Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Frantisek Farka

Implementation of the SF-HRP action
selection mechanism

Department of Software and Computer Science Education

Supervisor of the bachelor thesis: Mgr. Tomas Plch
Study programme: Computer Science

Specialization: 101

Prague 2011

I would like to thank my supervisor, Mgr. Tomas Plch, for his guidance and
insight. I also would like to thank my family for motivation and support.

I declare that I carried out this bachelor thesis independently, and only with the cit-
ed sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 paragraph 1 of the
Copyright Act.

In Prague 4. 8. 2011

Nazev prace: Implementace SF-HRP mechanismu vybéru akei
Autor: Frantisek Farka
Katedra: Kabinet software a vyuky informatiky

Vedouci bakalaiské prace: Mgr. Tomés Plch, Kabinet software a vyuky infor-
matiky

Abstrakt: Tato préace se zabyva implementaci mechanismu State-Full Hierarchical
Reactive Planning (SF-HRP) pro vybér akei umélé bytosti v jazyce C++. Tato
implementace je ptripojena k 3D virtualnimu prostredi a umoznuje své profilovani
aplikacemi tfetich stran. Prototyp takového profileru je soucasti implementace.
Préace také predstavuje vstupi format pro popis chovani agenta, ktery implemen-
tace pouziva. Implementace i vstupni format jsou demonstrovany na testovacich
scénarich. Koncept SF-HRP je zhodnocen vzhledem k obtiznosti ndvrhu chovani
umeélé bytosti a vzhledem ke slozitosti implementace.

Klicova slova: SF-HRP, vybér akce, inteligentni umeélé bytosti, reaktivni planovani,
C++

Title: Implementation of the SF-HRP action selection mechanism
Author: Frantisek Farka
Department: Department of Software and Computer Science Education

Supervisor: Mgr. Tomas Plch, Department of Software and Computer Science
Education

Abstract: In this thesis, we present our C++ implementation of the State-Full
Hierarchical Reactive Planning (SF-HRP) mechanism for action selection for vir-
tual agents. The implementation is connected to 3D virtual environment and
provides access to 3rd party software for profiling purposes vie defined interface.
A prototype of such a profiler is part of the implementation. The thesis also
presents an input format for agent’s behavior description and is used within the
implementation. Both the implementation and input format are demonstrated on
testing scenarios. The SF-HRP concept is discussed with respect to the difficulty
of design of agent’s behavior and complexity of the implementation.

Keywords: SF-HRP, action selection, intelligent virtual agents, reactive planning,
C++

Contents

(Introduction|
.......

[1 State-Full Hierarchical Reactive Planning|

(I.1 Reactive Planning|

(1.1.1 Simple Reactive Planningl

[1.1.2 Hierarchical Reactive Planningl

[1.1.3 Improvements ot Hierarchical Reactive Planningl

(1.2.1 Initialization phasel L.

[1.2.2 Execution phasel.

[1.2.3 Termination phase

[1.2.4 Cleanup phase|.

(1.2.5 Finish phasel. L.

[1.2.6 Switch out]

2 Implementation|

[2.2.2 Imitialization phase|

[2.2.3 Execution phasel. L0

[2.2.4 Termination phase

[2.2.5 Cleanup phase|.

2.3 Input format parser|. L

[2.4 ASM Implementation|

241 Publicinterfacelo 000000

2.6 Wrapper|

Conlusion

[Future work]

[Bibliography|

[List of Figures|

I FADI Afions

(A XML input format|

[A.1 Document type declaration|.

[A.2 Document type definition|

(B Input examples|

[B.1 Scenario Al

33

35

36

37
37
37

38
38
39

41

Introduction

An Artificial Intelligence (AI) has found extensive application in the entertain-
ment industry. It has ever been important part of computer games, where for
some of them the use of Al is vital. One example is the popular strategic life-
simulation series The Sims[§], seen in Figure . Beside computer games, Al is
also employed in other areas of the entertainment industry - movie industry [2]
or virtual storytelling [9].

Nearly all of these applications are concerned with photo realistic visualisa-
tions, complex and dynamic 3D environments in order to increase realism. These
virtual environments are populated by virtual agents which interact and tend to
act human-like, having The Sims in mind. To maintain the illusion of a realistic
world, agents have to act in a believable way, to be perceived intelligent [13].

