
Brave New World of Haskell Type Classes

Frantǐsek Farka

School of Computing
University of Dundee

School of Computer Science
University of St Andrews
ffarka@dundee.ac.uk

Abstract. Type classes are Haskell way to ad–hoc polymorphism. They
provide a mean of specification of a methods with certain semantics and
a mean of implementing these methods for arbitrary data type through
class instances. Semantics of these methods is expressed in a form of
class laws. However, the laws are expressed only informally and a pro-
grammer may break them when providing the instance—by accident or
by intention.
This paper shows that with use of certain language extensions some of
the instances in class hierarchy can be provided in a generic way directly
in a class definition and thus some of the laws are guaranteed by class def-
inition itself. The language extensions also allow more flexible approach
to changes in class hierarchy that remains backward compatibility and
enables author of the class definitions to provide simpler interface to a
complex hierarchy of classes.

1 Introduction

We live in a wonderful brave new world of GHC 7.10 and beyond. We don’t
need to ask ourselves any more “How often did you say: A Monad is always
an Applicative but . . . ”[2]. No buts. A Monad is always an Applicative. liftM
is fmap, really. The notoriously known Haskell type class hierarchy from base

package now looks like:

class Functor f where
fmap :: (a → b) → f a → f b

class Functor f ⇒ Applicative f where
pure :: a → f a

(<∗>) :: f (a → b) → f a → f b

class Applicative f ⇒ Monad m where
(>>=) :: m a → (a → m b) → m b

return :: a → m a

we can provide instances and use these type classes in our code. Of course, the
method type signature is not the only thing we need to keep in mind when



2 Brave New World of Haskell Type Classes

implementing instances of these type classes for our custom data types. There
are are Functor, Applicative, and Monad laws that instances should abide.
In particular, we are interested in laws that are induced by context constraint.
McBride and Paterson described the laws in [1]:

fmap f x = pure f <∗> x (1)

pure x = return x (2)

fmap f xs = xs >>= return ◦ f (3)

for fmap, pure, return, and (<*>). When we closely examine laws (1) and (3)
we notice that these compose to another law:

pure f <∗> x = xs >>= return ◦ f (4)

With use of law (2) and equational reasoning we can state that:

pf <∗> px = px >>= λx → pf >>= λf → return (f x) (5)

This equation together with (2) and (3) shows that instances of Functor and
Applicative of particular data type are solely determined by an instance of
Monad for this data type. Same holds for an instance of Functor given law(1)
where an instance of Applicative exists. However, if we provide only an instance
of Monad for our data type MyData compiler refuses to process the code with
following error:1

No instance for (Applicative MyData)

arising from the superclasses of an instance

declaration

In the instance declaration for ’Monad MyData’

It is necessary to manually provided instances for both Functor and Applicative
even though the behavior is known. This example is not unique among type
classes in base libraries or elsewhere. In Section 3.3 we show another case—the
Traversable class.

However, this necessity can be avoided. With additional language exten-
sion Default Superclass Instances that was described in [4] the instances for the
Functor and the Applicative classes in the above example can be provided in
polymorphic form—as the laws that specify their behavior in presence of Monad
instance are also polymorphic—directly in class definition:

class Applicative m ⇒ Monad m where
(>>=) :: m a → (a → m b) → m b

return :: a → m a

1 This example is produced with The Glorious Glasgow Haskell Compilation System,
version 7.8.3



Brave New World of Haskell Type Classes 3

default instance Applicative m where
pure x = return x

pf (<∗>) px = px>>=λ x → pf

>>=λ f → return (f x)

This saves programmer of some boilerplate code and can even be done in back-
ward compatible way – without any breakage in existing source code that makes
use of these classes. Magalahães et al. described general deriving mechanism for
Haskell [6]. This mechanism restricts derivable instances to classes for which ex-
ist some notion of default implementation of class method including polymorphic
definition that is structurally recursive on its arguments and definition for a set
of basic data types. Our approach differs as the definition of method in a default
instance is is carried out in terms of other methods of the class hierarchy.

We describe appropriate modification of these classes in full detail in Sec-
tion 2.1 of this paper.

