
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Frantǐsek Farka

Maintainable type classes for Haskell

Department of Theoretical Computer Science and Mathematical
Logic

Supervisor of the master thesis: RNDr. Petr Pudlák, Ph.D.

Study programme: Informatics

Specialization: Theoretical Computer Science

Prague 2014

I would like to thank my supervisor for his guidance and immense patience as I
was not always the most diligent student. I would also like thank my friends for
their valuable comments and insight the helped me to gain in many discussion
on the topic of this thesis.

And last but not least I owe my deepest gratitude to my parents for their
unlimited love and support.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague on July 31, 2014 signature of the author

Název práce: Udržovatelné typové tř́ıdy v Haskellu

Autor: Frantǐsek Farka

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoućı diplomové práce: RNDr. Petr Pudlák, Ph.D., Katedra teoretické infor-
matiky a matematické logiky

Abstrakt: V této práci se zaměřujeme na dlouhodobý problém v systému ty-
pových tř́ıd jazyka Haskell. Konkrétně se zabýváme možnostmi zpětně kompat-
ibilńıch úprav v existuj́ıćıch hierarchíıch tř́ıd. V prvńı části práce podáváme
stručný přehled jazyka. Následuj́ıćı část shrnuje stávaj́ıćı navrhovaná řešeńı
problému a rozeb́ırá jejich vlastnosti. Na základě tohoto rozboru předkládáme
náš vlastńı návrh na jazykové rozš́ı̌reńı.

V předposledńı části uvád́ıme několik možných užit́ı jazykového rozš́ı̌reńı a srovnáváme
jej s ostatńımi řešeńımi. Součást́ı práce je také proof-of-concept implementace
rozš́ı̌reńı pro kompilátor GHC, která je stručně popsána v posledńı části.

Kĺıčová slova: Haskell, typové tř́ıdy, udržovatelnost, výchoźı instance nadtř́ıd

Title: Maintainable type classes for Haskell

Author: Frantǐsek Farka

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Petr Pudlák, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract:

In this thesis we address a long-term maintainability problem in Haskell type class
system. In particular we study a possibility of backward-compatible changes in
existing class hierarchies. In the first part of the thesis we give a brief overview of
the language. The following part summarizes current proposed solutions to the
problem and analyzes their properties. Based on this analysis we derive our own
language extension proposal.

In the penultimate chapter we present several possible applications of the lan-
guage extension and compare the extension to other solutions. As a part of the
thesis we also give a proof-of-concept implementation of the extension for the
GHC compiler, which is briefly described in the last part of this thesis.

Keywords: Haskell, type classes, maintainability, default superclass instances

Contents

Introduction 4
Motivation . 4
Structure of the thesis . 5

1 The Haskell Language Description 6
1.1 Program Structure . 6
1.2 Lexical Structure . 7

1.2.1 Comments . 7
1.2.2 Identifiers and Operators . 8
1.2.3 Literals . 8
1.2.4 Layout . 9

1.3 Expressions . 9
1.3.1 Error Handling . 9
1.3.2 Variables, Constructors and Operators 9
1.3.3 Function Application and Lambda Abstraction 9
1.3.4 Conditionals . 10
1.3.5 Let Expressions . 10
1.3.6 Case Expressions . 10
1.3.7 Do Notation . 10
1.3.8 Pattern Matching . 11

1.4 Declarations and Bindings . 11
1.4.1 Kinds . 11
1.4.2 User-defined Data Types . 12
1.4.3 Type Classes . 12
1.4.4 Nested Declarations . 14
1.4.5 Function and Pattern Bindings 14

1.5 Modules . 15
1.6 Predefined Types and Classes . 16

1.6.1 Data Types . 17
1.6.2 Classes . 17

1.7 Compiler Pragmas . 19
1.8 Static Semantics . 20

2 Maintainability Problem 26
2.1 Altering Type Class Hierarchy . 26
2.2 Currently Possible Solutions . 28

2.2.1 Functor – Applicative – Monad 28
2.2.2 Subclass to Superclass Instance 28

1

2.2.3 The Strathclyde Haskell Enhancement 29
2.3 Design Goals of Language Extension 29

3 Previous Proposals 31
3.1 Default Superclass Instances by GHC 31

3.1.1 Our Conclusion . 32
3.2 Class Alias Proposal by John Meacham 33

3.2.1 Our Conclusion . 34
3.3 Superclass Defaults . 34

3.3.1 Our Conclusion . 35
3.4 Class System Extension Proposal . 36

3.4.1 Conclusion . 37

4 Language Extension Proposal 38
4.1 Language Extension Features . 38

4.1.1 Default Instances . 38
4.1.2 Default Method Implementation 40
4.1.3 Class Aliases . 41

4.2 Our Proposal . 43
4.3 Superclass Default Instances . 45

4.3.1 Syntax of the Extension . 45
4.3.2 Semantics of the Extension 47

4.4 Class Aliases . 50
4.4.1 Syntax . 50
4.4.2 Relation to The Superclass Default Instances 50

5 Relation to the Language Platform 52
5.1 Relation to the Existing Language Extensions 52

5.1.1 Multi-parameter Type Classes 52
5.1.2 Default Method Signatures 53
5.1.3 Functional Dependencies . 53
5.1.4 Flexible Instances and Undecidable Instances 53

5.2 Comparison of Current Solutions to Default Superclass Instances . 53
5.2.1 Backward Incompatible Change in Hierarchy 53
5.2.2 Subclass to Superclass Instance 54
5.2.3 SHE . 54

5.3 Applications of Proposed Extension 54
5.3.1 Bind and Pointed . 54
5.3.2 Standard Numeric Classes . 55
5.3.3 Traversable . 56

6 Implementation 57
6.1 Compiler Architecture . 57

6.1.1 The Haskell Compiler . 58
6.2 Changes to the Compiler . 60

6.2.1 Extension Flag . 60
6.2.2 Parser . 60
6.2.3 Renamer . 61
6.2.4 Type Checker . 61

2

6.2.5 Desugaring . 62
6.3 Concluding notes . 62

Conclusion 63

Further work 64

References 67

A Lexical Structure 69

B Syntax of the Language 72

C Debugging Outputs 73
C.1 Parser Output . 73
C.2 Renamer Output . 74
C.3 Type Checker Output . 74

3

Introduction

Motivation

Haskell is a purely functional programming language for general-purpose applica-
tions. Haskell originated in the academic sector [17], thus the authors had—and
anyone who is working on the Haskell platform still has—an unique opportunity
to incorporate new and innovative features into the language [22]. The language
truly availed of the situation and programmers may now use to their advantage
e. g. higher order functions, non-strict semantics, algebraic data types, or static
polymorphic typing.

Besides the role the language played in the academic community for last two
decades it also found its way into the industry. Some of the biggest software com-
panies of the world of today have successfully made Haskell part of their techno-
logical stack. We may illustrate this advancement on the examples of companies
such as Google [31] and Facebook [24]. The position of the Haskell language plat-
form is also endorsed by professional development tools and environments that
has emerged, e. g., development environment and business analysis platform [5].

However, regardless the question whether it is in spite of the years of evolution
in academic community or whether it is a result of its origins in this community,
the Haskell language suffers from some issues that that hold back the evolution of
libraries [37] and bring problems into its day-to-day use. In this thesis we focus
on a particular instance of such problem – the design of type classes and long
term maintainability of type class hierarchies.

The Haskell type class system uses classes as a description of methods available
on types belonging to the class and instances as a mean of providing implemen-
tation of the methods for certain data type. Current design requires an instance
of class and data type to exist when there is an instance of any child class in the
hierarchy and the given data type. In a situation the classes are provided by a
library and instantiated on a custom data types by user of the library it makes if
difficult for the author of the library to introduce new parents to existing classes.
Such a change in a hierarchy is not backward compatible—it requires instances
that are not guaranteed to exist—and may case the source code not to compile
with a new version of the library.

The problem was identified back in 2006 by Jón Fairbairn[10]. In this thesis
we discuss several solutions and language extension proposals that attempt to
address the problem under our consideration. Despite the number of proposals
and the amount of time since Fairbairn’s realisation there is no general solution
to this problem yet. There is being deployed – contemporary to the writing of
this thesis – a fix to one particular instance of this problem, which we discuss in
section 2.2.1, by The Glorious Glasgow Haskell Compilation System (GHC). This

4

fix demonstrates some practical difficulties that the lack of general mechanism
causes.

In this thesis we attempt to analyse the current situation and, based on this
analysis, design a language extension that provides a general mechanism for solv-
ing an above stated problem. We also give a proof-of-concept implementation of
our extension in GHC.

Structure of the Thesis

The thesis is logically divided into several chapters. In the first chapter we bring
an overview of Haskell language. We deem this overview necessary as a brief
reference for further discussion on the class hierarchy problem and for proper
understanding of source code examples included in this thesis.

In the second chapter we give a general description of the problem and present
existing approaches and possible solutions. In the third chapter we present exist-
ing language proposals and shortly discuss every proposal.

The fourth chapter consists of our own language extension proposal that ad-
dresses conclusion made on previous existing proposals in the Chapter 4. We
dedicate the fifth chapter to the connection of our extension with existing lan-
guage framework. We comment on the relation to other language extensions and
compare our approach to the possibilities listed in the Chapter 2.

In the last chapter we give a short description of the implementation of our
extension. In the end of the thesis we provide a conclusion and list further work
objectives related to this work.

Note on Notation Throughout this thesis we use particular typographical
variants of standard Haskell operators. We believe this approach makes source
code examples more understandable. Following Haskell operators and functions

\ undefined forall >>= >> == ++

are typeset respectively:

λ � ∀ >>= ≫ ≡ ++
Other typographical conventions are described later when appropriate symbol

is first defined.

5

Chapter 1

The Haskell Language
Description

Haskell is a purely functional programming language. Haskell provides e. g. high-
er order functions, non-strict semantics, static polymorphic typing, and user de-
fined algebraic data types.

In this chapter we give a short description of the programming language. We
do not intend to cover the language in all its details but rather present only
a summary that is necessary for understanding the examples throughout the
thesis. We further elaborate only on the parts that are vital to the problem
under consideration, i. e., mostly the class system and instances. We omit any
description of the standard library in the form of the Prelude, or any libraries.

We use the The Haskell 2010 Language Report [22] (further simply referred
to only as The Report) as our primary source. The structure of this chapter also
mostly respects the structure given in The Report.

However, The Report gives only an informal semantics of the language. A
formal static semantics is presented by Hall et al. in [14], Jones and Wadler in
[19], later by Faxén in [11]. Some insight is also brought by Sulzmann and Wang
in [33]. We describe the most of the semantics only informally with the exception
of classes and instances in the Section 1.8. We consider the formal specification
in this case to be vital for further design of an extension and its implementation.

Where the technical description given in our thesis or The Report is not
sufficient for proper understanding of some concepts, we refer the reader to any
book on the Haskell language, e. g., the Real World Haskell [29] by O’Sullivan et
al.

1.1 Program Structure

The Haskell program is hierarchically structured in the terms of the following
constructs:

Modules are the topmost structures in a Haskell program. Formally, the pro-
gram is a set of modules with one distinctive module Main.

Declarations Every module is a set of declarations, described in the Section 1.4.

6

Expressions are used to form declarations. An expression denotes a value with
a static type.

Lexical structure captures a mean of representing the program and the afore-
mentioned syntactic structures.

Values and types are separated. The type system permits parametric poly-
morphism using a Hindley-Milner type system by Hindley [16], Milner [28] and
Damas [6]. The ad-hoc polymorphism is possible in the form of overloading with
the type classes. We discuss the ad-hoc polymorphism in the Section 1.8.

Errors are semantically equivalent to � (bottom). They cannot be technically
distinguished from nontermination.

There are six kinds of names used in Haskell programs:

• variables and constructors denoting values,

• type variables, type constructor, and type classes that related to the type
system, and

• module names identifying modules.

The identifiers reserved for variables or type variables begin with a lowercase
letter or an underscore, the other four types of identifiers begin with an uppercase
letter. An identifier cannot be used both as a type constructor and a class in the
same scope. Otherwise, an identifier may simultaneously denote multiple entities,
e. g., a module and a class.

1.2 Lexical Structure

In this section we focus only on several key lexical elements of the language. The
formal grammar is attached in the Appendix A.

1.2.1 Comments

The Haskell language provides two variants of comments. There are single line
comments that begin with two or more consecutive dashes and extended to the
following newline, e. g.:

-- This is a one line comment

There are also multiple-line comments that begins with ”{-” and are termi-
nated by ”-}”. These comments can be nested in arbitrary manner. Thus this is
a valid comment:

{-

This is a comment

{-

This is still a comment

-}

-}

7

Both types of comments are considered white space from the lexical point of
view. The second type of comments is also used for compiler pragmas, which are
described in the Section 1.7.

1.2.2 Identifiers and Operators

A Haskell identifier consists of a letter or an underscore followed by a sequence
of letters, digits, underscores, and single quotes. Identifiers are case sensitive.
Identifiers divide into two namespaces depending on the first character. Identifiers
beginning with a lowercase letter or an underscore are used for variables and type
variables. Identifiers beginning with an uppercase letter are used for constructors,
type constructors, classes, and modules. Following identifiers are reserved:

case class data default deriving do else

foreign if import in infix infixl

infixr instance let module newtype of

then type where _

Operator is a sequence of one or more special characters. Depending on first
character operators divide in two categories. In the case the first character is the
colon, the operator is a constructor. Otherwise, operator is an ordinary identifier.
Following operators are reserved:

.. : :: = \ <- -> @ ~ =>

In the following text we prefer following typographical variants of these oper-
ators respectively:

.. : ∶∶ = λ ← → @ ~ ⇒
All operators are infix. Operators and identifiers may be qualified, i. e.,

prepended with a module name.

1.2.3 Literals

The Haskell language allows several type of literals.

Integers are written either as ordinary decimals, in octal notation prefixed with
”0o” or ”0O”, or in hexadecimal notation prefixed with ”Ox” or ”0X”.

Floating point literals are always decimals in either decimal point notation or
in scientific notation using ”E” or ”e” and mantissa, e. g.:

3.145 217e-2 1618E-3

Character literals are denoted by single quote (’)

Strings are denoted by quotes ("). Escaping with backslash is possible. A string
literal is an abbreviations for list of characters.

8

1.2.4 Layout

The language allows semicolon and brace-free style of notation. In this case the
indentation is used instead. The Report [22] specifies the proper layout rules.
Informally, blocks are considered to be the source lines with the same level of
indentation. We give a short example of a function defined using the layout
mechanism and then the same function without the layout.

foo ∶∶ a → b → (b, a)

foo a b = swap makePair a b where

makePair a b = (a, b)

swap f a b = f b a

The same function desugared of layout:

;foo ∶∶ a → b → (a, b)

;foo a b = swap makePair a b where

{makePair a b = (a, b)

;swap f a b = f b a

}

In the second case the indentation does not convey any information.

1.3 Expressions

In this section, we describe the syntax and the semantics of the Haskell language
with respect to the problem under our consideration.

1.3.1 Error Handling

Errors during expression evaluation are denoted by �. An error and any program
nontermination are indistinguishable. Haskell specifies two functions that directly
cause an error in the evaluation:

error ∶∶ String → a

� ∶∶ a

A call to either of the functions terminates execution. Actual error message
is dependent on a particular implementation.

1.3.2 Variables, Constructors and Operators

Identifiers and operators can be used both in prefix and infix notation and can be
partially applied. It is possible to apply identifiers infix by enclosing the operator
with backtics, i. e. a ‘function‘ b. Operators can be used and partially applied
in prefix notation using section, i. e., notation (op) a b for prefix application
and notations (a op) b and (op b) a for partial application in first and second
operand respectively.