Figure 1: Sims3 in-game screenshot

Some researchers consider intelligence to be a manifestation of behavior [13].
In simulated virtual worlds observers perceive agent’s behavior through visual-
isation and agent’s actions. An agent repeatably colliding with obstacles may
be perceived as being unintelligent. On the other hand artificial agent may take
actions human controlled agent would take in its place. Such an agent may be
considered intelligent. Mimicking intelligence have been the main concern both
in research and applications of virtual agents [2]. Based on [2] the solution to
the problem of creating intelligent agent is agent with believable behavior, where
agent’s actions must be appropriate in the eyes of the observer.

The problem of selecting of an appropriate action from all available actions (to
the agent in given moment) is done by action selection mechanism (ASM). Vari-
ous ASM have been proposed, e. g. Internal Behaviour Network [11], LIDA ar-
chitecture [I2] and Reactive Planning [7].

Motivation

There are four known basic Al concepts [3]: first - acting humanly, second -
thinking humanly, third - thinking rationally and fourth - acting rationally. Agent
in the first concept, humanly acting agent, is an agent which chooses actions a
real human in his place would. In second, humanly thinking agents emulates

human cognitive processes. Rationally thinking agents in third concept deduce
their actions by a process humans consider rational. Fourth, rationally acting
agents act in a way considered rational.

The most suitable approach in above specified entertainment oriented envi-
ronments seems to be ”"acting humanly”, to mimic believable human behavior
focusing on visualisation of agent’s actions [2].

Visualisation of a complex virtual world is demanding on computational re-
sources. There are not many resources left for executing ASM of the virtual
agent. Therefore the timely fashion of ASM execution is one of our main con-
cerns besides the believability of selected actions. Nor completely unresponsive
agent nor agent which waits too much before taking next action would not be
probably considered intelligent.

Reactive planning, proposed in [7] seems to meet both requirements on believ-
ability and on time fashion. Further studies [I] have shown lack of certain aspects
of real-world being’s behaviour, intentions, cleanup or transitional behaviour etc.

Discussion of these limitations in [2] introduced extension to reactive plan-
ning, adapting techniques of finite state machines, called State-Full Hierarchical
Reactive Planning (SF-HRP). However only limited implementation in simple 2D
world was presented.

Even when having ASM producing satisfactory actions in acceptable timely
fashion we wished to address the issue of designing the virtual agent’s behavior.
With increasing complexity of virtual worlds and the amount of virtual agents
deployed increases the complexity of the design of these agents. The above men-
tioned SF-HRP eases the design complexity of virtual agent as it allows decom-
position of the agent’s behavior into several separate phases [2]. We also believe
possibility of profiling the behavior of the agent in virtual world would be con-
tributory for the design.

Thesis goals

The main goal of the thesis is to implement the concept of SF-HRP utilizing C++
programing language and connect the implementation to a modern dynamic 3D
virtual environment. We implement an ASM library and a wrapper for chosen
environment. The implementation focuses on design of the architecture, speed
and reliability.

We also propose an input file format for behavior description of the virtual
agent driven by SF-HRP. We address the issue of prototyping agent in virtual
world with interface that our library provides to external tools. Both input file
format and prototyping interface are discussed with respect to the difficulty of
the design of agent’s behavior.

We present examples of agent’s scenarios which can be tested in the virtual
environment we have chosen. We discuss bottlenecks of the concept based on the
scenarios and implementation experience.

Thesis Structure

This thesis is divided into chapters. The first chapter is devoted to the theoret-
ical concept of Simple Reactive Planning (SRP), Hierarchical Reactive Planning
(HRP) and SF-HRP, based upon [2].

The second chapter describes the architecture of our implementation of the
SF-HRP action selection mechanism. We present the input format for our appli-
cation, reason the choice of virtual world used with our application and describe
details of the implementation.

The third chapter present model scenarios. Based on these we discuss features
of SF-HRP concept and our implementation. After the third chapter is included
conclusion and future work.

The Appendix A contains Document Type Definition (DTD) of XML input
format of our implementation. The Appendix B contains input behavioural files
of scenarios discussed in Chapter 3. The Appendix C informs on installation
process of our implementation.

