for
automation.

The framework I am going to present addresses exactly these use-cases for au-
tomation. First, let me stress out what requirements are laid upon the frame-
work by these use cases.

First, the framework needs to be fairly general and principled, and that is in
several ways. First, in is easy to imagine a language of your choice combines both
these two features and many others that require automation during elaboration
into an internal, explicit representation.

It has been argued that such a general framework is provided by Horn clauses,
both for verification of imperative programs [BjornerGMR15] and for functional
programs [BurnOR18, OngW19]. If you think about the example of type classes,
instances exactly correspond to Horn clauses. The problem of finding the dic-
tionary is then Horn-clause resolution of the desired goal.

Secondly, we want the framework to be proof-relevant. In the example of type

3

classes proof-relevance is essential. I already said that we need the dictionary as
it has operational interpretation. First, a pair of intergers is compared for equal-
ity pairwise, which corresponds to the second instance, then, each of integers is
compared using some primitive notion, which corresponds to the first instance.
Assume we equip the instances, now Horn clauses, with atomic symbols κPair
and κInt, names that identify them. Then the resolution can by captured by the
term κPair κInt κInt. And this dictionary is exactly the proof term that witnesses
instance resolution.

We can work with the other example in a similar way. It is more complicated
and I am not going to do it now.

How are we going to design such a framework? We are going to work in extension
of HC, HH. It is more convenient as it will allow us Curry-Howard interpretation,
but it is also neccessary as I will argue later; I will show examples of type class
problem that extends HC fragment.

We are going to look at automation in our framework as goal-directed search
in HH. The function with metavariables, or the desired instance are going to
be represented as a goal. Via Curry-Howard interpretation, we are going to
instrument formulae with proof terms and the search trace will be captured by
this proof term.

2 Proof-Relevant Resolution

Big-step operational semantics

D := A | G⇒ D | ∀x : A.D

G := A | D ⇒ G | ∀x : A.G | ∃x : A.G

e := κ | e e | λκ.e | 〈M, e〉

S;P e′:D−→ e : A

init
S;P e:A−→ e : A

S;P −→ e1 : A1 S;P
ee1:D
−→ e2 : A2

⇒L
S;P

e:A1⇒D−→ e2 : A2

S;P e:D[M/x]−→ e2 : A2 S; · `M : A1
∀L

S;P
e:∀x:A1.D−→ e2 : A2

4

S;P −→ e : G

S;P κ:D−→ e : A κ : D ∈ P
decideS;P −→ e : A

S;P −→ e : G[M/x] S; · `M : A
∃R

S;P −→ 〈M, e〉 : ∃x : A.G

S;P, κ : D −→ e : G
⇒RS;P, κ : D −→ λκ.e : D ⇒ G

S, c : A;P −→ e : G[c/x]
∀RS;P −→ e : ∀x : A.G

The language contains definite clauses D that specify the search space, goals G
for the automation, and proof terms e. For the sake of simplicity, we are going
to keep the language minimal and consider only implication and existential
and universal quantification. Definite clauses consist of atoms, implication that
has a goal as a premise and a definite clause as a conclusion, and universal
quantification over a definite clause. The language of atoms I consider is LF,
a first-order dependent type theory to allow for application like those I showed
on the previous slide. Atoms then are types of certain proper kind. Though
the particular shape of atoms I consider is not important for the rest of this
talk. The syntax of goals consists of the same constructs with roles of goals and
clauses reversed, and existential quantification over goals. Proof-terms consists
of atomic symbols, application, abstraction and existential witness.