1.3.3 Function Application and Lambda Abstraction

Function application is written as exp1 exp2 and associates to the left, thus
parenthesis may be omitted. This also allows partial application.

9

Lambda abstractions are written as λ pat1 ...patn -> exp where pat1 to
patn are patterns. If the pattern fails to match, then the result is �.

Operators are infix applied with respect to the sections.

1.3.4 Conditionals

Haskell provides if conditional expression as many programming languages do,
with the exception that the else-clause is mandatory:

if exp1 [;] then exp2 [;] else exp3

The first expression exp1 is of the Boolean type. The other two expressions
have the same type which is also the type of the whole conditional statement.
Otherwise conditional statement results in an error. Semicolons are optional.

1.3.5 Let Expressions

Let expressions introduce nested, lexically scoped, mutually recursive set of dec-
larations of the general form:

let { d1, . . ., dn } in exp

Let expression is lazily evaluated, thus any error in declarations does not occur
until the expression is evaluated.

1.3.6 Case Expressions

Case expressions allow conditional evaluation among several alternatives. The
general form is:

case exp of

pat1 [∣ guard1,1, . . ., guard1,n] →exp1 [where decls1]

. . .
patn [∣ guardn,n, . . ., guardn,n] →expn [where declsn]

The guards and where clauses are optional. In the case the where clause is
present, it contains a set of ordinary declarations. The guards have the general
form of:

exp -- boolean guard

pat ← exp -- pattern guard

let decls -- local bindings

A case expression is evaluated by matching patterns pat1 to patn sequentially.
If a pattern matches, then the guarded expression is evaluated. Boolean guard
succeeds if the expression exp evaluates to True. Pattern guards succeeds if the
expression exp matches the pattern pat. Local bindings always succeed and intro-
duce names defined in decls. If no alternative succeeds then, the case expression
evaluates to �.

1.3.7 Do Notation

Do notation is only a more convenient syntax for monadic operations described
in the Section 1.6.2. We consider the following examples provided in The Report

10

to be descriptive enough. Assuming source code using Monad class operations >>=
and ≫:

putStr "x: " ≫
getLine >>= λl →
return (words l)

following do notation is equivalent:

do putStr "x: "

l ← getLine

return (words l)

Note that this transformation can by carried as a source code transformation.

1.3.8 Pattern Matching

Pattern matching is used as a part of other language constructs. Pattern consists
of an expression matched against value. The match occurs on the structure of
the expression and the value, and results in three cases: it either fails, succeeds,
or diverges, i. e., formally results in �. In case the match succeeds the variables
of the pattern are bind to the values accordingly.

Patterns occur in two variants, as refutable patterns and as irrefutable patterns
denoted by ~(. . .). Matching of refutable patterns is strict and matching against
� diverges. Matching irrefutable patterns is lazy and always succeeds. In later
case variable bindings are resolved when the irrefutable pattern is evaluated.

1.4 Declarations and Bindings

In this section we describe the syntax and the semantics of language declarations.
The declarations are divided into three categories. We describe user-defined data
types, type classes and related declarations, and nested declarations. Separately
from these three we describe the kind mechanism.

1.4.1 Kinds

Kinds ensure the validity of type expressions. Kinds are constructed in the fol-
lowing way:

∗ is a kind (1)
κ1 → κ2 is a kind ⇐⇒ κ1 and κ2 are kinds (2)

The first case (1) is the kind of nullary type constructors, e. g., built-in types
Integer and Char or user-defined data types without type variables. The other
case (2) is the composite kind of types that take a type of the kind κ1 and return
a type of the kind κ2. Normally, kinds are entirely implicit and not visible to the
programmer. However there are language extension which allow direct access to
the kind system, e. g. Kind polymorphism extension [13].

The exact kind inference mechanism is described in The Report [22].

11

1.4.2 User-defined Data Types

User-defined data types occur in three variants: algebraic data types as data

declarations, renamed data types as a newtype, and type synonyms as type

declarations.
An algebraic data type has the form

data cx ⇒ T u1 . . . uk =K1 t1,1 . . . t1,k1 ∣ . . . ∣Kn tn,1 . . . tn,kn

where cx is a context and K1 to Kn are new data constructors. The declaration
introduces a new type with the type constructor T . The type has a kind κ1 →
. . .→ κk → ∗ where κ1 to κk are kinds of the type variables u1 to uk respectively.

Optionally, it is possible to use labels for the fields of a data type. Then the
syntax of the data type is

data Foo a = Foo { bar ∶∶ a, baz ∶∶ a }

and two field selectors are brought into the external scope of the data type:

bar ∶∶ Foo a → a

baz ∶∶ Foo a → a

The field identifiers must be unique within the scope. A data type with labeled
fields is called a record. It is still possible to use the constructor of a record as an
ordinary data constructor and the fields will be associated positionally.

The type synonym has a form

type T u1 . . . uk =t
and introduces a new type with a constructor T . The new type (Tt1 . . . tk)

is equivalent to the type t[t1/u1, . . . , tk/uk] where type variables are substituted.
The type synonym constructor must be fully applied. The type synonym is a
syntactic construct and is interchangeable for the appropriate type everywhere
except for instance declaration.

A declaration of the form

newtype T u1 . . . uk =N t

brings a new data type renaming into the scope. A newtype construct creates
a new type, with type constructor N , which is different from original type, unlike
the type synonyms. The type must be constructed with the type constructor and
may be pattern matched upon.

1.4.3 Type Classes

A type class declaration introduces a new class and the operations on the type
associated with the class through an instance. The declaration must occur as a
top level declaration with the syntax as shown in the Figure 1.1.

Thus in general the class declaration has the form

class cx ⇒ C u where cdecls

where the context cx specifies the superclasses of C, u is the type variable of
the type which is an instance of C, and cdecls are class declarations. Superclass
relation must be acyclic. The declarations in cdecls part are:

12

topdecl → class [scontext =>] tycls tyvar [where cdecls]
scontext → simpleclass

∣ (simpleclass1 , . . . , simpleclassn) (n ≥ 0)
simpleclass → qtycls tyvar
cdecls → { cdecl1 ; . . . ; cdecln } (n ≥ 0)
cdecl → gendecl

∣ (funlhs ∣ var) rhs

Figure 1.1: Class declaration syntax

topdecl → instance [scontext =>] qtycls inst [where idecls]
scontext → simpleclass

∣ (simpleclass1 , . . . , simpleclassn) (n ≥ 0)

simpleclass → qtycls tyvar

inst → gtycon
∣ (gtycon tyvar1 . . . tyvark) (k ≥ 0 , tyvars distinct)
∣ (tyvar1 , . . . , tyvark) (k ≥ 2 , tyvars distinct)
∣ [tyvar]
∣ (tyvar1 -> tyvar2)

idecls → { idecl1 ; . . . ; idecln } (n ≥ 0)
idecl → (funlhs ∣ var) rhs

∣ (empty)

Figure 1.2: Instance declaration syntax

• A new method declaration that is visible in the external scope of the class.
The method name must be unique within the scope.

• A fixity declaration of a class method.

• A default class method implementation for any of the class methods. This
implementation is used when no binding is given in an instance declaration.

Instances of a particular class and a given type are introduced by syntactic
construct described in the Figure 1.2.

Assume the above mentioned class C. Then the general corresponding in-
stance is

instance cx′ ⇒ C (T u1 . . . uk) where idecls

where the type (Tu1 . . . uk) must by a type constructor applied to type vari-
ables and it must not be a type synonym. The type variables u1 to uk must be
all different.

13

gendecl → vars :: [context =>] type (type signature)
∣ fixity [integer] ops (fixity declaration)
∣ (empty declaration)

ops → op1 , . . . , opn (n ≥ 1)
op → varop ∣ conop
vars → var1 , . . . , varn (n ≥ 1)
fixity → infixl ∣ infixr ∣ infix

Figure 1.3: Nested declarations syntax, part 1

The declaration may contain bindings for the methods of the class C. Some
or all of the bindings may be omitted – in such case the default class method is
used, if present. Otherwise, computation results in �.

Multiple instances of the same type and class are prohibited. The type and
class of the instance must also have the same kind as the instantiated type. The
instance must also satisfy context constraints implied by the superclasses of the
corresponding class.

1.4.4 Nested Declarations

There are three more language constructs – type signatures, fixity declarations,
and function and pattern bindings. The syntax of these constructs is described
in figures 1.3 and 1.4.

All three constructs may be used both in the top level of the module and as
a nested declaration.

Type signatures specify types of variables that may refer to the context. One
signature may specify the type of multiple variables. Every variable in the type
signature must have a binding in the scope of the type signature and every signa-
ture must be uniquely given; multiple signature declarations for one variable are
invalid. If the type signature is provided, then the variable is treated as having a
principal type.

A fixity declaration gives the precedence and associativity of one or more
operators. The integer in declaration must be in the range 0 to 9 where 0 binds
the least and 9 the most tight. The fixity keywords infix, infixl, and infixr

have the meaning left-associative, right-associative, and non-associative binding
respectively. The operators in operator list ops may be both variables and data
type constructors.

1.4.5 Function and Pattern Bindings

The static semantics of function and pattern bindings is specified by The Report
[22] as an application of Hindley-Milner type inference. However, there is a
difference in generalization of type variables and Haskell is more restrictive in the
generalization step. This is called the monomorphism restriction.

A binding b1 is called dependent on a binding b2, if b1 contains a free identifier

14

decl → (funlhs ∣ pat) rhs (function or pattern binding)

funlhs → var apat { apat }

∣ pat varop pat
∣ (funlhs) apat { apat }

rhs → = exp [where decls]
∣ gdrhs [where decls]

gdrhs → guards = exp [gdrhs]

guards → | guard1 , . . . , guardn (n ≥ 1)

guard → pat ← infixexp (pattern guard)
∣ let decls (local declaration)
∣ infixexp (boolean guard)

Figure 1.4: Nested declarations syntax, part 2

that has no type signature and is bound by b2 or if this property holds tran-
sitively. A minimal set of mutually dependent bindings is called a declaration
group. A declaration group is called unrestricted if and only if every variable in
the group is bound by a function binding, or a pattern binding of a form pattern
= expression with an explicit type signature. Otherwise, the declaration group
is called restricted. A type variable a is considered monomorphic in the type t if
and only if it is free in the type.

The additional monomorphism restriction besides Hindley-Milner type infer-
ence states that

• the constrained type variables of a restricted declaration group may not be
generalized, and

• the monomorphic type variables that remain when the types of the entire
module are inferred are ambiguous.

Any ambiguous types are resolved by the defaulting mechanism. A set of
default types t1 to tn in the scope of the module is introduced by the language
construct

default(t1, ... , tn)

and the first type that is an instance of all the classes of ambiguous variable
is used.

1.5 Modules

A module is a collection of top level declarations – e. g. values, data types, classes,
and instances. An environment of a module is created by a set of imports that

15

module → module modid [exports] where body
∣ body

body → { impdecls ; topdecls }

∣ { impdecls }

∣ { topdecls }

impdecls → impdecl1 ; . . . ; impdecln (n ≥ 1)
topdecls → topdecl1 ; . . . ; topdecln (n ≥ 1)

impdecl → import [qualified] modid [as modid] impspec

exports → export1 ; . . . ; exportn (n ≥ 1)

Figure 1.5: Module structure

bring top level declarations of other module into the scope. A module specifies
which of the top level declarations in its scope to export.

A Haskell program is a set of modules. One of the modules must be called
Main and must export the value main, which is the value of the program.

The syntax of a module structure is described by the Figure 1.5.
A module begins with the header module, which specifies the module name

and a list of top level declarations to be exported. The header of the module may
be omitted and the header ”module Main(main) where” is assumed instead.

The export list exports may contain top level declarations or module names of
imported modules. If the export list is omitted only the top level declarations in
the module itself are exported. The proper description of the export list is given
in The Report.

The import declaration brings exports of another module into the scope. Im-
ports may be qualified and aliased. Qualified import brings only qualified names
of entities into the scope, i. e., the names prefixed with the name of imported
module. Aliased imports allow to import another module with local alias and
qualified names are altered accordingly.

Instance declarations do not occur explicitly in export lists. All the instances
in the scope of the module are always exported.

1.6 Predefined Types and Classes

In this section we describe Haskell types and classes we consider important for
understanding source code examples in this thesis. Not all the types and class-
es are described in detail. Such description is given in The Report or in class
documentation, e. g. Traversable [26].

16

1.6.1 Data Types

The Report presents standard data types as Haskell definitions although some of
these definitions are not syntactically valid but convey only the meaning of the
type. We do not consider important for the purpose of this thesis to distinguish
built-in types from declared types.

Booleans

Boolean type is an enumeration of truth values:

data Boolean = False ∣ True

Lists

List are data types with special syntax ”[]”.

data [a] = [] ∣ a : [a]

Besides the special syntax lists behave as ordinary data types.

Characters and Strings

Character type Char is an enumeration of characters. Type String is a list of
characters. Lexical syntax of string literals described in 1.2.3 is optional.

Unit

The unit data type is a denoted (). Members of the data type are nullary
constructor () and �.

Function

Functions are data types with special syntax (→) that cannot be constructed
directly. Functions are constructed from already existing functions via lambda
abstraction and application.

1.6.2 Classes

The Report gives a definitions of standard classes and provides a Figure 1.6 with
hierarchy and instances of these classes.

Eq

The Eq class provides equality (≡) and inequality (≠) methods.

Ord

The Ord class is a class of linearly ordered types. It provides the compare function
and the <, ≤, >, ≥ operators.

17

Eq
All except IO, (->)

Ord
All except (->)

IO, IOError

Num
Int, Integer,

Float, Double

Show
All except

IO, (->)

Real
Int, Integer,

Float, Double

Fractional
Float, Double

Enum
(), Bool, Char, Ordering,

Int, Integer, Float,

Double

RealFrac
Float, Double

Floating
Float, Double

Integral
Int, Integer

RealFloat
Float, Double

Read
All except

IO, (->)

Bounded
Int, Char, Bool, ()

Ordering, tuples

Monad
IO, [], Maybe

Functor
IO, [], Maybe

Figure 1.6: Standard Haskell classes [22]

Read and Show

The Read and Show classes are used for data types that can be converted from
and to strings.

Functor

The Functor class is a class of data types that can be mapped over. The class
provides method fmap. Class instances should satisfy the functor laws:

fmap id = id

fmap (f ○ g) = fmap f ○ fmap g

Applicative functor

The Applicative functor class is a subclass of the Functor which allows con-
struction of functor value and application of encapsulated values of adequate
types through methods pure and (<$>) respectively:

Monad

The Monad class is used with the do notation. The class defines methods:

≫ >>= return fail

The class instances should satisfy the monadic laws:

18

pragma → {-# prgdecl #-}

prgdecl → INLINE qvar
∣ NOINLINE qvar
∣ SPECIALIZE spec1 , . . . , speck (k ≥ 1)
∣ LANGUAGE lang1 , . . . , langk (k ≥ 1)

spec → vars :: type

lang → Haskell2010, . . .

Figure 1.7: Pragma syntax

return a >>= k = k a

m >>= return = m

m >>= (λx → k x >>= h) = (m >>= k) >>= h

Standard numeric classes

The Report defines a set of numeric classes with mnemonic names. The classes
are Num, Real, Fractional, Integral, RealFrac, Floating, and RealFloat. We
do not list methods of the classes.

Foldable

The Foldable class is a class by Ross Paterson [30] of data structures that can
folded into single value.