1. State-Full Hierarchical
Reactive Planning

Based on [2] we present our understanding of the concept of Simple Reactive
Planning (SRP) and Hierarchical Reactive Planning (HRP). We take a closer
look at it’s limitations and corresponding improvements. We describe SF-HRP
being an extension of HRP by means of finite state machines and present our
understanding of every phase of agent’s plan.

1.1 Reactive Planning

Humans tend to see a virtual agent’s behavior as intelligent when the agent
chooses actions which are similar to a real world being’s choices in corresponding
situation. Essential part of the believability of the agent’s behavior is timely
fashion of action selection [2].

In [3] planning is understood as process of creating a plan, sequence of actions,
in order to achieve certain goal. When plan is rendered invalid, e. g. goal changes,
planned action cannot be executed or for any other reason, which may happen
relatively often in dynamic environments it needs to be recomputed. This is
problematic as creation of plan is resource demanding process [2]. The alternative
to plan precomputation has been presented [7] - the concept of Reactive Planning.

Reactive Planning lacks any sequence of actions scheduled for execution, se-
lected action depends solely on state of the virtual environment. The ASM is
based on condition execution decision making, where conditions - boolean ex-
pressions - represent context of the world. This approach renders shorter reac-
tion times of virtual agents than planning with lookahead as there is no need for
plan recomputation thus we believe it is good choice for the ASM in dynamic
environments. We will describe the concept of Simple Reactive Planning and its
extension Hierarchical Reactive Planning, both proposed in [7].

1.1.1 Simple Reactive Planning

Simple Reactive Planning (SRP) is flat, one level architecture. The key structure,
referred to as a basic reactive plan, is a set of condition-action rules that can be
formalised as a triplet

(PRIORITY, CONDITION, ACTION)
where

priority specifies rule importance
condition is a boolean expression

action is an atomic action or sequence of such actions

condition
action

Reactive

plan Priarity

Y

—]
—]
]
Figure 1.1: SRP plan diagram

The action-condition rule is called simply rule and simple reactive plan (Fig-
ure just plan where there is no ambiguity. The goal of the ASM is to select
rule with the highest priority having a holding releaser for execution. This can

be effectively done by checking rules in descending order by priority which gives
Algorithm [I]

Algorithm 1 SRP ASM algorithm
procedure ASM > SRP action selection
for all rules as rule in descending order by priority do
if condition of rule is satisfied then
EXECUTEACTION(action of rule)
end if
end for
EXECUTEACTION(idle action)
end procedure

The rules are called:

active when being executed

preactive when its release condition is satisfied, but is not active, i. e. there is
another rule with satisfied release condition and higher priority

inactive when condition evaluates false

suspended when rule was surpassed in execution, i. e. when rule was active
and another rule became active

1.1.2 Hierarchical Reactive Planning

Hierarchical Reactive Planning (HRP) is an extension to SRP. It allows simple
actions and action sequences to be replaced by expansion into plans, thus creating
a tree like structure with action primitives as leafs and HRP plans as inner nodes,
called behavioural tree (be-tree) [2] as seen on Figure [I.2] In following text the
set of HRP plans with same distance from root plan is called a level and the root
node of i called top-level. Action primitive may be both an atomic action and an
action sequence.

1 Success

Reactive

plan Priority

action sequenoes

— falil

Figure 1.2: HRP plan diagram

This enforces change of an ASM Algorithm|[I]into a recursive algorithm. When
ASM chooses a plan as a candidate rule for execution, it travels down the tree
and continues evaluation on next level until it hits leaf rule.

Another addition to SRP is an explicit success and fail of the plan and its
propagation to upper levels of the be-tree. Success/fail is considered a special
atomic action. Execution of this action forces ASM to continue selection in
parent node.

Introducing hierarchical behavior to the ASM allows designer to create plans
with top-level based behavior. Using this concept plan can be divided into certain
tasks, e. g. our plan for morning could be "brush the teeth”, ”carry out the
trash”, ”catch the bus” [1

These modifications of SRP gives Algorithm [2 The idea of the algorithm is to
select a top level plan and then travel down the be-tree’s structure until reading
an atomic action (being leaf of the be-tree) which is executed.

1.1.3 Improvements of Hierarchical Reactive Planning

Problems arising from the discussed ASM were addressed in [I] and [2]. We
describe our understanding of the presented problems and corresponding solu-
tions. All solutions are designed with the idea of improved believability with low
computational cost in mind.