The operational semantics of resolution we give to the language is uniform
proof semantics, which is well-understood semantics of logic programming. The
novelty is that we equip uniform proofs with proof terms. If you are not familiar
with uniform proofs; it is a semantics that can be traced back to Gentzen’s
sequent calculus, which is a nice feature here if you think we are giving a Curry-
Howard interpretation and connects our framework nicely with foundations.
If you recall, in Gentzen’s work there are sequent calculi for systems LK for
classical logic and LJ for intuitionistic logic. Since we work in constructive
settings, the appropriate calculus is LJ. The characterising feature of LJ is that
there is exactly one formula on right hand side of the sequent. This formula is
our goal formula. The formulae on left-hand side of the sequent are collections
of definite clauses, which are by convention called programs. The goal-directed
search means that goals are decomposed using right-introduction rules of the
sequent calculus. This is given by the judgement on the right-hand side of
the slide. When a goal cannot be decomposed further using right-introduction
rules, a program clause is selected and this clause is decomposed using left-
introduction rules. This is the difference between uniform proofs and sequent
calculus. One clause is selected and it is this clause only being decomposed in
the process. This is given by the judgement on the left-hand side of the slide.
Note the symmetry in definition of resolution that corresponds to the symmetry

5

in definition of goals and clauses. Finally, we collect proof-terms alongside the
decomposition of goals and clauses.

However, if you think about resolution and logic programming, computation is
carried out by unification. Here, there is no unification involved. This is a big
step semantics and does not provide a computational device. The resolution
proceeds by decomposition of the goal and a well-formed term needs to be
provided right away is in the case of ∃R rule. In order to provide a computational
device we will develop a small-step operational semantics.

Small-step operational semantics

S;P ` Γ | ê ê
′′:D
 Γ′ | ê′

S; Γ ` σ : Γ′ S; Γ′ ` σA ≡ σA′ : o

S;P ` Γ | C{A} ê:A
′
 Γ′ | (σC){ê}

S;P ` Γ | C{A}
ê1 A1:D
 Γ′ | ê

S;P ` Γ | C{A}
ê1:A1⇒D Γ′ | ê

S;P ` Γ, Y : A1 | C{A2}
ê1:D[Y/x]
 Γ′ | ê

S;P ` Γ | C{A2}
ê1:∀x:A1.D Γ′ | ê

ê := κ | G | ê ê | 〈M, ê〉 | λκ.ê
C := • | e C | 〈M,C〉 | λκ.C

S;P ` Γ | ê Γ′ | ê′

S;P ` Γ | C{A} κ:D
 Γ′ | ê κ : D ∈ P

S;P ` Γ | C{A} Γ′ | ê

S;P ` Γ, Y : A | C{〈Y,G[Y/x]〉} Γ′ | ê
S;P ` Γ | C{∃x : A.G} Γ′ : A | ê′

S;P, κ : D ` Γ | C{λκ.G} Γ′ | ê
S;P ` Γ | C{D ⇒ G} Γ′ | ê

S;P ` Γ, x : A | C{G} Γ′ | ê
S;P ` Γ | C{∀x : A.G} Γ′ | ê

6

I am not going to go into a detail here and I will just highlight the essential
features. The key characteristics is the use of what we call mixed terms. Mixed
terms combine proof-terms with not-yet-resolved goals and describe an inter-
mediate state of the resolution. Resolution proceeds by rewriting goals in a
mixed term into mixed terms. As there might be several goals in a mixed term,
we use rewriting contexts to identify the goal that is being rewritten. Rewrit-
ing context consists of a hole, that identifies the mixed term that is subject to
a rewriting step and other syntactic constructs that follow structure of mixed
terms. The structure of judgements of small-step operational semantics corre-
sponds to the big step semantics. The difference is that terms that need to
be provided straight away in the big step operational semantics are delayed as
unification variables. The initial sequent is replaced by unification. Note that
the substitution needs to be well-formed in the type theory of the language of
atoms.

As a certain sanity check, we can recover notion familiar from logic program-
ming, which we used as a motivation for the design of the framework. Namely,
if you compose substitutions computed in the unification steps, you obtain an
answer substitution. The judgement of small-step semantics can then be read
as giving an answer substitution from domain Γ to codomain Γ′. Similarly, if
you restrict to a first order language of atoms you can recover implicit quantifi-
cation, for an untyped language the notions of predicate and function symbols,
and arity.

What we need to show is, that this semantics is sound w.r.t the big-step seman-
tics.

Soundness

Theorem 1 (Soundness). If S;P ` · | G · | e then S;P −→ e : G.

Theorem 2 (Generalised soundness). If S;P ` · | G Γ′ | e then S;P −→ e : ∀Γ′.G.