Traversable

The Traversable is a class by Conor McBride and Ross Paterson [26] of data
structures, which can be traversed from left to right, performing an action on
each member. It is the subclass of classes Functor and Foldable.

1.7 Compiler Pragmas

Compilers may support compiler pragmas, which are used to give additional in-
formation to the compiler. Lexically the pragma appears as a comment. The
syntax is shown in the Figure 1.7.

The Report specifies following pragmas:

INLINE and NOINLINE pragmas are used to control compiler inlining.

SPECIALIZE instructs compiler to use specialized versions in order to avoid
inefficiencies when dispatching overloaded functions.

19

CE,{u ∶ α}, h context⊢ cx ∶ θ
IE′sup = vs ∶̃ θ

IEsup = ∀α.Γα ⇒̃ IE′sup
⟨CE,TE ∪ {u ∶ α},DE⟩ sigs⊢ sigs ∶ V Esigs

i ∈ [1, n] ∶ GE, IE ⊕ {vd ∶ Γα}, V E method⊢ bindi ↝ fbindi ∶ V Ei

V E1 ⊕ . . .⊕ V En ⊆ V Esigs

α = uκ
Γ = Bκ

CE′ = {B ∶ ⟨Γ, h, vdef , α, IE′sup⟩}
V E′ = ∀α.Γα⇒̃cV Esigs

GE = ⟨CE,TE,DE⟩
Jdict,vs,vdef fresh

GE, IE,V E
ctDecl⊢ class cx ⇒ B u where sigs; bind1; . . . ; bindn

↝
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

data Γ̂ = Jdict{ÎE′sup, V̂ Esigs,};

vdef ∶ (∀α.Γ̂α → Γ̂α)
= Λα.λvd ∶ (Γ̂α).Jdictα{fbind1, . . .fbindn}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭∶ ⟨CE′,{},{}, IEsup, V E′⟩
Figure 1.8: Semantics of class declarations

LANGUAGE is a file header pragma that allows a particular language exten-
sion. It is up to implementation which extensions are supported, only the
Haskell2010 extension is required by The Report.

1.8 Static Semantics

In this section we give a description of static semantics of classes and interfaces
as provided by Faxén in [11]. We do not provide the semantics of the rest of the
language.

The static semantics of Haskell is provided as a source-to-source translation.
The original language, which is syntactically described in this chapter, is referred
to as the source language, and the language, in which the translation results, is
referred to as the target language. The target language is a simplified variant of
the source. For the purpose of this thesis we assume it to be the source language
without the support of class and instance declarations.

The ad-hoc overloading is implemented by explicit dictionary passing. An
overloaded method with type ∀ᾱ.θ⇒ τ will be translated to a function with type
∀ᾱ.θ̂ → τ . The θ̂ is a type of a dictionary tuple for the context θ.

A class declaration of a class Γ is translated to an algebraic data type declara-
tion for a dictionary Γ̂. An instance declaration is translated into a binding for a
dictionary function. The function constructs a dictionary for the given instance.

The are several environments used for carrying the information about, e.
g., types, classes and instances. An environment is a set of pairs of the form
name : information. There are following operations on environments:

• dom(E1) = {name∣name ∶ information ∈ E1} is the set of names

20

i ∈ [1, n] ∶ GE sig⊢ sigi ∶ V Ei

GE
sigs⊢ sig1, . . . , sign ∶ V E1⊕, . . . ,⊕V En

KE = kindsOf(TE,CE)
{u1 ∶ κ1, . . . , uk ∶ κk} =min{KE′∣KE ⊕KE′ kctx⊢ cx ∧KE ⊕KE′ ktype⊢ t ∶ ∗}

CE,TE ⊕ {u1 ∶ uκ11 , . . . , uk ∶ uκkk }, context⊢ cx ∶ θ
TE ⊕ {u1 ∶ uκ11 . . . , uk ∶ uκkk }, type⊢ t ∶ τ

fv(cx) ⊆ fv(t)
{u∣u ∈ dom(TE)} ⊆ fv(t) ∖ fv(fx)

⟨CE,TE,DE⟩ sig⊢ v ∶∶ cx⇒ t ∶ {v ∶ ⟨v,∀uκ11 . . . uκkk .θ⇒ τ⟩}
Figure 1.9: Semantics of type signatures

• E1 ⊕E2 is E1 ∪E2 assuming that dom(E1) ∩ dom(E2) = ∅
• kindsOf(E1,E2) is an environment that has the same kind information as

the union of E1 and E2

There are several environments referred to:

• CE is the class environment that contains information about type classes.
The items of the environment have the general form

C ∶ ⟨Γ, h,xdef, IEsup⟩

where Γ is the name of the class, h is an integer used to express acyclicity
of the class hierarchy, xdef is name of a default dictionary for the class, α
is the class variable, and IEsup is an instance environment described later
in this list.

• TE is the type environment carrying the information about the type con-
structors and type variables.

• DE is the data constructor environment that describes data constructors
and named fields.

• IE is the instance environment. It contains information on dictionary vari-
ables bound to dictionaries for instances of particular classes. There is a
special notation connected with this environment – ∀ᾱ.θ⇒̃IE is a short-
hand for {x ∶ ∀ᾱ.θ⇒ Γ τ ∈ IE}

• V E is the variable environment. This environment consist of information
about in-scope variables, regardless the source of the information, the infor-
mation may come from algebraic data type declarations, class declarations
and ordinary bindings.

There are two more operations connected to dictionaries and environments.
The operator ∶̂ constructs dictionary patterns from a tuple of dictionary variables

21

i ∈ [1, n] ∶ CE,TE,h class⊢ classi ∶ Γi τi
CE,TE,h

context⊢ (class1, . . . classn) ∶ Γ1 τ1, . . . ,Γn τn

C ∶ ⟨Γ, h′, x, α, IEsup⟩ ∈ CE
h′ < h

TE,
type⊢ u t1 . . . tk ∶ τ

CE,TE,h
class⊢ C (u t1 . . . tk) ∶ Γ τ
Figure 1.10: Semantics of class and instance contexts

(v1, . . . , vn) (also referred to as vs) and the context θ. The other operator ∶̃ makes
an instance environment from vs and θ. The set fv(cx) for some context cs is a
set of free variables of that context.

The source to source translation is described by a set of inference rules that

• check the program is well-formed,

• specify a translation into target language, and

• derive some information about the program in the form of environments.

The judgments have the general form

environment ⊢ source↝ target ∶ derived information

Class declarations

A class declaration is translated to an algebraic data type and a function. The
data type is a type of dictionaries for the class and the function constructs a
dictionary that contains the default methods of the class. The inference derives
an information about superclasses and types of the default methods. The appro-
priate inference rule is described by Figure 1.8.

The class inference rule depends on inference rules context for superclass con-
text, sigs for type signatures, and method for method bindings.

Type signatures

The Figure 1.9 gives judgment forms for type signatures. Type signature inference
depends on kind inference kctx and type inference type rules. We do not provide
these rules as we do not consider them vital for understanding the semantics of
classes and instances. The rules may by looked up in [11].

Contexts

The Figure 1.10 shows inference rules for validating class and instance contexts.
The integer h ensures the acyclicity of class hierarchy.

22

i ∈ [1, n] ∶ GE, IE,V E instDecl⊢ instDecli ↝ bindsi ∶ IEi

GE, IE,V E
instDecls⊢

⎧⎪⎪⎪⎨⎪⎪⎪⎩

instDecl1;
. . . ;
instDecln;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
↝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

binds1;
. . . ;
bindsn;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∶ IE1 ⊕ . . .⊕ IEn

T ∶ χ ∈ TE
i ∈ [1, k] ∶ αi = uκii

C ∶ ⟨Γ, h, xdef , α, IEsup⟩ ∈ CE
CE,{u1 ∶ α1} ⊕ . . .⊕ {uk ∶ αk}, context⊢ cx ∶ θ

i ∈ [1,m] ∶ GE, IE ⊕ vs̃∶θ, V E method⊢ bindi ↝ fbindi ∶ V Ei
V Eops[χ α1 . . . αk/α] = V E1 ⊕ . . .⊕ V Em

(∀α.Γ α⇒c V Eops) ⊆ V E
(x1, . . . , xn) ∶̃ θsup = IEsup

IE ⊕ vs ∶̃ θ dict⊢ (e1, . . . , en) ∶ θsup[χ α1 . . . αk/α]
GE = ⟨CE,TE,DE⟩

IEinst = {vdict ∶ ∀α1 . . . αk.θ⇒ Γ(χ α1 . . . αk)
vs,vdict fresh

GE, IE,V E
instDecl⊢ instance cx⇒ C (T u1 . . . uk)where bind1; . . . ; bindm

↝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vdict;∀α1, . . . , αk.θ̂ → Γ̂ (χ α1 . . . αk)
= Λα1, . . . , αk.λvŝ∶θ.
let rec vd ∶ Γ̂ (χ α1 . . . αk)
= (xdef (χ α1 . . . αk)vd){
x1 = e1; . . . ;xn = en;
fbind1; . . .fbindn

} in vd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∶ IEinst

Figure 1.11: Semantics of instance declarations

23

GE, IE ⊕ vs̃∶θ, V E bind⊢ bind↝ bind ∶ {x ∶ ⟨ , τ⟩}
{α1, . . . , αk} ∩ (fv(IE) ∪ fv(V E)) = ∅

vs fresh

GE, IE,V E
method⊢ bind↝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = Λ α1 . . . αk.λvs ∶̂θ.
let bind′

in unQual(x)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∶ {x ∶ ⟨x,∀α1 . . . αk.θ⇒ τ⟩}

Figure 1.12: Semantics of method bindings

Instance declarations

An instance declaration is translated into a binding for a dictionary function,
which constructs a dictionary for the declared instance. An instance environ-
ment with yielded information is returned. The rules for instance inference are
described in the Figure 1.11. The instance inference depends on dictionary con-
struction by rule dict.

The dictionary function produced by this translation also construct dictio-
naries for the respective instance of the immediate superclasses. These are listed
in IEsup. The dictionary function takes a tuple of dictionaries for a particular
instance of the instance context and returns an appropriate dictionary.

Method bindings

Method bindings described by Figure 1.12 are used both in class declarations
and instance declarations. Method bindings depend on general bind inference
rule that is common to all bindings within the language. We do not list the bind
rule explicitly and it may be found in [11].

Dictionary construction

Dictionary construction judgments consist of four different inference rules, which
are listed in the Figure 1.13. Each rule refers to en expression e that evaluates
to the required dictionary tuple, to the Γi that is the class of the dictionary, and
to the types τi of the required instances.

The DICT TUPLE rule builds a dictionary tuple, the DICT VAR rule encloses
a variable v, the DICT INST rule composes an instance dictionary from partial
dictionaries, and the DICT SUPER rule extracts a dictionary for a superclass.

24

DICT TUPLE
i ∈ [1, n] ∶ IE dict⊢ ei ∶ Γi τi

IE
dict⊢ (e1, . . . , en) ∶ (Γ1 τ1, . . . ,Γn τn)

DICT VAR
v ∶ Γ(α τ1 . . . τk) ∈ IE
IE

dict⊢ v ∶ Γ(α τ1 . . . τk)

DICT INST

x ∶ ∀α1 . . . αk.θ⇒ Γ(χ α1 . . . αk) ∈ IE
IE

dict⊢ e ∶ θ[τ1/α1, . . . , τk/αk]
IE

dict⊢ x τ1 . . . τk e ∶ Γ(χ τ1 . . . τk)

DICT SUPER
x ∶ ∀α.Γ′ α⇒ Γ α ∈ IE IE

dict⊢ e ∶ Γ′ τ
IE

dict⊢ x τ e ∶ Γ τ
Figure 1.13: Semantics of dictionary construction

25

Chapter 2

Maintainability Problem

In this chapter we describe a long term maintainability problem of the current
type classes design. We address changes in the class system necessary to remove
this problem and demonstrate the changes on examples of concrete type classes.

We also bring an overview of current possible solutions and workarounds to
this problem. With the general description of the maintainability problem and
particular examples of the solutions in mind, we discuss design goals of a language
extension that would address the issue.

2.1 Altering Type Class Hierarchy

Type classes are one of the core features of the language, which is heavily used [39].
They also enable programmers to experiment with new approaches to data ac-
cess and abstraction, e. g. the popular Lens library by Edward Kmett [21].
However, any change in a type class hierarchy requires rewriting the appropriate
instance implementations. Therefore any change to the hierarchy breaks back-
ward compatibility and thus poses significant problem to maintainability and
hinders development of Haskell libraries.

It is often desirable to change class hierarchy for various reasons. In some
situations the proper class relation is not understood at first and a superclass
of some class is missing as is the case with Monad class 2.2.1. The appropriate
change is being incorporate into standard library. However the process is not
straightforward and brings some obstacles as we discuss bellow.

In other situations new concepts emerge and a class hierarchy needs to be
refactored. John Wiegly proposed [38] to add a Semigrupoid class as a superclass
of Monoid class. In the subsequent discussion Edward Kmett pointed out that
this change would break existing code due to missing instances of Semigrupoid
where the instance of Monoid already exists.

Other example is the Traversable class. It’s documentation [26] specifies
the behavior of instances of superclasses Functor and Foldable. Although the
behavior is documented, the instances still has to be written manually and may
result in erroneous code in case the violates the equivalence of, e. g., fmap to
fmapDefault. It is not obvious whether this can be solved solely by refactoring
the hierarchy or whether further changes are required. We address this issue in
the Section 5.3.3.

As a last but not least example of standing problem regarding existing classes

26

we give the Standard Numeric Classes. It has been argued e. g. by [36] that the
standard set of numeric classes is limited in extensibility and is flawed e. g. in
respect to the semantics of operations and in superfluous superclasses. However,
the change in the hierarchy of these classes would break existing code.

In this section we analyze possible changes to a hierarchy of classes and state
goals for a solution that deals with the problem.

In general we have identified several situations that, as we believe, may occur
in the process of altering the hierarchy. Assume an arbitrary non-empty class
hierarchy. Then the situations may be:

• Add a new class to the hierarchy. The class may be either standalone or
connected with the rest of the hierarchy as a subclass or a superclass.

• Remove an existing class from the hierarchy. Yet again the class may be
either standalone or connected to the hierarchy.

• Add a new superclass dependency or remove existing one.

• Refactor existing classes by either merging more existing classes into one or
by dividing an existing class into more new classes. The new classes may
be in various relations as subclasses and superclasses.

• Move a method from a subclass to a superclass or the other way around.

• Add a new class method.

In our opinion these situation cover all plausible changes to a class hierarchy.
It is possible to manipulate with both classes and methods in the classes. All the
situations composed of six separate actions A:

a1 Add a class without methods and superclasses

a2 Remove a class without methods and superclasses

a3 Make an existing class a superclass of another existing class

a4 Remove a superclass constraint from an existing class

a5 Add a new method to some class

a6 Remove an existing method from some class

Clearly it is possible to compose above stated situation from the set of ac-
tions A. Assume the first situation. By using action a1 for the class, action a5
repeatedly for any method of the class and action a3 for any superclass or any
class, to which it is a superclass, we get the desired situation. We do not provide
compositions for the rest of the situations as we deem the process straightforward.
This observation allows us to state a following theorem:

Theorem 1. (Altering a Haskell class hierarchy)
It is possible to compose any change in a Haskell class hierarchy only by actions

from the set A

27

Proof. We will model a Haskell class hierarchy as a directed acyclic graph with
a set of labels for every vertex where classes are vertices, superclass relations
are edges from subclass vertex to superclass vertex, and methods are labels on
vertices.

Assume two arbitrary hierarchies ι1 and ι2. Assume the notation V (ιi), E(ιi),
and L(ιi) for a set of vertices, edges and labels of vertices respectively.