Interrupt safe rules

Some patterns in agent behavior may consist of more than one atomic action,
but still need to be executed in atomic fashion. For this reason [2] introduces an
interrupt-safe flag. Rules marked with this flag cannot be surpassed by another
rule. This helps the agent to keep consistent, more believable behavior. Such
action sequences should be kept short not to render agent non-responding to the
environment.

Releaser safe rules

When constructing HRP rules, designer may reach a situation that he intend to
use a rule where an action sequence influences it’s releaser in such a way the

LOf course we design ”carry out the trash” rule releaser so that when under time pressure,
it renders false and we rather catch the bus and do not care for trash.

Algorithm 2 HRP ASM algorithm
procedure ASM > top-level plan selection
active_plan < plan with holding releaser and highest pririty
if no active_plan then
(ExecuteAction)idle action
end if
if priority of active_plan > priority of previously_executed_plan then
PLANAS (active_plan)
else
PLANAS(previously_executed_plan)
end if
end procedure

procedure PLANAS > active rule selection
active_rule <— rule in plan with holding releaser and highest prority
if no active_rule then
FAIL
end if
if priority of active_rule > priority of previously_executed_rule then
EXECUTEACTION (action of active_rule)
else
EXECUTEACTION(action of previously_executed_rule)
end if
end procedure

procedure EXECUTEACTION(action)
if action is a plan then

PLANAS(action)
else if action is an atomic action then
PERFORM (action)
else > action is a sequence of atomic actions

atomic_action < next atomic action in sequence
if no atomic_action then
PERFORM(first atomic action in sequence)
else
PERFORM (atomic_action)
end if
end if
end procedure

releaser ceased to hold. The action sequence is obviously interrupted in-between
its atomic actions. For this reason [2] introduced releaser-save flag that keeps rule
in execution, until surpassed by higher priority rule, even if the releaser condition
is not satisfied anymore.

Sticky rules

Some rules may be designed to react to high-priority events, but still not to be-
come active in case of a holding releaser (e. g. interrupt-safe rule is in execution).
In [2] were proposed sticky flag and a timeout to keep a rule in preactive state
longer, but not indefinitely. It means the sticky rule is given some time as can-
didate rule for execution after the currently executed rule stops execution, but
only up to timeout.

1.2 State-Full extension to HRP

Specific problems and limitations of HRP approach and corresponding solutions
were discussed in [2]. The basic argument was that SRP and similarly HRP, even
if it has tree structure, is a simply ordered set of condition-action rules and lacks
any explicit state. This complicates both internal control of information flow by
the ASM and external analysis of plan execution, either manual or automated.
Humans tend to certain decomposition of real world plans into different phases.
They usually need to meet some prerequisites at first, then cope with the task
itself and finally do some clean up, not taking any interruptions in account.

In the light of these aspects [2] seemed contributory to introduce finite state
machine extension to HRP in order to help the designer create the plan and
better inspect its execution. In following section we would like to present our
understanding of this idea.

States of a proposed finite state machine constructed above the original HRP,
each with a specific purpose in plan execution, are:

1. initialization - plan is prepared for execution

2. execution - original HRP ASM

3. termination - execution has finished and terminating behavior is executed
4. cleanup - gathered objects are cleaned up etc.

5. finish - plan is not active anymore

6. switch out - plan is preparing to suspend its execution

7. switched - plan is suspended

8. switch in - plan is restoring from switched state

9. emergency - emergency situation has occurred

10

switch U;t,l

initialization phase| switch out awitched|

execution

acquire objeds
switch i.'-xl

execution phase switch in

suspended

execution

cleanup
- P
Task list
— - object
termination phase |UCatiUﬂ
memory
fleanup deanup
flag process
success fail EHEIgE]c;I L
case case
execution execution f:‘nis':l b h
emergency
actions
b4
no clean up . 3
ag
Y

Figure 1.3: state diagram of SF-HRP

This mechanism restricts rather chaotid?] execution of a plan only to it’s ex-
ecution state (or phase). The state transition function is presented in form of
state diagram in Figure for we believe it is easier to understand. Initial state
is initialization and the only final state is finish. States of diagram are properly
described below, transitions are displayed as arrows.