Theorem of soundness looks like above, for a fully quantified goal the resolution
is sound as long as we can read a proper proof term, that is not a mixed
term, in an empty context. We can allows ourselves a slightly more general
general result. We can allow logical variables in the codomain of the answer
substitution and then these have universal interpretation. The syntax ∀Γ′.G
stand for quantification of goal with each variable in the context.

7

S;P; Γ
ê1:D
−→C ê : ê′

S;P; Γ −→C ê : D

S;P; Γ −→C ê : ê′

S;P; Γ
ê1:D
−→C ê : ê′

S;P; Γ −→C ê : D

Stability

Substitutivity

Weakening of S

Weakening of P

Stability

Substitutivity

Weakening of S

Weakening of P

right liftingright lifting

generalisation

left liftingleft lifting

S;P ` Γ | ê Γ′ | ê′

S;P ` Γ | ê
ê1:D
 Γ′ | ê′

S;P −→ e : G

S;P
e1:D
−→ e : A

Fundamental thm

Escape lemma

The question is how to prove these theorems. Again, I am not going to go into
a detail. I will only outline the structure of the prove and mention the general
ingredients involved.

The goal of the prove is; we have a derivation of small step operational seman-
tics. These are the judgements in the upper left corner. We want to obtain a
derivation of the big step operational semantics. These are the judgements in
the lower right corner. By the empty space in between you might guess that
there is something missing. The issue is that the big step semantics is given
on proper proof terms and there are no logical variables subject to unification
whereas the small step semantics is given using mixed terms and with variables.
It is not immediately clear how the proof should proceed.

A possible approach is to introduce logical relation in between with the idea that
we can show an embedding of SSS to the LR and a projection of LR to BSS. The
logical relation is formulated with variables and relates mixed terms for each of
the left and right judgements. A caveat here is, that we need to introduce an
auxiliary judgement that relates mixed terms with definite clauses. If you recall
both BSS and SSS, the decide step requires the annotating clause to be in the
program. The implicit assumption here is that the clause is well-formed, and
the assumption is maintained in the course of resolution by virtue of subformula
property. The auxiliary judgement explicates this assumption. If you are not
familiar with logical relations, it is a device that was originally introduced to
study strong normalisation in type theory. And that makes a perfect sense here.
You can see BSS as a degenerate typing judgement for proper proof terms in
empty context. SSS is then evaluation of mixed terms. Proper proof terms are

8

the normal forms.

For LR, we can show some structural properties, namely; it is stable under
substitution over programs, it is preserved under substitution of variables in
context, and both signatures and programs can be weakened. Using these prop-
erties, we can show transformations that correspond to inference rules of BSS
can be propagated through LR. We call this lifting since it allows delaying these
up in the derivation tree towards initial sequents hence simulating SSS. It also
allows us to state generalisation for the purpose of the second theorem. Finally,
using this machinery, we can show the embedding and projection, or the Fun-
damental theorem and an Escape lemma. These come in pairs corresponding to
the mutually defined judgements of SSS and BSS.

When we leave the technical machinery out of the picture, the theorem follow
by composing the Fundamental theorem and the Escape lemma, respectively
interleaving it with generalisation.

3 Application to the Examples

Type inference and term synthesis1

fromJust = ń (m : maybeA true) → elimmaybeA
true m

(ń (w : true ≡ false) → elim≡ w) (ń (w : true ≡ true) (x : A) → x)

proof
relevant

resolution

PS

G, A

S =
maybeA, . . .

fromJust

...

e

S;·`θfromJust:θA

S ` PS

S; fromJust ` (G | A)

e

θ

Let us get to the first example. How does proof-relevant resolution help us?