Then use actions from A on ι1; use a6 on L(ι1)∖L(ι2) to remove labels, use a4
on E(ι1) ∖E(ι2) to remove superclass constraints and use a2 on V (ι1) ∖V (ι2) to
remove classes; use a1 on V (ι1) V (ι2) to add new classes, use a3 on E(ι1) E(ι2)
to add constraints, and use a5 on L(ι1) ∖ L(ι2) to add labels. This sequence of
operations transforms the graph ι1 into the graph ι2.

2.2 Currently Possible Solutions

In this section we describe various approaches that emerged in order to solve above
stated problem. We discuss fitness of particular solutions as they tend to require
some additional language extensions or adjustment to the library infrastructure.

2.2.1 Functor – Applicative – Monad

Haskell does heavily use the Monad class 1.6.2, which can be demonstrated on
tight incorporation into the language through the do notation. Although it is
known that every Monad is, in principle, a subclass of Applicative [12], it is not
true so as current in the standard Prelude.

Changing the Monad class into subclass of Applicative would break any client
code that uses the class and does not instantiate Applicative.

The GHC compiler takes three step process [12, 2]. In the first step the
compiler was adjusted in the way that it deprecates code that does instantiate
Monad, but does not provide an instance of Applicative.

In following steps the deprecated code will be fixed in libraries maintained by
Haskell community and finally the superclass dependency will be added to the
Monad.

This procedure is in principle – with some generalised support of deprecation
of missing instances from a compiler – possible with any such change in a class
hierarchy. Though, it requires manual effort and some transitional period of time
for users of the affected library to implement missing instances.

2.2.2 Subclass to Superclass Instance

A superclass instance may be provided, in some cases, from a subclass instance
when we allow the FlexibleInstances and UndecidableInstances. Assume
following simplified classes Functor’ and Monad’:

{-# LANGUAGE FlexibleInstances #-}

{-# LANGUAGE UndecidableInstances #-}

class Functor’ f where

fmap’ ∶∶ (a → b) → f a → f b

28

class Functor’ m ⇒ Monad’ m where

return’ ∶∶ a → m a

(>>==) ∶∶ m a → (a → m b) → m b

With relaxes conditions on instances of the language extension following is a
valid instance:

instance Monad’ m ⇒ Functor’ m where

fmap’ f a = a >>== (return’ ○ f)
Now the client code may instantiate only the Monad class:

data Id a = Id a deriving (Show)

instance Monad’ Id where

return’ a = Id a

(Id a) >>== f = f a

useFmap = fmap’ (+1) (Id 5)

However, the GHC documentation [13] describes some problems that may
arise with the two extensions, e. g., compiler may not be able to resolve the
instance.

2.2.3 The Strathclyde Haskell Enhancement

Connor McBride has implemented as a part of his The Strathclyde Haskell En-
hancement[25] (SHE) a limited version of Default Superclass Instances proposal
by Jón Fairbairn [10].

The implementation is carried through preprocessor and limitations include,
e. g., resolving the default instances only within the scope of one module. We
consider it rather a proof of concept. However, this proof of concept together
with subsequent improvements to the Fairbairn’s idea, which we discuss in the
Chapter 3, shows it is a viable approach.

2.3 Design Goals of Language Extension

We have described a problem with the current design of Haskell type classes and
presented different solutions that are available. We believe that neither of the
solutions addresses the problem in a sufficient manner.

The first approach (2.2.1) is not straightforward and requires manual adap-
tation of existing code. The second approach (2.2.2) requires some additional
language extension that may cause compiler to reject the instances.

We consider McBride’s SHE the most viable. In our opinion the main draw-
back – the limitation to one module – is caused by the fact the enhancement is
implemented as a preprocessor. We believe a language extension will perform
better and will also mitigate any issues of previous two approaches.

Based on these observations we state that any language extension that aims
to solve above given problem should address following goals:

29

• The extension should allow changes to a class hierarchy where the changes
are plausible1.

• The extension should not break any existing code, i. e., the changes should
be backward compatible.

• The extension should not introduce any problems to the program compila-
tion, e. g. undecidability of instances.

• The extension should not suffer from arbitrary limitations, e. g., limitation
to just one module.

1E. g., it is not plausible change to remove a class from a hierarchy when the class is still in
use by any source code.

30

Chapter 3

Previous Proposals

In this section we compare different language extension proposals for type class
extensions which appeared in Haskell community and attempted to solve the
given problem. These were often presented only in form of a mailing list post,
Haskell wikipedia entry, or similar and rendered syntax only by examples and
semantics only by informal description.

Since some features are shared among different proposals we do not discuss
them thoroughly with each proposal but give only summary overview of the pro-
posal. We provide this discussion in next chapter when presenting our proposal.
This chapter is solely for the purpose of giving an overview of existing proposals
and presenting underlying ideas.

There has been discussion on haskell-prime mailing list dating back to August
2006 on availability of relationship between Functor and Monad classes in Haskell,
resulting in an idea of giving default instance declarations in class declarations by
Jón Fairbairn[10]. Since then several proposals which we discuss below appeared.

3.1 Default Superclass Instances by GHC

Glasgow Haskell Compiler presents proposal [8] of a language extension based
on original Fairbairn’s idea combined with John Meacham’s Class Alias proposal
[27] and Class system extension proposal [4].

The proposal states two design goals:

• the possibility to refactor class without breaking any client code

• write implementations of subclasses that imply their superclass implemen-
tations

Both goals are similar to those we presented in the Section 2.1. The proposal
gives informal syntax and semantics of language extension as follows:

class Functor f ⇒ Applicative f where

return ∶∶ x → f x

(<∗>) ∶∶ f (s → t) → f s → f t

(≫) ∶∶ f s → f t → f t

fs ≫ ft = return (flip const) <∗> fs <∗> ft

31

instance Functor f where

fmap = (<∗>) ○ return
The proposal defines intrinsic superclass as a transitive superclass of a class

under consideration and enables to nest default instance declaration of intrinsic
superclass in a class, thus the class may use its methods in definition of the
instance. The proposal requires each default superclass instance to be the instance
of a different class.

It further defines intrinsic instance declaration as an instance generated
for an intrinsic superclass from class definition.

The proposal also discusses an opt-out mechanism to prevent generating of a
default instance. It is done with a syntactic construct hiding as follows:

instance Sub x where

...

hiding instance Super

This construct allows user defined instance of Super. The other discussed
variant is a quiet exclusion policy with following variants of dealing with intrinsic
instances and explicit instance clashes:

• rejecting duplicate instance declaration

• allowing explicit instance supersede intrinsic default with a warning

• allowing explicit instance supersede intrinsic default without any warning

Second variant is considered to be a pragmatic choice following the second
design goal.

The proposal introduces language extension flag which allows defining default
superclass instance. Instance of such class would not require this flag, which is
in accordance with the first design goal.

The proposal shortly mentions possible feature interactions with the deriving
mechanism, generic default methods, associated types, and default type syn-
onyms.

3.1.1 Our Conclusion

In our opinion this proposal presents a nice and readable syntax of default in-
stances extension. It also emphasizes backward compatibility of a client code
which we deem desirable. The opt-out mechanisms are chosen in accordance
with the design goals. However, the proposal fails to address the issue of multiple
candidate intrinsic instances where a class has multiple child classes with default
instances of the same method in more of them. We further elaborate on this issue
in the Section 4.1.1.

We also prefer language pragma in accordance with Haskell report [22] rather
than a compiler flag, though usage should be the same as with the flag, i. e., the
pragma is required with a class containing a default instance but not with the
instance itself.

The proposal also does not mention any use cases except those given indirectly
in mechanism descriptions.

32

3.2 Class Alias Proposal by John Meacham

John Meacham presents a language extension proposal [27] which, as he suggests,
mitigates the issues that hold back evolution of the standard prelude and provides
general class abstraction capabilities. The stated goals are:

• allow modifications to a class hierarchy while retaining full backwards com-
patibility,

• provide both fine class granularity and practical usability with simple and
advanced interfaces,

• not to interfere with separate compilation, and

• to be describable by source to source translation.

John Meacham illustrates the need for class system extension on the standard
prelude and the Num class in particular. Given following classes:

class Foo a where

foo ∶∶ a → Bool

foo x = False

class Bar b where

bar ∶∶ Int → b → [b]

he proposes a new language construct of the form:

class alias FooBar a = (Foo a, Bar a) where

foo = ...

which declares FooBar as a class alias of classes Foo and Bar. The alias can
occur anywhere a class constraint can. The instance of a class alias is defined in
the same way as an ordinary instance:

instance FooBar Int where

foo x = x > 0

bar n x = replicate n x

This code defines two separate instances, one for Foo, the other for Bar and
distribute class methods appropriately. With this extension in mind, Num class
from standard prelude can be refactored, and backward compatibility is preserved
by providing suitable class alias. Note that the following example slightly differs
from the Num class as defined in Haskell2010 language report. However, we
believe it does not harm its illustrative qualities:

class Additive a where

(+) ∶∶ a → a → a

zero ∶∶ a

class Additive a ⇒ AdditiveNegation where

(-) ∶∶ a → a → a

negate ∶∶ a → a

x - y = x + negate y

33

class Multiplicative a where

(∗) ∶∶ a → a → a

one ∶∶ a

class FromInteger a where

fromInteger ∶∶ Integer → a

class alias Num a = (Additive a, AdditiveNegation a,

Multiplicative a, FromInteger a) where

one = fromInteger 1

zero = fromInteger 0

negate x = zero - x

Authors of the proposal tender the instance of a class alias to be interchange-
able with the declaration of each instance that alias constitutes of independently.
However, instantiation of both alias and any of the constituent classes is illegal
due to ordinary Haskell rules for overlapping instances.

3.2.1 Our Conclusion

We believe that this proposal reasonably describes requirements for changes in the
class system. Nevertheless, we do not agree with class aliases as a fit approach.
Though it retains backward compatibility, it is neither obvious how colliding in-
stances should be resolved nor do the authors elaborate on that. Assume following
aliases and class:

class alias Bar a = (Foo a, ...) where

foo = ...

class alias Baz a = (Foo a, ...) where

foo = ...

class (Bar a, Baz a) ⇒ Qux a where

...

In this case it is not obvious which foo should be used when called with the
type of the class Qux. We also disfavor the impossibility of instantiating of both
Foo and Bar. Proposal also mentions possible interactions with other type class
extensions. It states that no such interaction should be an issue, although it does
not bring any supporting arguments.

3.3 Superclass Defaults

The rather superficial proposal Superclass defaults [35] reflects on Meacham’s
class alias proposal [27]. It decomposes the original proposal into two separate
issues:

• Class aliases as a single name for multiple classes

34

• Class method defaults in aliases

It mentions the issues of a new class like Monad when providing a backward
compatible default implementation of fmap in Monad, though it does not provide
any details as we do in the Section 4.1.3.

The proposal consists of tho separate parts in reaction to two different issues
identified in Meacham’s proposal. First part deals with Superclass defaults and
states as follows.

• Class declaration may contain default definitions for methods of the class
or its indirect superclasses.

• An instance declaration may specify multiple classes

instance (Class a, Class’ a, ...) where

...

provided that all classes in the list are unique, type variable for all of them
is same, and their superclass relation gives an acyclic graph.

• If no other implementation for a method is given the default is used. If
both Sub and Super gives default implementation for a method and Super
is superclass of Sub then implementation given in Sub is used. If more than
one such an implementation exists compilation results in an error.

The other part presents class aliases extension in the same way John Meacham
does. For the sake of clarity we present brief overview once again. Following
syntax is introduced for the purpose of defining a class alias:

class alias Ctx ⇒ Alias a = (Class1 a, Class2 a, ..) where

...

The body may contain default implementations of methods from the alias
definition and their superclasses. In any context, Alias a is treated the same as a
class list. In an instance head,Alias a is treated the same as (Alias a, Class1 a,
Class2 a, ...), where Alias is a fresh name that cannot be directly referred to,
treated as a subclass of classes in alias definition and containing default methods
from the class alias body.

3.3.1 Our Conclusion

We agree with the clear distinction between class aliases and superclass defaults
as presented. We deem class aliasing substantial for backward compatibility when
altering class hierarchy for reasons we present in the Section 4.1.3. The example
of the artificial Monad alias is illustrative. We do not favor multiple class instan-
tiation, since we neither consider it helpful for programmer in the terms of the
clarity of the code, nor is it necessary for backward compatibility. We also con-
sider particular mechanism for selecting which class is to be used where multiple
definitions of the same method in the hierarchy exits to be reasonable, though
it is not described in detail. We dislike the method definition both in a class
and an alias. We consider the definition in the alias superfluous and believe that
wherever there is a need for such definition, a proper class should be introduced.

35

3.4 Class System Extension Proposal

This class system extension proposal [4] adduces an idea—similar to the previ-
ously mentioned proposals—that it is often possible to provide a default imple-
mentation to a class method not only by using other class methods but also by
using methods of class ancestors. Given example classes

class Functor m where

fmap ∶∶ (a → b) → m a → m b

class Functor m ⇒ Applicative m where

return ∶∶ a → m a

apply ∶∶ m (a → b) → m a → m b

(≫) ∶∶ m a → m b → m b

ma ≫ mb = (fmap (const id) ma) ‘apply‘ mb

class Applicative m ⇒ Monad m where

(>>=) ∶∶ m a → (a → m b) → m b

the proposal summarises reasons to do so as follows.

• It is necessary to provide an instance definition only for the class Monad,
the other two can be derived.

• Many existing programs don’t provide Applicative instance when instantiat-
ing Monad and making Monad subclass of Applicative would break existing
code.

• A method implementation depends on a particular subclass and it may not
by possible to provide such an implementation in class where the method
is introduced. An example of fmap is given:

class Applicative m ⇒ Monad m where

fmap f ma = ma >>= (λa → return (f a))

Based on these observation extension proposes following changes in Haskell
class system:

• Class and instance declarations allow implementation of any method in a
class or any superclass.

• Whenever an instance declaration is visible, there is always a full set of
instance declarations for all superclasses. This is done by supplementing
the set of explicitly given visible instance declarations by automatically
generated implicit instance declarations.

• The extension proposes the policy of the most specific method implemen-
tation. This means using explicit instance over the default one and using
subclass method over superclass method.

36

• Modules export only specific instance declarations.

Proposal argues that separate compilation is possible due to the fact that com-
piler generated instances which are supplemented to explicit instances are visible
only in the module being compiled. Proposal also observes that the resolution
of an overloaded method depends on the visible instances in the module where
method is called. Therefore, overloading needs to be resolved before merging the
modules together, in particular inlined method overloading needs to be resolved
before the method is inlined.

Proposal also indicates that with the aforementioned changes a compiler has to
consider all the predicates in the context to determine the source of the overloaded
function, whereas now it is sufficient to look only for particular instance.

Proposal also introduces a feature of explicit import and export of instances,
in order to restrain colliding instance declarations among different packages. Pro-
posed syntax is

module M (

-- exported instances

instance Monad T

, instance Functor (F a) hiding (Functor (F Int), Functor (F Char))

, F(..)

) where

import Foo (instance Monad a hiding Monad Maybe)

data T a

data F a b

where the context is omitted because it is not used in instance selection. The
import directive instructs the compiler to use all instances of Monad exported by
Foo except instance for Monad Maybe, regardless of this instance being exported.

The proposal also endorses the need for class aliases in order to make complex
types manageable, but refers to the Class Aliases proposal [27] and the Superclass
defaults proposal [35] we described in the Section 3.2 and Section 3.3 respectively.