The concept also copes with transitional behavior via plan switching. When
another plan with higher priority gets active current plan is supposed to perform
actions in order to get to consistent, defined state, when in switch out state, and
then suspended. Similarly it is recovered from such a state when switched in. In
the text we use the term suspender for plan which is being switched in, the term
suspendee for plan which is being switched out and the term suspended plan for
plan in switched phase, i. e. plan which has been successfully switched out.

1.2.1 Initialization phase

Typical reactive plan requires some objects for its successful execution. Acquiring
of these items is handled in HRP by high priority rules - initiatory rules. SF-HRP
introduces initialization phase as replacement of these rules. The benefits of this
approach are lower complexity and better consistencyﬁ of resulting plan.

2from designer’s point of view
3Execution phase is entered either when all items are gathered, thus in consistent state, or

is not ever entered. Initialization can be also used as fallback in case of some item is lost during
execution.

11

termination phase

success
case case

execution execution

l

Figure 1.4: termination phase

Objects used by plan are managed via object sets and object-class sets, in
order to avoid problems with explicitly specified objects and provide more flexi-
bility, both discussed in [2].

Object set

Object set concept introduces two object containers, object list and object set.
The first - an object list- is a list of items that are all required, thus list is
considered satisfied when all are found. Second is object set itself as ordered set
of object list ordered by descending importance. Object set is satisfied, when
any of lists is satisfied, thus objects are being satisfied by their importance. The
object set is viewed as a boolean formula in disjunctive normal form, disjunction
of object lists, each object list as conjunction of objects.

Object class set

Similar semantics as for object set is used for class set, only the object is replaced
with object class construct. Specification of an explicit object is avoided, declar-
ing only traits and/or purpose of required object is preferred, allowing agent to
acquire object that satisfies its needs best, e. g. are closest, most easily obtain-
able, etc.

1.2.2 Execution phase

The execution phase consists of original HRP concept with modifications pre-
sented in [I.1.3] as interruption safe flags or sticky rules. Modifications of HRP
enforces changes in its structure, discussed in section [I.1.3, and ASM algorithm,
presented in Algorithm [3]

1.2.3 Termination phase

The termination phase is introduced in order to perform some actions based upon
result of execution phase. Agents may present different behavior in case of success
or fail of the plan, get angry or feel happy (Figure [L.4).

Termination phase is followed by finish phase.

12

Algorithm 3 SF-HRP ASM algorithm
procedure EXECUTIONAS > execution phase action selection
if actual_rule is a interrupt-safe then
selected_rule < actual_rule
else
candidate_rule <— rule with highest priority considering rules
with active releaser and sticky rules within timeout

if actual_rule is releaser-safe and its releaser is false then
if priority of actual_rule > priority of candidate_rule then
selected_rule < actual_rule
else
selected_rule < candidate_rule
end if
else
selected_rule < candidate_rule
end if
end if

EXECUTE(candidate_rule)

end procedure

Task list

cleanup
process

N

Figure 1.5: cleanup phase

1.2.4 Cleanup phase

The cleanup phase is important part of human behavior. As [2] introduces it, it
has a reverse structure to the initialization phase only with slight differences. In
initialization phase agent may gather more items than it necessary need{] On
the contrary agent may omit some items needed by other plans from cleanup.
Structure of cleanup phase is presented on Figure [I.5] After the cleanup, plan
transits to finish state.

In the case of externally induced fail of a plan cleanup phase is never per-
formed, possibly leaving such plan with object residues. Parent plans are made
[2] responsible for those objects and supposed to perform appropriate cleanup.

4Due to object sets and object class sets

13

1.2.5 Finish phase

Finish phase is final phase signalling the plan has finished its execution. When
marked with cleanup flag, cleanup phase is executed at first. This is contributory
both for the plan’s designer, as he can design cleanup behavior either in a separate
phase or in a HRP planE], and programer, as he can easily perform engine specific
tasks (resource management etc.).

1.2.6 Switch out

When suspender, another plan with higher priority, gets active, current plan
needs to be suspended. In order to ensure consistency in agents behavior and
also plan execution, suspendee has special phase, switch out phase, that allows
it to perform some actions and leave agent in consistent state so suspender can
smoothly start its execution (e. g. agent does not hold any items etc.).

1.2.7 Switched

After the plan performs switch out actions, it renders switched and performs no
actions. Later when suspender stops its execution successfully, suspendee resumes
its execution and continues to switch in phase. When suspender fails, suspendee
continues directly to finish phase (i. e. no cleanup is performed).