I was talking about internal representation and the need for automation, for
type inference and term synthesis. Type checking here is complex exactly due
to the need to provide this information that is missing in the surface code.
Arguable, we want a compiler of a dependently typed language to be verified,
implemented in the language itself, with strong guarantees. We say that the
language is intended for writing verified software and then a bug in the compiler
may compromise this claim. Yet, it is not case that dependent languages would
be implemented using dependent types. My conjecture is that is is due to this
complexity of type inference and the involved automation. A possible approach

1https://github.com/frantisekfarka/slepice

9

to overcome this issue is a proof-carrying architecture. The automation is off
loaded to an external tool that takes care of issues like limiting the search space
or search strategy and provides only a proof-term as result. This proof-term
witnesses well-formedness for the purpose of the type theory of the internal
calculus and it is a nice a simple object to work with. And this is exactly the
approach that can benefit from proof-relevant resolution.

In my previous work, I have provided a formalised implementation of such type
inference engine:

• specification in Ott

• formalisation in Coq

• proof-relevant resolution in Elpi

• all embeded in OCaml (parser, . . .)

Conclusions:

• type inference and term synthesis in first-order dependent type theory as
first-order resolution

• soundness; details in the paper (ICLP’18)

• proof-relevant resolution provides certificates of well-formedness

Type class resolution2

data OddList a = OCons (EvenList a) data EvenList a = Nil | ECons (OddList a)
instance (Eq a, Eq (OddList b)) ⇒ Eq (EvenList b) instance (Eq a, Eq (EvenList b)) ⇒ Eq (OddList b)

·
·

·
...

�
�

�

·
·

·
...

• • ••
••

•
data Bush a = Nil | Cons (Bush (Bush a)) instance (Eq a, Eq (Bush (Bush b))) ⇒ Eq (Bush b)

2https://github.com/frantisekfarka/cotcr

10

We mentioned that there are also semantical considerations regarding the au-
tomation. Let’s return to the example of type classes. It was the common
understanding that type class resolution semantically corresponds to SLD res-
olution. At the same time it is not entirely true. The composition of instances
represented by the dictionary has an operation interpretation, it dictates how
the method eq work in the particular use site. This means that the dictionary
must have a unique interpretation. More importantly, Haskell is lazy evaluated
language and allows infinite data structures, for example lists. An infinite list
of zeros is a perfectly valid value in Haskell. Then it is more challenging to un-
derstand the semantics of type class resolution as the composition of instances
might give rise to cycles. Such an example is the example of lists of odd and
even length that are mutually defined. Than the resolution gives rise to infinite
cycles. The is existing work that studies such coninductive type class resolution
[FuK17]. In my previous work, I carried out semantical analysis and showed
coinductive resolution can be accurately modeled by using greatest Herbrand
models.

There are more evolved examples, like Bush, where the resolution does not leas
to cycles. This is an example that escapes the Horn-clause fragment and where
implicative goals, hence hereditary Harrop formulae, are necessary.

4 Where to Next

Future work

Applications

• coinductive proof-search for parallel and distibuted computation

• constrained Horn clauses for resource-aware computation

• automation for e.g. dependently type-based probabilistic programming

Theory of proof search

different classes of sequents for efficient search space

Try to focus on applications relevant to Aleks and to CLIP

11

A Appendix

References

References

[BjornerGMR15] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and
Andrey Rybalchenko. Horn clause solvers for program verification.
In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd
Finkbeiner, and Wolfram Schulte, editors, Fields of Logic and Com-
putation II - Essays Dedicated to Yuri Gurevich on the Occasion of
His 75th Birthday, volume 9300 of Lecture Notes in Computer Sci-
ence, pages 24–51. Springer, 2015.

[BurnOR18] Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay.
Higher-order constrained horn clauses for verification. PACMPL,
2(POPL):11:1–11:28, 2018.

12

[FuK17] Peng Fu and Ekaterina Komendantskaya. Operational semantics
of resolution and productivity in horn clause logic. Formal Asp.
Comput., 29(3):453–474, 2017.

[OngW19] C.-H. Luke Ong and Dominik Wagner. Hochc: a refutationally-
complete and semantically-invariant system of higher-order logic
modulo theories. CoRR, abs/1902.10396, 2019.

Big-step operational semantics

Example 3.