The proposal further mentions Extensible superclases, based on a paper by
Sulzmann and Wang [33], and serve rather a purpose of maintainability of the
code than the issue under our consideration and are beyond the scope of our
thesis, we do not provide further description.

3.4.1 Conclusion

We favor the part of the proposal related to the issue of backward compatible
superclass defaults. We consider the provided propositions of instance visibility
and selection sound, though we do not consider clarification of possibility of
separate compilation sufficient. We do believe the Class Aliases to be necessary
for backward compatible changes in the class hierarchy and, as this proposal is
just referring to the proposals [27] and [35], our conclusion in sections 3.2 and 3.3
holds.

We do not consider the explicit import and export of instances to be neces-
sary for superclass defaults, though it might be possibly beneficial. We consider
Extensible type classes and Quantified contexts beyond the scope of our thesis.

37

Chapter 4

Language Extension Proposal

We have given an overview of existing proposals we regard relevant to the problem
under consideration and based on merits of these proposals we derive a new
Haskell language extension. We believe this approach results in a reasonable
combination of desirable properties mitigating unwanted issues.

In the first section of this chapter we give a summary of different features
presented across more proposals. Then we present our own version of a language
extension in form of two new language constructs. I the End of this chapter we
describe several use cases the language constructs we propose.

4.1 Language Extension Features

Proposals presented in the Chapter 3 particularly overlap and share some features.
We consider following features significant:

Default instances as described in 3.1

Default method implementation as described in 3.3 and 3.4

Class aliases as described in 3.2, 3.3, and 3.4

4.1.1 Default Instances

Default instances proposal is presented in a single proposal, unlike the other two
aforelisted features. Thus our conclusion in the Section 3.1 covers the aspects
of this feature. We consider it to be a suggestive way of describing alternative
implementation of superclass’ method in subclass due to its resemblance with or-
dinary instance definition. However, we want to elaborate on the issue of multiple
candidate intrinsic instances.

Assume following Library and associated Client code:

module Library where

class Foo a where

method ∶∶ a → a

class Foo a ⇒ Bar a where

38

...

instance Foo a where

method = ...

class Bar a ⇒ Baz a where

...

instance Foo a where

method = ...

class Bar a ⇒ Qux a where

...

instance Foo a where

method = ...

module Client where

import Library

data MyData = ...

instance Bar MyData where

...

instance Baz MyData where

...

instance Qux MyData where

...

myFunction ∶∶ MyData → MyData

myFunction = method

This example shows the class hierarchy and client code that results in multiple
candidate default (intrinsic) instances. When using method on MyData that is the
instance of above classes it is not obvious which default instance to use. Possible
candidates are instances generated in Bar, Baz, and Qux. We consider a pragmatic
choice to select such instance that is:

• Common to all paths from Foo, where is the method introduced to the class
for which is the ordinary instance provided.

• Is last among such instances when we consider topological order on the
directed acyclic graph of the hierarchy in Library.

These rules result in selecting the default instance that is provided in the
class Bar. The ratio behind the first rule is to select an instance that is appli-
cable instead of all the candidates. A subclass is viewed as a specialization of a
superclass and thus the common ancestor is seen as an abstract enough class to

39

provide implementation sufficing all candidates. The second rules adheres to this
specialization in the manner that a subclass has more specific information on the
data for which is the instance provided and thus can be implemented in a more
efficient way. Under such assumptions it is reasonable to choose the candidate
for default instance which originates latter in the hierarchy.

These rules are generally not guaranteed to result in selection of a single
candidate. We discuss this issue further in our proposal bellow.

4.1.2 Default Method Implementation

Presented proposals endorse the idea of providing default implementation of the
class method of class or any indirect superclasses in class alias in case of the
Superclass Defaults Proposal 3.3 and providing default implementation of any
ancestor method directly in class in case of Class System Extension Proposal 3.4.
This approach may derive suitable method definition from subclass instance as
shown by example in the Section 3.4.

This approach further requires to provide implicitly generated instances in a
case we add a superclass to a class. Assume following module Module which
defines classes Foo, Bar, and Baz.

module Module where

class Foo a where

foo ∶∶ a

class Foo a ⇒ Bar a where

bar ∶∶ a

class Baz a where

baz ∶∶ a

And a client code which imports Module and uses the class Baz:

module ClientCode where

import Module

data MyData = ...

instance Baz MyData where

baz = ...

If we want to add the class context of Barto the class Bazin such manner
this change does not break the existing client code we need to provide instance
of Bar MyData and Foo MyData transitively. The solution provided in 3.4 is to
always generate automatically full set of instance declarations for all superclasses.
This solution does not however deal with another problem. Assume that we the
alter Module in the following manner:

module Module where

class Foo a where

foo ∶∶ a

40

class Foo a ⇒ Bar a where

bar ∶∶ a

-- default method for Foo.foo

foo = ...

class Bar a ⇒ Baz a where

baz ∶∶ a

-- default method for Foo.foo

foo = ...

When using this version of the module providing that default instances are
generated it is not obvious which version of foo should be used. Neither of the
proposals deal with the issue. Possible options may be:

• compilation results in an error due to ambiguous occurrence of the method

• compilation uses some default policy for which method to use

The first option is not favorable as it may be the case that the implementation
in the class Baz has more specific information therefore its implementation has
better performance. The second option requires reasonable policy for selecting
one implementation among all candidates even in case of more elaborate class
hierarchies than the hierarchy in the example.

Another issue we want to point out is that providing default method imple-
mentation for superclass method contradicts some design recommendations, e. g.
we do not consider such an implementation trivial [7].

4.1.3 Class Aliases

Class aliases are presented in three different proposals in the Chapter 3. Aliases
are proposed both as a mean of providing default method implementation and
single name for multiple classes. We consider the later vital for retaining backward
compatibility. This problem is hinted in proposal 3.3. Assume following classes
Applicative and Monad:

class Applicative f where

fmap ∶∶ (a → b) → f a → f b

pure ∶∶ a → f a

(<∗>) ∶∶ f (a → b) → f a → f b

class Monad m where

return ∶∶ a → m a

(>>=) ∶∶ m a → (a → m b) → m b

(≫) ∶∶ m a → m b → m b

m ≫ k = m >>= λ_ → k

These two classes are independent of each other and it is sufficient when using
them in client code to define instance just for Monad:

41

data Foo = ...

instance Monad Foo where

m >>= k = ...

return k = ...

Using class alias as a mean of providing default implementation is in this case
problematic. Assume we want to add Applicative into the context of Monad in
such way the change is backward compatible. In this case we need to provide
new class e. g. Monad which implements this change and keep Monad as an alias
for both Applicative and new Monad classes:

class Applicative f where

fmap ∶∶ (a → b) → f a → f b

pure ∶∶ a → f a

(<∗>) ∶∶ f (a → b) → f a → f b

class Applicative m ⇒ Monad_ m where

return ∶∶ a → m a

(>>=) ∶∶ m a → (a → m b) → m b

(≫) ∶∶ m a → m b → m b

m ≫ k = m >>= λ_ → k

class alias Monad m = (Applicative m, Monad_ m) where

fmap ∶∶ (a → b) → m a → m b

fmap f ma = ma >>= (λa → return (f a))

pure ∶∶ a → m a

pure a = return a

(<∗>) ∶∶ m (a → b) → m a → m b

mf <∗> ma = mf >>= λf → ma >>= λa → return (f a)

This works fine considering original code which uses Monad and does not in-
stantiate Applicative. However we now have two different names for Monad and
it is not obvious which one should user who is aware of their existence use.

On the other hand class aliases are useful when dividing class into two new.
Assume that we want to subdivide class Monad from previous example into classes
Pointed and Bind:

class Pointed a where

return ∶∶ a → f a

class Bind a where3

(>>=) ∶∶ m a → (a → m b) → m b

(≫) ∶∶ m a → m b → m b

m ≫ k = m >>= λ _ → k

In this case we do not need class Monad - there is no method which should
this class contain. Instead class alias provides both backward compatibility and
is handy to use with new code that is aware of Pointed and Bind:

42

class alias Monad m = (Bind m, Pointed m)

The other significant feature of class alias is that it enables programmer to
provide single instance that gives declarations of methods of multiple classes. This
in turn allows instantiation without the necessity of renaming of the methods.
Assume two related classes Tweedledum and Tweedledee [3] and their class alias
Rumdumdee:

class Tweedledum a where

dum = ...

class Tweedledee a where

dee = ...

class alias Rumdumdee a = (Tweedledum a, Tweedledee a)

...

instance Rumdumdee MyData where

dum = ...

dee = ...

The two instances for alias are generated accordingly. Without the alias
functionality the Rumdumdee must by a class with superclasses Tweedledum and
Tweedledee. The instances for these two may be defaulted, but methods dum

and dee must be renamed. We do not see this as favorable.

4.2 Our Proposal

Based on the conclusions in the Chapter 3 and the observations in previous section
we derive our own proposal which aims to address issues described in the Section
2.1, i. e.:

• Add or remove a superclass into the context of a class without breaking a
client code, where is the class already use. Client code may or may not
instantiate the superclass.

• Create a new class or remove an existing class that is not either a superclass
or a subclass of any other class.

• Move a method from a class into either a superclass or a subclass.

• Add or remove a class method.

In the Section 2.1 we argued that these actions are sufficient enough to com-
pose arbitrary change in the hierarchy. In this section we describe possible issues
with such actions on existing code and discuss effects of the change when writing
a new code.

When adding a superclass into a context of subclass we distinguish several
situations. Assume two classes, a class Foo and Bar, that were not (indirect)
subclass of each other and we want to add the Bar into the context of Foo such
that Foo is a subclass of the class Bar. Assume that there is already a client

43

code where Foo is brought into the scope and then subsequently used, i. e. some
instance is provided. Then if there is also an instance of Bar in the client code
everything works fine.

On the other hand when the instance of Bar is missing compilation results in
an error message1 similar to:

No instance for (Foo MyData)

arising from the superclasses of an instance declaration

Possible fix: add an instance declaration for (Foo MyData)

In the instance declaration for ‘Bar MyData’

Also without an instance any method of Bar is guaranteed not to be used in
this scope, thus there can be class methods or functions with the same local name
and occurrences of these methods can become ambiguous if the class Bar was not
in the scope before the change in the hierarchy. The possible fix to this issue is to
provide an implicit instance of Bar as we discussed earlier. However, this approach
have several problems of its own. First, what to do with instance methods. We
can either

• provide a default implementation in the class definition, or

• not to provide any definitions.

The first approach requires an active change in the class definition whereas
later results in an error when method without definition is used.

The last situation which can occur when adding the class Bar into the context
of the class Foo is that only the class Bar is used in a client code. In this situation
the client code works without any problems.

Assume the converse situation, i. e. there is a superclass Bar, its subclass
Foo, and we want to remove the context of Bar from Foo. This action does not
result in any problems with respect to the old client code.

Adding a new class that is neither superclass nor subclass of any other class
also does not bring any problems beside the obvious issues with the name clashes.
It is possible to minimize such issues by placing new class into separate submod-
ule. Conservative treatment of export list of the module can also mitigate some
problems.

Removing of an existing class that is neither superclass not subclass of any
other class is possible as long as the class is not used. In the case the class is
rendered obsolete it should be deprecated by a pragma mechanism [13]. But in
cases where the class is to be deleted as a result of the other action discussed,
e. g. the class was split into two, it is necessary to provide it both for backward
compatibility and for use in new code. It is possible to provide a class of the
same name with the classes in which it was split as superclasses and default
implementation original methods–which are now in superclasses. The other way
is to provide a class alias of the same name as the original class aliasing the classes
in which it was split. We consider the second approach superior as it result in
shorter, more readable code.

1The example error message is produced with The Glorious Glasgow Haskell Compilation
System, version 7.6.3

44

When moving a method from a superclass to a subclass or the other way
around it is important to distinguish whether the change occurs also with the
change in class hierarchy as described in first scenario. In such case the method
implementation for the subclass can be provided in the default instance. In the
other case there can be an old code expecting original layout of method in classes
and the change is not possible. In our opinion this case is better solved by
deprecation pragmas.

Adding a method to a class does not cause a problem in current Haskell. Such
action results in an incomplete instance in the code where the class is instantiated
and consecutively in compiler warning. Nevertheless, the compiled code works as
expected. Removing a method represents a similar problem to the removing a
class scenario. Yet again we prefer deprecation of the method over deleting.

Based on these possible situations we want to devise a new language extension
proposal. With accordance to the design goals we specified in the Section 2.1 we
consider most significant the changes in the class hierarchy. We consider an
extension that enables programmer to make such changes a significant benefit to
the maintainability of any existing codebase. Problems which are not ceased by
changes in hierarchy can be in our opinion solved by careful choice of identifier
names and export lists.

Our proposal consist of two independent language modifications. We devise a
mechanism for providing default instances of superclasses and mechanism of class
aliasing. We describe these modifications in the two separate chapters.

4.3 Superclass Default Instances

We propose to add a new syntax construct into the class definition as described
in the Section 1.4.3. Programmer may provide a default instance in the class
method for any of it’s superclasses, e. g.:

class Functor f ⇒ Applicative f where

pure ∶∶ a → f a

(<∗>) ∶∶ f (a → b) → f a → f b

default instance Functor f where

fmap ∶∶ (a → b) → f a → f b

fmap f x = pure f <∗> x

For any instance of Applicative the compiler generates the implicit default
instance of the class Functor. This instance is used when there is no ordinary
instance of Functor. When there is both default instance and ordinary in-
stance the later is used. This behavior and a selection mechanism among multiple
default instances is formally described below. An instance of the class does not
change in any manner.

4.3.1 Syntax of the Extension

We described the Haskell type class system in the Section 1.4.3. With respect to
the proposed change we adjust formal description of class declarations as shown
in the Figure 4.1.

A class declaration contains nested default instance declaration of the general
form:

45

topdecl → class [scontext =>] tycls tyvar [where cdecls]
scontext → simpleclass

∣ (simpleclass1 , . . . , simpleclassn) (n ≥ 0)
simpleclass → qtycls tyvar
cdecls → { cdecl1 ; . . . ; cdecln } (n ≥ 0)
cdecl → gendecl

∣ (funlhs ∣ var) rhs
∣ default instance qtycls dinst [where didecls]

dinst → gtycon
∣ (gtycon tyvar1 . . . tyvark) (k ≥ 0 , tyvars distinct)
∣ (tyvar1 , . . . , tyvark) (k ≥ 2 , tyvars distinct)
∣ [tyvar]

∣ (tyvar1 -> tyvar2) (tyvar1 and tyvar2 distinct)
didecls → { idecl1 ; . . . ; idecln } (n ≥ 0)
didecl → (funlhs ∣ var) rhs

∣ (empty)

Figure 4.1: Class declarations

class cx ⇒ D u where

default instance C u where cdecls

This introduces new default instance of the class C. The class C must be an
(indirect) superclass of D. The nested default instance declaration rules dinst,
didecls, and didecl respects syntactic structure of instance declaration and re-
strictions on instance declarations hold accordingly. In particular u must take a
form of a type constructor to simple type variables u1, . . . , un., type constructor
must not by a type synonym and ui must be all distinct.

The context is more complicated. A context of ordinary instance is expressed
through set of classes and superclasses of these classes are present implicitly
in this context due to the behavior of instance declarations. The context of a
default instance contains only the class of its declaration, all indirect superclasses
are included implicitly, but without all classes for which is any default instance
declaration present in the class. Assume that dis is a set of classes that are being
provided with default instance in the class D and that a id the type variable of
the class. The context dii of each instance from dis is:

dii =D a

This allows programmer to use any method from class or superclass but these
being defined in default instances and allows instance resolving.