1.2.8 Switch in

When resuming from switched phase, suspendee needs to recover from the switched
state, for example put some items into agent hands. Switch in phase may follow

directly after switch out plan in case that switching suspender’s releaser ceased
to hold.

1.2.9 Emergency

Emergency phase is special phase and is entered when exceptional circumstances
occurs. The phase is performed immediately, thus can model reflex-like behaviour.
After emergency actions are executed, plan continues in its former state.

50r does not design it at all

14

2. Implementation

We developed a configurable State-Full Hierarchical Reactive Planning Action
Selection Mechanism (SF-HRP ASM) connected to complex 3D environment uti-
lizing the C++ programing language. In this chapter we discuss an architecture
and implementation details. We also elaborate on a choice of connected virtual
environment. We mention a XML input format specifying agents behavior and
describe interface which our implementation provides for external inspection of
SF-HRP plan execution.

2.1 Architecture

The goal of our implementation is to test the SF-HRP concept in complex virtual
environment with respect to the believability and easy design of agent’s behavior
and discuss features and bottlenecks of the concept. We identify four precondi-
tions to achieve the goal.

(a) implementation of SF-HRP ASM configurable with different agent behaviours
(b) virtual environment in which the agent takes its actions

(c) profiling tool for feedback on agent’s behavior in the environment to the
designer

(d) a way of communication among those three parts.
Given the specified preconditions we address following requirements:

1. input format for behaviour specification which is understandable for
designer either directly or with a tool

2. input format parser which collaborates with ASM
3. ASM implementation which understands the input behavioural format

4. choice of virtual environment in form of game engine which is possible
to utilise

5. profiling tool informing on execution of agent’s behavior

6. wrapper managing communication among the virtual environment, the
ASM and the prototyping tool

The requirements 1 to 3 satisfy the precondition (a) and the rest of require-
ments satisfy the preconditions 4 to 6 in given order.

We have designed a XML format for behavior specification. The choice of a
XML technology, structure of the format and design and implementation of the
parser are described in Section and respectively.

The ASM implementation consists of set of mutually interconnected prim-
itives, each primitive reflecting a primitive of SF-HRP concept, e. g. phase

15

30 environment

engine
wrapper "!_"SM
conditions library

Figure 2.1: Architecture of the implementation

of SF-HRP plan, plan rule, condition. Implementation is properly described in
Section [2.4]

Both parser and ASM are designed to be independent on chosen engine. It
means their implementation is not dependent on engine architecture and imple-
mentation, nor actions nor conditions of engine are hard coded directly into the
ASM or parser. This is particularly due to the fact main part of the ASM were
designed before exact engine was chosen and also due to the fact we like the idea
of ASM independent on engine and possibility of engine interchanging, so our
ASM works under different engines without major modifications.

Because the ASM and the parser are independent on the rest of the imple-
mentation and because we prefer easy change of a connected engine we decided
to encapsulate them into a separated subsystem - the library - as shown on Fig-
ure which communicates with rest of the implementation through defined
interface. We call the library SF-HRP library.

The choice of connected virtual environment - the engine - is discussed in Sec-
tion [2.5] The related wrapper utilising engine internal structures, configuration
files and maps used for testing is described in Section [2.6, Wrapper layer is the
only part of our project which needs to be reimplemented in case of use with
different game engine.

We provide only a simple implementation of profiler described in Section
which is closely related to the engine. An implementation of more suitable profiler
that eases design of agent’s behavior is beyond the scope of this thesis.

2.2 Input format for behaviour specification

The input format is proposed in order to ease the design of agents behavior. We
have chosen textual format over binary for it is directly readable by designer.
We prefer XML over any other standard or self-designed format for it is self-
descriptive thus easier to understand and its specification is freely available at
[14]. Document Type Definition (DTD) is included in Appendix [A]

The structure of XML format is designed in order to reflect the concept of
SF-HRP ASM described closely in Chapter [I Agent is driven by set of SF-HRP
plans, each plan triggered by condition. SF-HRP plan consists of separate phas-
es - initialisation, execution, termination, cleanup, etc. The execution phase,
containing most of the agent’s behavior, consist of tree structure of simple plans.

16

Each simple plan contains rules. Among rules is selected agent’s action according
to their properties, i. e. priority, weight, condition, action, flags etc. The struc-
ture of SE-HRP ASM concept is tree-like which corresponds to the tree structure
of well-formed XML document.