But this three class hierarchy – Functor, Applicative, and Monad – is not
the only class layout that provides methods return, (>>=), pure, <*>, and fmap.
One may go forth and seek, further up, he will find even newer and brighter world
of Bind and Pointed [5], that a variant of is described by Figure 1. However,

class Functor where
fmap :: (a → b) → f a → f b

class Functor f ⇒ Pointed f where
pure :: a → f a

class Functor f ⇒ Bind f where
bind :: f a → (a → f b) → f b

class Pointed f ⇒ Applicative f where
(<∗>) :: f (a → b) → f a → f b

class (Bind m, Applicative m) ⇒ Monad where
(>>=) :: m a → (a → m b) → m b

return :: a → m a

Fig. 1. Pointed and Bind classes

this finer–grained structure of classes has certain drawbacks. Now it is necessary
to define five instances just to work with Monad. Since similar laws as in previ-
ous example apply some boilerplate can be scraped out with Default Superclass
Instances. But there is also a new law:



4 Brave New World of Haskell Type Classes

bind x f = x >>= f (6)

This laws relates bind and (>>=) methods in the same way as return and pure

are bound. In case of Applicative and Monad we cane simply state that the
duplicity of return and pure is there for historical reasons and for backward
compatibility with existing code that uses these two classes.

The first reason – the historical one – does not hold for bind for sure. There
are no historical premises for this method. Assume that (>>=) is moved to the
Bind class and Monad class contains just the return method:

class Functor f ⇒ Bind f where
(>>=) :: f a → (a → f b) → f b

class (Bind m, Applicative m) ⇒ Monad m

return :: a → m a

Now, if we provide all the 5 instances necessary to use Monad we get the same
functionality with (>>=) and return as before. Data types that instantiate only
Bind and Functor (due to superclass constraint) can be used with (>>=)method.
But as a side–effect of this move of the method we have lost backward compati-
bility. Existing instances of Monad define the (>>=)method, which does no longer
exist in the class as the method now resides in the Bind class. Compilation fails
with following error:

’>>=’ is not a (visible) method of class ’Monad’

John Meachem described a proposal [3] for language extension that allows pro-
grammer to specify Class Aliases. We give a summary of this proposal in Sec-
tion 2.2. In principle, the extension allows now language construct – a class
alias:

class alias Monad m = (Bind m, Applicative m)

This class alias can occur wherever ordinary class can and is simply expanded
into the two classes it consists of. In particular, it is possible to provide an
instance of this alias in a same way an instance of class is provided and define
implementations of methods from both Bind and Applicative. Instances of
these classes are generated by compiler and method definitions are supplied
from class alias instance.

Section 3.2 shows that this alias can be conveniently used with Default Su-
perclass Instances extension. It is possible to retain Monad as a class alias that is
backward compatible and still provide standalone class Bind with method (>>=)

without any duplication in form of bind method. In addition it is sufficient
to manually instantiate only Monad alias and instance for Functor, Pointed,
Applicative, and Bind are generated by compiler. There is also another aspect
of the Monad alias—the alias abstract from the finer-grained classes and provides
simpler interface to underlying concepts. It is fine to use ordinary old Monad in all
the places where it used to be but we now have the full power and expressiveness
of the new hierarchy. We give a more detailed example in Section 3.4.



Brave New World of Haskell Type Classes 5

1.1 Contribution

This paper describes an approach to class hierarchy modifications in Haskell. We
point out two language extensions that make the modifications easier: Default
Superclass Instances and Class Aliases. In particular it is possible with these
extensions to

– easily change type class hierarchies in a backward compatible way;

– provide some instances automatically, this holds for general type classes, no
per-class compiler support is necessary; and

– it is no longer problem to provide fine-grained type class hierarchies—simpler
interface to hierarchy can be provided.

We provide several examples that demonstrate use of default superclass instances
and class aliases, e. g. Functor, Applicative and Monad hierarchy , extension
of previous with Bind and Pointed, and Traversable.

References

1. Conor Mcbride and Ross Paterson. 2008. Applicative programming with effects. J.
Funct. Program. 18, 1 (January 2008), pp. 1–13.

2. Functor–Applicative–Monad Proposal, https://wiki.haskell.org/Functor\

-Applicative-Monad_Proposal

3. John Meacham. Class Alias Proposal for Haskell. http://repetae.net/recent/

out/classalias.html

4. Frantǐsek Farka. 2015. Maintainable Type Classes for Haskell. Submitted to ACM
SIGPLAN symposium on Haskell (Haskell ’15).

5. Marina Lenisa, John Power, and Hiroshi Watanabe. 2000. Distributivity for endo-
functors, pointed and co-pointed endofunctors, monads and comonads. Electronic
Notes in Theoretical Computer Science, 33, pp. 230–260.

6. José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. 2010. A
generic deriving mechanism for Haskell. In Proceedings of the third ACM Haskell
symposium on Haskell (Haskell ’10). ACM, New York, NY, USA, 37-48.