The declaration of default instance may contain binding only for the class
methods of C. If no binding is given for some method default method in the class
declaration is used. It there is no such method the method of the instance is
bound to undefined. The declaration of a default instance does not contain any
signatures or fixity declarations. These were provided in the superclass that is
instantiated.

46

We do not change the declaration of ordinary instance. However there can be
both ordinary instance and either one or multiple default instances in the same
scope. There cannot be more ordinary instances due to overlapping instances
restriction. We consider the graph of all classes in scope. This graph is required
to be acyclic by [22] and has natural ordering ≺′ generated by class dependencies.

C ≺′ C
and

C ≺′ D↔ C is an immediate superclass of D

We introduce ordering on all classes ≺ as a transitive closure of ≺′:

A ≺ C ⇐⇒ A ≺′ B ∨ ∃C ∶ A ≺′ C ∧C ≺ B
Assume the set consisting of ordinary instance (if there is one) and all default

instances. We call this a set of candidate instances or candidates for short. The
instance selection mechanism applies following rules on the set of candidates:

Rule 1 If there is an ordinary instance select this instance.

Rule 2 Select all instances Ii a such that for any other instance In a holds

Ii a ≺ In a or In a ≺ Ii a
Rule 3 Select an instance Ii a such that for any other instance In a holds

In a ≺ Ii a
The motivation for the Rule 1 is to preserve backward compatible behavior, i.

e. to select existing instances, and to enable user to provide his own implemen-
tation of the instance. We propose to issue a warning when a proper instance is
selected over default instance.

The motivation for the Rule 2 is to decide between two instances that are not
superclass of each other. In this case we omit them both and try to select their
common ancestor. We expect the ancestor to be general–or abstract–enough to
provide sufficient default instance.

In the Rule 3 we have possibly several instances that are all either a superclass
or a subclass of each other. The ratio behind the rule is to select the instance
which is the least abstract, i. e. the most specific. We expect this instance to
provide possibly better implementation regarding the performance as it has the
most specific problem related information.

4.3.2 Semantics of the Extension

In this section we provide static semantics of our extension. Default instances
require a change on the ctDecl inference rule described in the Figure 4.2. This
change requires new inference rule dinstDecls.

The new inference rules dinstDecls and dinstDecl transform default in-
stances into the same representation as original rules transforms ordinary in-
stances. These rule are also modeled in a similar way to instDecls and instDecl

respectively.

47

CE,{u ∶ α}, h context⊢ cx ∶ θ
IE′sup = vs ∶̃ θ

IEsup = ∀α.Γα ⇒̃ IE′sup
⟨CE,TE ∪ {u ∶ α},DE⟩ sigs⊢ sigs ∶ V Esigs

i ∈ [1, n] ∶ GE, IE ⊕ {vd ∶ Γα}, V E method⊢ bindi ↝ fbindi ∶ V Ei

V E1 ⊕ . . .⊕ V En ⊆ V Esigs

α = uκ
Γ = Bκ

cs′ = B u

CE, IE ⊕ IEsup,CE,V E, cx′ dinstDecls⊢ didecls↝ dibinds ∶ IEdi

CE′ = {B ∶ ⟨Γ, h, vdef , α, IE′sup⟩}
V E′ = ∀α.Γα⇒̃cV Esigs

GE = ⟨CE,TE,DE⟩
Jdict,vs,vdef fresh

GE, IE,V E
ctDecl⊢ class cx ⇒ B u where

sigs;
bind1; . . . ; bindn;
didecls;

↝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

data Γ̂ = Jdict{ÎE′sup, V̂ Esigs,};

vdef ∶ (∀α.Γ̂α → Γ̂α)
= Λα.λvd ∶ (Γ̂α).Jdictα{fbind1, . . .fbindn};
dibinds

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
∶ ⟨CE′,{},{}, IEsup ⊕ IEdi, V E′⟩

Figure 4.2: New semantics of class declarations

48

i ∈ [1, n] ∶ GE, IE,V E, cx dinstDecl⊢ dinstDecli ↝ bindsi ∶ IEi

GE, IE,V E, cx
dinstDecls⊢

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dinstDecl1;
. . . ;
dinstDecln;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
↝

⎧⎪⎪⎪⎨⎪⎪⎪⎩

binds1;
. . . ;
bindsn;

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∶ IE1 ⊕ . . .⊕ IEn

T ∶ χ ∈ TE
i ∈ [1, n] ∶ αi = uκii

C ∶ ⟨Γ, h, xdef , α, IEsup⟩ ∈ CE
CE,{u1 ∶ α1} ⊕ . . .⊕ {un ∶ αn}, context⊢ cx ∶ θ

i ∈ [1,m] ∶ GE, IE ⊕ vs̃∶θ, V E method⊢ bindi ↝ fbindi ∶ V Ei
V Eops[χ α1 . . . αn/α] = V E1 ⊕ . . .⊕ V Em

(∀α.Γ α⇒c V Eops) ⊆ V E(x1, . . . , xn) ∶̃ θsup = IEsup
IE ⊕ vs ∶̃ θ dict⊢ (e1, . . . , en) ∶ θsup[χ α1 . . . αn/α]

GE = ⟨CE,TE,DE⟩
IEinst = {vdict ∶ ∀α1 . . . αn.θ⇒ Γ(χ α1 . . . αn/α)

vs,vdict fresh

GE, IE,V E, cx
dinstDecl⊢ default instanceC (T u1 . . . uk)where

bind1; . . . ; bindm

↝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vdict;∀α1, . . . , αk.θ̂ → Γ̂ (χ α1 . . . αk)
= Λα1, . . . , αk.λvŝ∶θ.
let rec vd ∶ Γ̂ (χ α1 . . . αk)
= (xdef (χ α1 . . . αk)vd){
x1 = e1; . . . ;xn = en;
fbind1; . . .fbindn

} in vd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
∶ IEinst

Figure 4.3: Semantics of default instance declarations

49

topdecl → classalias [scontext =>] tycls tyvar
scontext → simpleclass

∣ (simpleclass1 , . . . , simpleclassn) (n ≥ 0)
simpleclass → qtycls tyvar

Figure 4.4: Class alias declarations

4.4 Class Aliases

We propose to add a new syntax construct into the class definition as described
in the Section 1.4.3. Programmer may provide a class alias for several different
classes, e. g.:

classalias (Read a, Show a) ⇒ Textual a

The class alias may be instantiated by usual instance declaration. Compiler
generates separate instances for Read and Show classes and distributes the class
method accordingly.

4.4.1 Syntax

Class aliases are new top level declaration. We present changes in formal syntax
in the Figure 4.4.

A class alias declaration has a general form:

classalias cx ⇒ D u

This introduces new class alias of the classes in the context cx. The class in
context are required to form an acyclic directed graph and must be all different.
The aliased classes may not contain methods with the same name.

The declaration of class alias may contain binding only for the class methods
of aliased classes. If no binding is given for some method default method in the
class declaration is used. It there is no such method the method of the instance
is bound to undefined.

4.4.2 Relation to The Superclass Default Instances

Note that the class aliases are not necessary for use of superclass default instances.
However, class aliases make some changes in class hierarchy easier and more
direct. Assume following classes in a library code

class C a where

...

class D a where

method ∶∶ a

and instance in a client code:

instance D MyData where

method = ...

50

Without class aliases method cannot be moved from D to C contemporary with
making C the superclass of D. The client instance expects D to have the method

and we have not changed this anyhow. For sure it is possible to introduce some
proxy method method’ and provide following version of the library:

class C a where

...

method’ ∶∶ a

class C a ⇒ D a where

method ∶∶ a

default instance C a where

method = method’

Nevertheless, with class aliases following solution is feasible:

class C a where

...

method ∶∶ a

classalias (C a) ⇒ D a

We consider second approach superior as it does not introduce new, duplicate
methods.

51

Chapter 5

Relation to the Language
Platform

In this chapter we want to put our work into broader perspective. We discuss
several topics that are not necessarily mutually related but each of the topics is
directly connected to our proposal. In particular we focus on a relation to other
language extension and applications of our work to the actual language platform.

5.1 Relation to the Existing Language Exten-

sions

The Haskell language has evolved beyond the specification provided by The Re-
port. The GHC, upon which we build our implementation (see Chapter 6), con-
tains variety of additional language extensions that can be looked up in [13].

We consider important to assess possible clashes with other extensions even
though proper testing should be provided. Nevertheless, such testing is extremely
time consuming due to the great number of the extensions1. In sight of this fact
we do not list all the extension but only the extension we evaluated as possible
clashes during the implementation. E. g. our implementation does not seem to be
involved with any of the syntactic extension anyhow and thus we do not consider
these here.

5.1.1 Multi-parameter Type Classes

The GHC allows to declare multi-parameter type classes with the extension
MultiParamTypeClasses. This is not a standard feature of Haskell2010 and
we do not provide support for superclass default instances of such classes.

Note that in the case the superclass default instance is being provided in a
class that has more type variables then its superclass it is necessary to address
an issue of possibly ambiguous type.

1Currently the GHC data type ExtensionFlag that describes available extensions contains
89 constructors.

52

5.1.2 Default Method Signatures

The extension DefaultSignatures allows to specify different signature of default
method of the class. The syntax of this extension collides with the syntax of our
extension and causes reduce/reduce conflict in the parser. However, this is an
implementational detail and does not involve any use of our extension.

5.1.3 Functional Dependencies

The FunctionalDependencies extension allows programmer to constrain param-
eters of type classes. This requires the MultiParamTypeClasses extension to be
active thus same approach as in the case of later extension applies. This extension
is not supported.

5.1.4 Flexible Instances and Undecidable Instances

These two extensions relax constraints on instance context. A context of a super-
class default instance is dependent on a class where is this instance declared and
is described in the Section 4.3. This context is restricted enough in the terms of
Haskell 2010 and further relaxation on constraints does not involve our extension.

5.2 Comparison of Current Solutions to Default

Superclass Instances

In this section we provide alternatives to the solutions presented in the Section 2.2.
We discuss merits of our extension compared to the original solution.

5.2.1 Backward Incompatible Change in Hierarchy

This solution presented in the case of Functor–Applicative–Monad instance is
possible to overcome by adding the Applicative into the context of the class
Monad and providing appropriate superclass default instances:

{-# LANGUAGE SuperclassDefaultInstances #-}

...

class Applicative m ⇒ Monad m where

(>>=) ∶∶ ∀ a b. m a → (a → m b) → m b

(≫) ∶∶ ∀ a b. m a → m b → m b

return ∶∶ a → m a

fail ∶∶ String → m a

m ≫ k = m >>= λ _ → k

fail s = error s

default instance Fmap m where

fmap f a = a >>= (λx → return (f x))

default instance Applicative m where

53

pure a = return a

(<∗>) ∶∶ f (a → b) → f a → f b

f <∗> a = a >>= (λx → fmap (λg → g x) f)

This change in the library is backward compatible thus it can be deployed
immediately. The advantage is there is no transitional period with deprecation
we discussed in the Section 2.2.1.

5.2.2 Subclass to Superclass Instance

Our solution allows programmer to provide the same functionality as the solu-
tion in the Section 2.2.2. Unlike that solution our approach does not require
problematic UndecidableInstances extension.

5.2.3 SHE

Our solution is conceptually similar to SHE and thus are both solutions compa-
rable. Unlike SHE our extension has full information available to the compiler
and does not suffer from limitations, e. g., to one source file.

5.3 Applications of Proposed Extension

In this section we given two examples of concrete changes in the hierarchy of
standard classes, were already discussed throughout Haskell community, that our
extension makes possible.

5.3.1 Bind and Pointed

Edward Kmett has pointed out [20] that although current classes Functor, Applicative,
and Monad may be refactored into more convenient structure from categorical
point of view it is not to the benefit of programmer without some kind of super-
class default instance mechanism. The new structure is shown in Figure 5.3.1.
Our mechanism allows such refactoring. It is in principle corresponding to the
solution given in the Section 5.2.2:

{-# LANGUAGE SuperclassDefaultInstances #-}

class Functor f where

fmap ∶∶ (a → b) → f a → f b

class Functor f ⇒ Pointed f where

pure ∶∶ a → f a

class Functor f ⇒ Bind f where

(>>=) ∶∶ f a → (a → f b) → f b

class Pointed f ⇒ Applicative f where

(<∗>) ∶∶ f a → f (a → b) → f b

default instance Functor f where

fmap f a = a <∗> pure f

54

class Functor
fmap :: (a → b) → f a → f b

class Pointed
pure :: a → f a

class Bind
(>>=) :: f a → (a → f b) → f b

class Applicative
(<∗>) :: f (a → b) → f a → f b

class Monad

Figure 5.1: Refactored class structure

classalias (Bind m, Applicative m) ⇒ Monad m

The use of class alias here allows user of the library to provide instance of
Monad with methods >>=, <∗> and pure, which are distributed accordingly. Note
that this set of methods is not a set of method usually assumed with Monad and
we use it here for illustrative purposes.

5.3.2 Standard Numeric Classes

There has been discussion on the design of standard numeric classes. According to
[36] there are several problems—one of them that standard classes are not finely-
grained enough. With our extension it is possible to refactor current structure in
a more apt one and maintain backward compatibility.

One of the issues of the critique was the Num class. It couples operation
for addition and multiplication. It is possible to separate these operations into
specific classes:

{-# LANGUAGE SuperclassDefaultInstances #-}

...

class Additive r where

add ∶∶ r → r → r

class Multiplicative r where

mul ∶∶ r → r → r

class (Eq a, Show a) ⇒ Num a where

55

(+), (∗) ∶∶ r → r → r

default instance Applicative a where

x ‘add‘ y = x (+) y

default instance Multiplicative a where

x ‘mul‘ y = x (∗) y

The Num class here is simplified for illustrations purposes. Note that this
example also demonstrates other problem with numeric classes, it is not obvious
whether the operation (+) is commutative. On the other hand it is possible
to define, e. g., instance of Applicative for functions of type Int -> Int and
semantics (f + g)(x) = f(x) + g(x), which is not possible for the class Num due to
Eq and Show superclass constraints.

5.3.3 Traversable

The documentation of Traversable package [26] currently states properties that
instance of the class is expected to satisfy with respect to the classes Foldable

and Functor. However, it is up to the programmer to ensure this. It is possible
with the Superclass Default Instances extension to provide instances satisfying
these rules automatically and thus avoid possible inconsistencies:

{-# LANGUAGE SuperclassDefaultInstance #-}

newtype Id a = Id { getId ∶∶ a }

instance Functor Identity where

fmap f (Id x) = Id (f x)

newtype Const a = Const { getConst ∶∶ a }

instance Traversable (Const m) where

traverse _ (Const m) = pure (Const m)

class (Functor t, Foldable t) ⇒ Traversable t where

...

default instance Functor t where

fmap f = getId ○ traverse (Id ○ f)
default instance Foldable t where

foldMap = getConst ○ traverse (Const ○ f)
This example is incomplete and serves only the illustrative purposes. The full

example is provided in the enclosed implementation.

56

Chapter 6

Implementation

In this section we briefly describe an implementation details of the language
proposal we described in the Section 4. We have selected the GHC as a compiler
into which we incorporate our extension. According to the [18] it is currently the
only compiler that supports Haskell 2010 specification. We also consider the GHC
[13] documentation on compiler internals and compiler development superior to
other compilers (e. g. Utrecht Haskell Compiler [9]).

We provide only an implementation of the Superclass Default Instances ex-
tension. It is possible to avoid the use of class aliases with proxy methods as we
described in section 4.4.2. Thus we consider the implementation of first of the ex-
tension sufficient to asses contributions of our work before eventual incorporation
of these extension into GHC.