We describe the structure on examples of scenarios discussed in Section
included in Appendix Bl Document entity is called agent. Each children element
called sfhrplan specify one SF-HRP plan of the agent. Given the example the
basic scheme of the document (with one SF-HRP plan) is:

<?7xml version="1.0" encoding="utf-8"7>
<!DOCTYPE agent SYSTEM "sfhrp.dtd">
<agent >

<sfhrplan>

</sfhrplan>
</agent >

The sfhrp element consists of element cond describing triggering condition
and elements describing separate phases of SF-HRP plan. The init element for
initialization phase, the hrplan element for execution phase, the term element
for a termination phase and the cleanup for clenaup phase. Finish phase is not
included as it does not require any modifications by designer. Thus the structure
of sfhrp element is:

<sfhrplan>
<cond id="plan-state-full">
</cond>
<init>
</init>
<hrplan entry="onlyone">
</hrplan>
<term>
</term>

<cleanup enabled="true" />
</sfhrplan>

2.2.1 Conditions

A condition is described by cond element. The element optionally contains at-
tribute 4d which serves for condition identification during profiling. The children
elements of cond element are elments elem for atomic condition used by engine
([2.5), and for conjunction, or for disjuntion and not for negation. Atomic condi-
tion elem consist of type of the condition specified by element type and zero or
more parameters, each specified by element param. Condition is interpreted in
postfix order. One of the conditions used in examples is:

<cond id="dog-has-not-ball">
<elem>
<type>COND_DOG_HAS_BALL</type>
</elem>
<not />

17

<elem>
<type>COND_BALL_IN_AIR</type>
</elem>
<and />
</cond>

The condition renders true when an agent ”dog” has not an object ”ball” nor
is waiting for it as the ball is in air.

2.2.2 Initialization phase

An initialization phase contains list of objects to be gathered by agent. The set
is described by list element containing one or more object element, specifying
the object. Object list may be omitted. Initialization phase in which is agent
supposed to gather one object identified as "ball” is described as:

<init>
<list>
<object>ball</object>
</list>
</init>

2.2.3 Execution phase

An execution phase is described by element hrplan. The element contains multiple
children elements plan and attribute entry which is required and specifies root
element of simple plan tree. The plan element describes one simple plan and has
required attribute ¢d which is used for referring to the plan.

<hrplan entry="onlyone">
<plan id="onlyone">
</plan>

</hrplan>

The plan element consist of multiple rule elements, each specifying single plan
rule. Rule is described with elements prio for priority, weight for weight, cond
for condition described in Section exec for action, flags for rule flags and
sttou for sticky flag timout. Rule has optional attribute ¢d used for identification
with profiler.

Element ezec describing triggered action has attribute type which is required.
Attribute specifies explicit success and fail rules, plan rule and action rule. Ac-
tions within action rule are specified by multiple elements action. The element
action has children elements type and params with same semantics as in condition
element elem in Section 2.2.1] The example of plan with action rule and explicit
success rule is:

<plan id="onlyone">
<rule id="rule-throw">
<prio>3</prio>
<weight>1</weight>
<cond id="dog-has-ball">

18

</cond>
<flags></flags>
<exec type="action">
<action>
<type>ACTION_DOG_THROW_BALL</type>
</action>
</exec>
</rule>
<rule id="rule-succ'">

<exec type="success" />
</rule>

</plan>

The flags are specified with children elements sticky for sticky flag, relsafe for
releaser-safe flag and intersafe for interruption-safe flag.

2.2.4 Termination phase

A termination phase has two children elements. In case the execution phase ends
with success then an action specified in succ element is executed, in other case an
action in fail element is executed. Termination phase element may be omitted.

2.2.5 Cleanup phase

A Cleanup phase element signals whether the cleanup is performed after execution
phase. It is specified in attribute enabled.

2.3 Input format parser

The parser reads input file in XML format discussed and specified in Section
which describes behaviour of a virtual agent and produces ASM from primitives
described in Section [2.4] Parser creates and initialises these primitives.

We use libzml2 [6] library and Simple API for XML 2 (SAX2) for parsing.
We have chosen this library for several reasons. At first it is well documented
at [6]. Next reason is libzxml2 is distributed under MIT license which allows
easy integration with different licenses. Finally libxml2 integrates well with C++
which is implementation language of our application. We use SAX2 API over
Document Object Model (DOM) for we do not need to traverse the document
tree. The input format is designed in such a manor sequential reading of
input is sufficient.