P = κz :odd(z),

κe :∀x : a.odd a⇒ even (s x)

κo :∀x : a.even a⇒ odd (s x)

S, c : a;P, κx : even c −→ κx : even c

S, c : a;P, κx : even c −→ κo κx : odd (s c)

S, c : a;P, κx : even c −→ κe (κo κx) : even (s (s c))

S, c : a;P −→ λκx.κe (κo κx) : even c⇒ even (s (s c))

S;P −→ λκx.κe(κoκx) : ∀x : a.even x⇒ even (s (s x))

Small-step operational semantics

Example 4.

· | ∀x : a.even x⇒ even (s (s x)) · | even c⇒ even (s (s c))

· | λκx.even (s (s c)) · | λκx.even (s (s c))κe:∀x:a.odd x⇒even (s x)

X : a | λκx.even (s (s c))κe:oddX⇒even (sX)

X : a | λκx.even (s (s c))κe(oddX):even (sX)

· | λκx.κe (odd (s c)) · | λκx.κe (odd (s c))κo:∀x:a.even x⇒odd (s x)

Y : a | λκx.κe(odd (s c))κo:even Y⇒odd (s Y) · | λκx.κe (κo (even c))

· | λκx.κe (κo (even c)κx:even c) · | λκx.κe (κo κx)

Logical relation

S;P; Γ −→C ê : ê′

S;P; Γ
ê′:D−→C ê : A S;P; Γ −→C ê

′ : D

S;P; Γ −→C ê : A

13

S;P; Γ −→C ê : G[M/x] S; Γ ` M : A

S;P; Γ −→C 〈M, ê〉 : ∃x : A.G

S;P, κ : D; Γ −→C ê : G

S;P; Γ −→C λκ.ê : D ⇒ G

S, c : A;P; Γ −→C ê[c/x] : G[c/x]

S;P; Γ −→C ê : ∀x : A.G

S ` P S ` Γ

S;P; Γ −→C A : A

S;P; Γ −→C ê1 : ê2

S;P; Γ −→C (θê) ê1 : ê ê2

S;P; Γ −→C ê1 : ê2

S;P; Γ −→C 〈θM, ê1〉 : 〈M, ê2〉

S;P; Γ −→C ê1 : ê2

S;P; Γ −→C λκ.ê1 : λκ.ê2

S;P; Γ
ê:D−→C ê : ê′

S;P; Γ
ê:A−→C ê : A

S;P; Γ −→C ê1 : A1 S;P; Γ
ê ê1:D
−→C ê2 : A2

S;P; Γ
ê:A1⇒D−→C ê2 : A2

S;P; Γ
ê:D[M/x]
−→C ê2 : A2 S; Γ ` M : A1

S;P; Γ
ê:∀x:A1.D−→C ê2 : A2

S;P; Γ −→C ê : D

S ` P κ : D ∈ P S ` Γ

S;P; Γ −→C κ : D

S;P; Γ −→C ê : A ⇒ D S;P; Γ −→C ê
′ : A

S;P; Γ −→C ê ê
′ : D

S;P; Γ −→C ê : ∀x : A.D S; Γ ` M : A

S;P; Γ −→C ê : D[M/x]

Type class resolution - Pair

Example 5. PPair =

κ1 : eq(x), eq(y) ⇒ eq(pair(x, y))

κ2 : ⇒ eq(int)

14

Lp-mPPair −→ κ2 : eq(int)
Lp-mPPair −→ κ2 : eq(int)
Lp-mPPair −→ κ1κ2κ2 : eq(pair(int, int))

Type class resolution - Bush

Example 6. PBush =

κ1 : ⇒ eq(int)

κ2 : eq(x), eq(bush(bush(x)))⇒ eq(bush(x))

PBush −→
κ1 : eq(int)

...
PBush, (α : eq(x)⇒ eq(bush(x))), (β : ⇒ eq(x)) −→

κ2β(α(αβ)) : eq(bush(x))
LamPBush, (α : _) −→ λβ.κ2β(α(αβ)) : eq(x)⇒ eq(bush(x))
NuPBush −→ να.λβ.κ2β(α(αβ)) : eq(x)⇒ eq(bush(x))

PBush −→ (να.λβ.κ2β(α(αβ)))κ1 : eq(bush(int))

15