6.1 Compiler Architecture

In this section we refer chiefly to description of the compiler by the main authors,
Marlow and Peyton-Jones, in [23]. They state modularity and the openness to
the research and compiler extension to be one of the project goals. The modular-
ity allows us to described the architecture and consecutively the changes to the
compiler in several detached steps.

In general the GHC project involves more than just the compiler itself. Pre-
cisely it contains

• the compiler,

• the basic libraries that the compiler depends upon, and

• The Runtime System (RTS) that handles running the compiled code.

We do not need to take care of the architecture of neither libraries nor the RTS.
The libraries contain general data structures, e. g. Data.Map, and although we
make use of them, we do not need to make any changes. The compiler processes
source program into Haskell core, a variant of system F called FC [34].

Any higher syntactic construct are translated into the core at first and the
code generation follows after this process. Thus we do not need to take the RTS
into account when describing our implementation as no adjustments to it take
place.

The compiler is further divided into three parts:

57

• The compilation manager handles compilation of multiple source files. Its
task is to decide which files need to be recompiled because some of the
dependencies have changed since the last compilation.

• The Haskell compiler (Hsc) that handles compilation of single file.

• The pipeline composes any external programs (e. g. C preprocessor) with
the Hsc.

Only the Hsc is of our concern as we do not change behavior of multiple file
compilation nor manipulate with any external programs.

6.1.1 The Haskell Compiler

Compiling a Haskell source file proceeds sequentially in several phases. The
structure of the phases is illustrated in the Figure 6.1.1

Parser

In this phase the Haskell source file is converted into abstract syntax. The lexical
analyser and parser are involved. The abstract syntax data type is the HsSyn

t for some type of identifier t. The parses produces the original string names
RdrName from source code. Hence, the type of abstract syntax is HsSyn RdrName.

This part of compiler uses the Alex library [1] for generating lexical analyser
and the Happy library [15] as a parser generator.

Renamer

This compilation phase all identifiers into the fully qualified names. The iden-
tifier types are resolved from RdrName to references to particular entity Name.
Therefore, the resulting abstract syntax has type HsSyn Name.

Type checker

The type checker verifies that the Haskell program is type-correct. The type
checker resolves the types of identifiers resulting in conversion of Name type in
abstract syntax to Id type.

Desugaring and simplification

Desugaring translates all higher language constructs into basic core language.
Then the core code is simplified through optimization, e. g., dead code elimination
and case expression reduction.

After these phases the target code generation follows. Particular behavior
depends on compiler settings–either native machine code, LLVM code, or C code
may be produced. In this process GHC also generates interface files in order to
support separate compilation.

58

source.hs

Parse

Rename

Typecheck

Desugar

Simplify

The Simplifier
Rewrite rules

Strictness analysis
. . .

CoreTidy

Code generation Interface file generation

HsSyn RdrName

HsSyn Name

HsSyn Id

Core Expr

Core Expr

Figure 6.1: The compilation phases

59

6.2 Changes to the Compiler

In this section we briefly document changes to the compiler and design of our
implementation. In the description of the changed we follow sequential archi-
tecture of the compiler and discuss each part of the compiler respective to the
compilation phase separately.

The compiler allows extensive testing output through command line options.
We found this output most instructive when testing the changes and list samples
cases in the Appendix C.

6.2.1 Extension Flag

Before proceeding with the implementation have we added the Extension Flag
and registered the flag with a command line option. This allows programmer to
enable the extension from source code and from the command line respectively.
The appropriate data types are located in the file main/DynFlags.hs.

data ExtensionFlag

= Opt_Cpp

∣ Opt_OverlappingInstances
...

∣ Opt_SuperclassDefaultInstances -- Our extension flag

deriving (Eq, Enum, Show)

...

xFlags ∶∶ [FlagSpec ExtensionFlag]

xFlags = [

("CPP", Opt_Cpp, nop),

...

-- Our extension

("SuperclassDefaultInstances", Opt_SuperclassDefaultInstances, nop)

]

This allows us to recognise whether the extension is enable from compilation
context.

6.2.2 Parser

Our extension dost not add nor any keywords nor new lexical forms to the lan-
guage. Thus we do not alter the lexer. We incorporate changes into the language
grammar to the parser definition, which is stored in parser/Parser.y.pp. Par-
ticularly we modify the class declaration rule with our default instance branch

decl_cls : at_decl_cls { LL (unitOL $1) }

∣ decl { $1 }

...

∣ ’default’ dinst_decl {%

hintSuperclassDefaultInstances (getLoc $1) ≫
return ...

}

and introduced default instance rule:

60

-- Default instances

dinst_decl : ’instance’ inst_type where_inst { ... }

Note that the hintSuperclassDefaultInstances is a new helper that checks
the extension flag and causes appropriate compilation error if the flag is not
present.

The effect of this change on the parser is demonstrated in the example C.1.
For technical reasons we require user to explicitly state the context of default
instance.

6.2.3 Renamer

We have introduced the method rnClsDefInstDecl in rename/RnSource.lhs.
The method handles renaming in the case of superclass default instances. It is
modeled after the appropriate method that handles ordinary instance renaming.

6.2.4 Type Checker

We have modified basic data types representing declarations in the file hsSyn/

HsDecls.lhs. Particularly we have modified the ClassDecl constructor of TyCllDecl
data type, which represents type or class declaration, in such manner it now car-
ries the information about superclass default instances. We have also introduced
a data type that represents superclass default instance:

data ClsDefInstDecl name = ClsDefInstDecl {

cdid_poly_ty ∶∶ LHsType name -- Context ⇒ Class Instance-type

-- Using a polytype means that the renamer conveniently

-- figures out the quantified type variables for us.

, cdid_binds ∶∶ LHsBinds name

, cdid_sigs ∶∶ [LSig name] -- User-supplied pragmatic info

, cdid_tyfam_insts ∶∶ [LTyFamInstDecl name] -- type family instances

, cdid_datafam_insts ∶∶ [LDataFamInstDecl name] -- data family instances

, cdid_overlap_mode ∶∶ Maybe OverlapMode

}

deriving (Data, Typeable)

We have also enriched global environment TcGblEnv with default instance
environment tcg dinst env and list of default instances tcg dinsts:

data TcGblEnv

= TcGblEnv {

tcg_inst_env ∶∶ InstEnv,

-- ^ Instance envt for all /home-package/ modules;

-- Includes the dfuns in tcg_insts

tcg_dinst_env ∶∶ InstEnv, -- ^ Ditto for default instances

...

tcg_insts ∶∶ [ClsInst], -- ...Instances

tcg_dinsts ∶∶ [ClsInst], -- ...Default Instances

...

}

This allows us to collect default instances separately from ordinary instances.

61

6.2.5 Desugaring

We use existing machinery that handles desugaring of ordinary instances also for
desugaring of superclass default instances.

6.3 Concluding notes

We have given a brief overview of our implementation. This implementation
is to be consider only a proof-of-concept. In our description we elaborate only
on changes in the main data structures of the compiler. We do not give any
description of subsequent changes in the code. E. g. many changes in the code
for debugging output are trivial and we do not consider such description to be
necessary.

Further examples of testing source code are included with our implementation.

62

Conclusion

We have described a maintainability problem with Haskell type classes that occurs
in practice. We have summarized previous attempts to solve this problem and
analysed different features of this approaches.

Based on this analysis we have derived a proposal for two language extensions—
the Superclass Defaults Extension and Class Aliases extensions. The first pro-
posal allows programmer to declare default instance of a superclass within a class
declaration. The other extension allows to provide an instance over a set of
classes. We have demonstrated on several examples how the superclass default
instances solve the problem under our consideration. The Class Aliases are only
a supplementary extension to Superclass Defaults but works nicely with it and
allows cleaner expression of some class hierarchies.

We have discussed relations of our extensions to existing extensions and pro-
vided sample solutions to discussed problem. We have also implemented the first
of the extensions as a proof-of-concept and described the main design choices of
this implementation.

The given implementation of our proposal show that our proposal is solid
and can be implemented in practice. Listed sample solutions only cover a small
set of problems whether the real application of our work could be much wider.
Introduction of these language extensions into mainstream compiler would allow
on one hand to correct some existing problems in class dependencies and on the
other hand the authors of libraries would have more freedom in the design of such
libraries knowing that any design choice can be corrected in future.

63

Further work

The future work related to this thesis embodies mostly in two directions. There
is a great deal of work ahead consisting of a proper implementation of the exten-
sions. Such implementation must adhere to GHC coding standards in order to be
acceptable into the compiler. Such implementation must also contain extensive
test cases for use with GHC testing platform. Following such implementation
and its acceptance into compiler there are changes to be made in the standard
library with the use of our extensions.

Beside the practical work there is also the other direction. The more theo-
retical direction of the work consists of possible opt-out mechanism for default
instances. We do not discuss these in out work although they are considered in
the previous proposals. There are also some other language proposals that are
loosely related to the default instances, e. g. quantified contexts [32]. Identifica-
tion of these proposals and their relation to superclass defaults seems to us as a
solid base for further work on the language extension that the language and its
users could benefit from.

64

Bibliography

[1] Alex: A lexical analyser generator for Haskell. Tech. rep. http://www.

haskell.org/alex/.

[2] Applicative/Monad proposal related warnings. Online. July 2014. url: https:
//ghc.haskell.org/trac/ghc/ticket/8004.

[3] Lewis Carroll. Through the Looking-Glass, and What Alice Found There.
London: Macmillan, 1871.

[4] Class system extension proposal. Online. Mar. 2012. url: http://www.
haskell.org/haskellwiki/index.php?title=Class_system_extension_

proposal&oldid=44718.

[5] FP Complete CORP. Integrated Analysis Platform. Online. July 2014. url:
https://www.fpcomplete.com/business/iap/.

[6] Luis Damas. “Type Assignment in Programming Languages”. PhD thesis.
University of Edinburgh, 1984.

[7] Default method implementation. url: http://www.haskell.org/haskellwiki/
Default_method_implementation.

[8] Default superclass instances. Online. July 2014. url: https://ghc.haskell.
org/trac/ghc/wiki/DefaultSuperclassInstances?version=30.

[9] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. “The Structure of
the Essential Haskell Compiler, or Coping with Compiler Complexity.” In:
IFL. Ed. by Olaf Chitil, Zoltán Horváth, and Viktória Zsók. Vol. 5083.
Lecture Notes in Computer Science. Springer, 2007, pp. 57–74.

[10] Jón Fairbairn. All Monads are Functors. Haskell prime mailing list. Aug.
2006.

[11] Karl-Filip Faxén. “A static semantics for Haskell”. In: Journal of Functional
Programming 12 (2002), pp. 295–357.

[12] Functor–Applicative–Monad Proposal. Online. July 2014. url: http://

www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-

Monad_Proposal&oldid=58553.

[13] GHC Documentation. Tech. rep. July 2014. url: http://www.haskell.
org/ghc/docs/7.8.3/html/.

[14] Cordelia Hall et al. “Type Classes In Haskell”. In: ACM Transactions on
Programming Languages and Systems 18 (1996), pp. 241–256.

[15] Happy: The Parser Generator for Haskell. Tech. rep. http://www.haskell.
org/happy/.

65

http://www.haskell.org/alex/
http://www.haskell.org/alex/
https://ghc.haskell.org/trac/ghc/ticket/8004
https://ghc.haskell.org/trac/ghc/ticket/8004
http://www.haskell.org/haskellwiki/index.php?title=Class_system_extension_proposal&oldid=44718
http://www.haskell.org/haskellwiki/index.php?title=Class_system_extension_proposal&oldid=44718
http://www.haskell.org/haskellwiki/index.php?title=Class_system_extension_proposal&oldid=44718
https://www.fpcomplete.com/business/iap/
http://www.haskell.org/haskellwiki/Default_method_implementation
http://www.haskell.org/haskellwiki/Default_method_implementation
https://ghc.haskell.org/trac/ghc/wiki/DefaultSuperclassInstances?version=30
https://ghc.haskell.org/trac/ghc/wiki/DefaultSuperclassInstances?version=30
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/haskellwiki/index.php?title=Functor-Applicative-Monad_Proposal&oldid=58553
http://www.haskell.org/ghc/docs/7.8.3/html/
http://www.haskell.org/ghc/docs/7.8.3/html/
http://www.haskell.org/happy/
http://www.haskell.org/happy/

[16] Roger Hindley. “The Principal Type-Scheme of an Object in Combinatory
Logic”. In: Transactions of the American Mathematical Society 146 (Dec.
1969), pp. 29–60.

[17] Paul Hudak et al. “A History of Haskell: Being Lazy with Class”. In: Pro-
ceedings of the Third ACM SIGPLAN Conference on History of Program-
ming Languages. HOPL III. San Diego, California: ACM, 2007, pp. 1–55.

[18] Implementations. Online. Jan. 2014. url: http://www.haskell.org/

haskellwiki/index.php?title=Implementations&oldid=57412.

[19] Simon L. Peyton Jones and Philip Wadler. A Static Semantics for Haskell.
Tech. rep. 1991.

[20] Edward Kmett. Lens based classy prelude. Online. Sept. 2013.

[21] Edward Kmett. The lens package. Online. 2014. url: http://hackage.
haskell.org/package/lens-4.3.2.

[22] Simon Marlow. Haskell 2010 Language Report. Tech. rep. June 2010. url:
http://www.haskell.org/onlinereport/haskell2010/.

[23] Simon Marlow and Simon Peyton-Jones. “The Glasgow Haskell Compil-
er”. In: The Archicture of Open Source Applications, Volume II: Structure,
Scale, and a Few More Fearless Hacks. Ed. by Greg Wilson and Amy Brown.
Vol. ii. Self published, Apr. 2012. Chap. 3.

[24] Simon Marlow et al. “The Haxl Project at Facebook”. In: Proceedings of
the Code Mesh London. 2013.

[25] Connor McBride. the Strathclyde Haskell Enhancement. Online. July 2014.
url: https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/.

[26] Conor McBride and Ross Paterson. Data.Traversable. Online. 2005. url:
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-

Traversable.html.

[27] John Meacham. Class Aliases. Online, July 2014. url: http://repetae.
net/recent/out/classalias.html.

[28] Robin Milner. “A theory of type polymorphism in programming”. In: Jour-
nal of Computer and System Sciences 17 (1978), pp. 348–375.

[29] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell.
O’Reilly, Nov. 2008.

[30] Ross Paterson. Data.Traversable. Online. 2005. url: https://hackage.
haskell.org/package/base-4.7.0.0/docs/Data-Foldable.html.

[31] Iustin Pop. “Experience report: Haskell as a reagent: results and observa-
tions on the use of Haskell in a python project”. In: Proceedings of the 15th
ACM SIGPLAN international conference on Functional programming. New
York, NY, USA, 2010, pp. 369–374.

[32] Quantified contexts. Online. May 2010. url: http://www.haskell.org/
haskellwiki/index.php?title=Quantified_contexts&oldid=34638.

[33] Martin Sulzmann and Meng Wang. “Modular generic programming with
extensible superclasses”. In: ICFP-WGP. 2006, pp. 55–65.

66

http://www.haskell.org/haskellwiki/index.php?title=Implementations&oldid=57412
http://www.haskell.org/haskellwiki/index.php?title=Implementations&oldid=57412
http://hackage.haskell.org/package/lens-4.3.2
http://hackage.haskell.org/package/lens-4.3.2
http://www.haskell.org/onlinereport/haskell2010/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Traversable.html
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Traversable.html
http://repetae.net/recent/out/classalias.html
http://repetae.net/recent/out/classalias.html
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Foldable.html
https://hackage.haskell.org/package/base-4.7.0.0/docs/Data-Foldable.html
http://www.haskell.org/haskellwiki/index.php?title=Quantified_contexts&oldid=34638
http://www.haskell.org/haskellwiki/index.php?title=Quantified_contexts&oldid=34638

[34] Martin Sulzmann et al. “System F with type equality coercions.” In: TLDI.
Ed. by François Pottier and George C. Necula. ACM, 2007, pp. 53–66.

[35] Superclass defaults. Online. Dec. 2007. url: http://www.haskell.org/
haskellwiki/index.php?title=Superclass_defaults&oldid=17441.

[36] The numeric-prelude package. July 2014. url: http://hackage.haskell.
org/package/numeric-prelude-0.4.1.

[37] The Other Prelude. Online. Dec. 2010. url: http://www.haskell.org/
haskellwiki/index.php?title=The_Other_Prelude&oldid=37992.

[38] John Wiegley. Proposal: Add Data.Semigroup to base, as a superclass of
Monoid. June 2013.

[39] Brent Yorgey. “The Typeclassopedia”. In: The Monad.Reader 13 (2009),
pp. 17–69.

67

http://www.haskell.org/haskellwiki/index.php?title=Superclass_defaults&oldid=17441
http://www.haskell.org/haskellwiki/index.php?title=Superclass_defaults&oldid=17441
http://hackage.haskell.org/package/numeric-prelude-0.4.1
http://hackage.haskell.org/package/numeric-prelude-0.4.1
http://www.haskell.org/haskellwiki/index.php?title=The_Other_Prelude&oldid=37992
http://www.haskell.org/haskellwiki/index.php?title=The_Other_Prelude&oldid=37992

List of Figures

1.1 Class declaration syntax . 13
1.2 Instance declaration syntax . 13
1.3 Nested declarations syntax, part 1 14
1.4 Nested declarations syntax, part 2 15
1.5 Module structure . 16
1.6 Standard Haskell classes [22] . 18
1.7 Pragma syntax . 19
1.8 Semantics of class declarations . 20
1.9 Semantics of type signatures . 21
1.10 Semantics of class and instance contexts 22
1.11 Semantics of instance declarations . 23
1.12 Semantics of method bindings . 24
1.13 Semantics of dictionary construction 25

4.1 Class declarations . 46
4.2 New semantics of class declarations 48
4.3 Semantics of default instance declarations 49
4.4 Class alias declarations . 50

5.1 Refactored class structure . 55

6.1 The compilation phases . 59

68

Appendix A

Lexical Structure

For the sake of completeness we present the lexical structure of the Haskell pro-
gramming language. The presented syntax uses the same notational conventions
as described in The Report [22]:

[pattern optional
{pattern} zero or more repetitions
(pattern) grouping
pat1 ∣ pat2 choice

pat(pat′) difference - elements generated by pat, but not by pat’
fibonacci terminal syntax

Production rules are given in the BNF-like format. In the lexical syntax the
“maximal munch” rule is used, i. e. the grammatical phrases extend as far to
the right as possible.

program → { lexeme ∣ whitespace }
lexeme → qvarid ∣ qconid ∣ qvarsym ∣ qconsym

∣ literal ∣ special ∣ reservedop ∣ reservedid
literal → integer ∣ float ∣ char ∣ string
special → (∣) ∣ , ∣ ; ∣ [∣] ∣ ` ∣ { ∣ }

whitespace → whitestuff {whitestuff }
whitestuff → whitechar ∣ comment ∣ ncomment
whitechar → newline ∣ vertab ∣ space ∣ tab ∣ uniWhite
newline → return linefeed ∣ return ∣ linefeed ∣ formfeed
return → a carriage return
linefeed → a line feed
vertab → a vertical tab
formfeed → a form feed
space → a space
tab → a horizontal tab
uniWhite → any Unicode character defined as whitespace

comment → dashes [any⟨symbol⟩ {any}] newline
dashes → -- {-}
opencom → {-

closecom → -}

69

ncomment → opencom ANYseq {ncomment ANYseq} closecom
ANYseq → {ANY }⟨{ANY } (opencom ∣ closecom) {ANY }⟩
ANY → graphic ∣ whitechar
any → graphic ∣ space ∣ tab
graphic → small ∣ large ∣ symbol ∣ digit ∣ special ∣ " ∣ ’

small → ascSmall ∣ uniSmall ∣ _
ascSmall → a ∣ b ∣ . . . ∣ z
uniSmall → any Unicode lowercase letter

large → ascLarge ∣ uniLarge
ascLarge → A ∣ B ∣ . . . ∣ Z
uniLarge → any uppercase or titlecase Unicode letter
symbol → ascSymbol ∣ uniSymbol⟨special ∣ _ ∣ " ∣ ’⟩

ascSymbol → ! ∣ # ∣ $ ∣ % ∣ & ∣ * ∣ + ∣ . ∣ / ∣ < ∣ = ∣ > ∣ ? ∣ @
∣ \ ∣ ^ ∣ | ∣ - ∣ ~ ∣ :

uniSymbol → any Unicode symbol or punctuation
digit → ascDigit ∣ uniDigit
ascDigit → 0 ∣ 1 ∣ . . . ∣ 9
uniDigit → any Unicode decimal digit
octit → 0 ∣ 1 ∣ . . . ∣ 7
hexit → digit ∣ A ∣ . . . ∣ F ∣ a ∣ . . . ∣ f

varid → (small {small ∣ large ∣ digit ∣ ’ })⟨reservedid⟩
conid → large {small ∣ large ∣ digit ∣ ’ }
reservedid → case ∣ class ∣ data ∣ default ∣ deriving ∣ do ∣ else

∣ foreign ∣ if ∣ import ∣ in ∣ infix ∣ infixl
∣ infixr ∣ instance ∣ let ∣ module ∣ newtype ∣ of
∣ then ∣ type ∣ where ∣ _

varsym → (symbol⟨:⟩ {symbol})⟨reservedop ∣ dashes⟩
consym → (: {symbol})⟨reservedop⟩
reservedop → .. ∣ : ∣ :: ∣ = ∣ \ ∣ | ∣ <- ∣ -> ∣ @ ∣ ~ ∣ =>

varid (variables)
conid (constructors)
tyvar → varid (type variables)
tycon → conid (type constructors)
tycls → conid (type classes)
modid → {conid .} conid (modules)

qvarid → [modid .] varid
qconid → [modid .] conid
qtycon → [modid .] tycon
qtycls → [modid .] tycls
qvarsym → [modid .] varsym
qconsym → [modid .] consym

70

decimal → digit{digit}
octal → octit{octit}
hexadecimal→ hexit{hexit}

integer → decimal
∣ 0o octal ∣ 0O octal
∣ 0x hexadecimal ∣ 0X hexadecimal

float → decimal . decimal [exponent]
∣ decimal exponent

exponent → (e ∣ E) [+ ∣ -] decimal

char → ’ (graphic⟨’ ∣ \⟩ ∣ space ∣ escape⟨\&⟩) ’

string → " {graphic⟨" ∣ \⟩ ∣ space ∣ escape ∣ gap} "

escape → \ (charesc ∣ ascii ∣ decimal ∣ o octal ∣ x hexadecimal)
charesc → a ∣ b ∣ f ∣ n ∣ r ∣ t ∣ v ∣ \ ∣ " ∣ ’ ∣ &
ascii → ^cntrl ∣ NUL ∣ SOH ∣ STX ∣ ETX ∣ EOT ∣ ENQ ∣ ACK

∣ BEL ∣ BS ∣ HT ∣ LF ∣ VT ∣ FF ∣ CR ∣ SO ∣ SI ∣ DLE
∣ DC1 ∣ DC2 ∣ DC3 ∣ DC4 ∣ NAK ∣ SYN ∣ ETB ∣ CAN
∣ EM ∣ SUB ∣ ESC ∣ FS ∣ GS ∣ RS ∣ US ∣ SP ∣ DEL

cntrl → ascLarge ∣ @ ∣ [∣ \ ∣] ∣ ^ ∣ _
gap → \ whitechar {whitechar} \

71

Appendix B

Syntax of the Language

module → module modid [exports] where body
∣ body

body → { impdecls ; topdecls }

∣ { impdecls }

∣ { topdecls }

topdecls → topdecl1 ; . . . ; topdecln (n ≥ 1)
topdecl → type simpletype = type

∣ data [context =>] simpletype [= constrs] [deriving]
∣ newtype [context =>] simpletype = newconstr [deriving]
∣ class [scontext =>] tycls tyvar [where cdecls]
∣ instance [scontext =>] qtycls inst [where idecls]
∣ default (type1 , . . . , typen) (n ≥ 0)
∣ foreign fdecl
∣ decl

decls → { decl1 ; . . . ; decln } (n ≥ 0)
decl → gendecl

∣ (funlhs ∣ pat) rhs

cdecls → { cdecl1 ; . . . ; cdecln } (n ≥ 0)
cdecl → gendecl

∣ (funlhs ∣ var) rhs

idecls → { idecl1 ; . . . ; idecln } (n ≥ 0)
idecl → (funlhs ∣ var) rhs

∣ (empty)

gendecl → vars :: [context =>] type (type signature)
∣ fixity [integer] ops (fixity declaration)
∣ (empty declaration)

ops → op1 , . . . , opn (n ≥ 1)
vars → var1 , . . . , varn (n ≥ 1)
fixity → infixl ∣ infixr ∣ infix

72

Appendix C

Debugging Outputs

In this appendix we list debugging outputs of the compiler after different phases
of compilation. This outputs demonstrate changes to the different parts of the
GHC we described in the Section 6.2.

All the outputs use following simple source file DSI.hs:

{-# LANGUAGE SuperclassDefaultInstances #-}

module SDI where

class Super a where

foo ∶∶ a

class Super b ⇒ Sub b where

bar ∶∶ b

default instance Sub b ⇒ Super b where

foo = bar

data Unit = Unit

instance Sub Unit where

bar = Unit

C.1 Parser Output

The compiler output with the ddump-parsed option:

./ghc-stage2 --ddump-parsed DSI.hs

[1 of 1] Compiling SDI (./DSI.hs, ./DSI.o)

==================== Parser ====================

module SDI where

class Super a where

foo :: a

class Super b => Sub b where

bar :: b

default instance {-# NO_OVERLAP #-} Super b where

foo = bar

73

data Unit = Unit

instance Sub Unit where

bar = Unit

C.2 Renamer Output

The compiler output with the ddump-rn option:

./ghc-stage2 --ddump-rn DSI.hs

[1 of 1] Compiling SDI (./DSI.hs, ./DSI.o)

==================== Renamer ====================

class SDI.Super a where

SDI.foo :: a

class SDI.Super b => SDI.Sub b where

SDI.bar :: b

default instance {-# NO_OVERLAP #-} SDI.Super b where

SDI.foo = SDI.bar

data SDI.Unit = SDI.Unit

instance SDI.Sub SDI.Unit where

SDI.bar = SDI.Unit

C.3 Type Checker Output

The compiler output with the ddump-tc option:

./ghc-stage2 --ddump-tc DSI.hs

[1 of 1] Compiling SDI (./DSI.hs, ./DSI.o)

TYPE SIGNATURES

TYPE CONSTRUCTORS

class Super b => Sub b where

bar :: b

class Super a where

foo :: a

data Unit = Unit

Promotable

COERCION AXIOMS

axiom SDI.NTCo:Super :: Super a = a

INSTANCES

instance Sub Unit -- Defined at ./SDI.hs:16:10

instance Sub b => Super b -- Defined at ./SDI.hs:11:26

DEFAULT INSTANCES

instance Sub b => Super b -- Defined at ./SDI.hs:11:26

instance Sub Unit -- Defined at ./SDI.hs:16:10

instance Sub b => Super b -- Defined at ./SDI.hs:11:26

Dependent modules: []

Dependent packages: [base, ghc-prim, integer-gmp]

74

==================== Typechecker ====================

AbsBinds [] []

{Exports: [SDI.$fSubUnit <= $dSub_aqn

<>]

Exported types: SDI.$fSubUnit [InlPrag=[ALWAYS] CONLIKE]

:: Sub Unit

[LclIdX[DFunId],

Str=DmdType,

Unf=DFun: \ -> SDI.D:Sub TYPE Unit $dSuper_aqj $cbar]

Binds: $dSub_aqn = SDI.D:Sub $cbar}

AbsBinds [] []

{Exports: [$cbar <= bar

<>]

Exported types: $cbar :: Unit

[LclId, Str=DmdType]

Binds: AbsBinds [] []

{Exports: [bar <= bar

<>]

Exported types: bar :: Unit

[LclId, Str=DmdType]

Binds: bar = SDI.Unit}}

AbsBinds [b] [$dSub_aqo]

{Exports: [SDI.$fSuperb <= $dSuper_aqw

<>]

Exported types: SDI.$fSuperb [InlPrag=INLINE (sat-args=0)]

:: forall b. Sub b => Super b

[LclIdX[DFunId(nt)], Str=DmdType]

Binds: $dSuper_aqw = SDI.D:Super ($cfoo)}

AbsBinds [b] [$dSub_aqo]

{Exports: [$cfoo <= foo

<>]

Exported types: $cfoo :: forall b. Sub b => b

[LclId, Str=DmdType]

Binds: AbsBinds [] []

{Exports: [foo <= foo

<>]

Exported types: foo :: b

[LclId, Str=DmdType]

Binds: foo = bar}}

75

	Introduction
	Motivation
	Structure of the thesis

	The Haskell Language Description
	Program Structure
	Lexical Structure
	Comments
	Identifiers and Operators
	Literals
	Layout

	Expressions
	Error Handling
	Variables, Constructors and Operators
	Function Application and Lambda Abstraction
	Conditionals
	Let Expressions
	Case Expressions
	Do Notation
	Pattern Matching

	Declarations and Bindings
	Kinds
	User-defined Data Types
	Type Classes
	Nested Declarations
	Function and Pattern Bindings

	Modules
	Predefined Types and Classes
	Data Types
	Classes

	Compiler Pragmas
	Static Semantics

	Maintainability Problem
	Altering Type Class Hierarchy
	Currently Possible Solutions
	Functor – Applicative – Monad
	Subclass to Superclass Instance
	The Strathclyde Haskell Enhancement

	Design Goals of Language Extension

	Previous Proposals
	Default Superclass Instances by GHC
	Our Conclusion

	Class Alias Proposal by John Meacham
	Our Conclusion

	Superclass Defaults
	Our Conclusion

	Class System Extension Proposal
	Conclusion

	Language Extension Proposal
	Language Extension Features
	Default Instances
	Default Method Implementation
	Class Aliases

	Our Proposal
	Superclass Default Instances
	Syntax of the Extension
	Semantics of the Extension

	Class Aliases
	Syntax
	Relation to The Superclass Default Instances

	Relation to the Language Platform
	Relation to the Existing Language Extensions
	Multi-parameter Type Classes
	Default Method Signatures
	Functional Dependencies
	Flexible Instances and Undecidable Instances

	Comparison of Current Solutions to Default Superclass Instances
	Backward Incompatible Change in Hierarchy
	Subclass to Superclass Instance
	SHE

	Applications of Proposed Extension
	Bind and Pointed
	Standard Numeric Classes
	Traversable

	Implementation
	Compiler Architecture
	The Haskell Compiler

	Changes to the Compiler
	Extension Flag
	Parser
	Renamer
	Type Checker
	Desugaring

	Concluding notes

	Conclusion
	Further work
	References
	Lexical Structure
	Syntax of the Language
	Debugging Outputs
	Parser Output
	Renamer Output
	Type Checker Output