Parser consist of three main parts. These are parser state, parser logic based
on state of parser and factory which provides interface for use of the parser from
outside the library. We describe these parts separately.

Parser state

Parser state in form of object C'ParserState is passed by libxml2 library to our
callbacks for SAX2 API. Parser state holds information on state of the parser

19

itself, information for generating ASM primitives, e. g. string identifiers and
plan priorities, and created and particularly created primitives, e. g. plans and
conditions, for further processing and integration into ASM.

Parser logic

As mentioned above, we use SAX2 for purposes of our library. This API uses
callbacks for different events occurring when input file is parsed by libzmi2 [0].
We use callbacks for a starting element, an ending element and characters within
an element. These callbacks are implemented as static members of C'PlanParser
object. This object also provides error handling for errors connected with input
file format.

ASM Factory

Interface to the parser for use from outside the library is provided by means of
factory object CSFHRPFactory. This interface is described in [2.4.1] The factory
object initialises parsing, calls librml2 service and propagates constructed ASM
or reports error from out of the library to the user of the library.

2.4 ASM Implementation

The SF-HRP ASM is constructed by parser, described in 2.3, The implemented
ASM has hierarchical structure, corresponding to structure of SF-HRP described
in chapter [1]

The top level contains set of SF-HRP plans and select active plan with regard
to the holding condition, priority and plan switching behavior. This is the only
level of ASM which ought to be manipulated directly by user of the library.

SF-HRP plan consists of primitives for different phases (eg. for initialization,
execution, cleanup, ...) and selection among these based on figure |3| Plan also
holds its triggering condition and propagates information on condition activa-
tion and deactivation to the upper level. The most important are initialization,
cleanup and execution phase. Both initialization and cleanup communicates with
engine and manages manipulation with objects used by agent. Execution phase
represents original HRP of which is SF-HRP extension.

The execution phase - original reactive plan - is implemented as tree structure
of plan nodes and action nodes. Plan nodes are inner nodes of the tree and
represent children plans. Plan nodes propagate action selection between levels of
the tree with respect to sticky, interruption safe and releaser safe flags. Action
nodes create leaf nodes of the three. In action nodes is selected actual action.
Both action and plan nodes are triggered by condition. From implementation
point of view these conditions are the same conditiona which are used in case of
SF-HRP plans, mentioned above.

The ASM is implemented as set of primitives mutually linked together. Each
primitive is represented by C++ object. We describe the most important of these
objects further.

20

SF-HRP ASM

On top of the ASM hierarchy is object of CSFHRPASM class returned by factory
CSFHRPFactory, described in This object realises plan selection according
to the top level plan selection algorithm [2]. Condition subsystem used for plan
releasers is common to multiple classes and is discussed below. CSFHRPASM
stores SF-HRP plans and is responsible for their destruction.

SF-HRP plan

SF-HRP plan represents state machine extension to the original HRP concept.
We implement this plan logic with CSFHRPPlan class, every SF-HRP plan of
agent is instantiated as an object of this class. This object is mainly responsible
for HRP plan selection acording to Algorithm [3] It delegates request for action
code to appropriate phase of plan, every phase represented by single object. We
discuss notable object/phases further in text below. We use dedicated object for
every phase as it allows to change behavior of agent in certain state of the plan
only by reimplementation of this object.

Initialization phase

The object representing initialisation phase communicates with connected virtual
world via IEngineDescriptor interface. This object is responsible for acquisition
of objectfl used by agents. It cooperates with cleanup object in order to keep
consistency in object acquisition and cleanup.

Cleanup phase

The object representing cleanup phase communicates with connected virtual
world via IEngineDescriptor an initialization phase object. It is responsible for
cleanup of objects acquired in cleanup phase.

Execution phase

Execution phase encapsulates original HRP plan behavior and is represented by
object of ReactivePlanner class. Object contains recursive rooted tree structure
of SimplePlans and redirects requests for action code on it, with respect to the
InterruptSafe, ReleaserSafe and Sticky flags. This object also stores pointers to
all SimplePlans in tree and manages their destruction. We prefer this imple-
mentation over recursive destruction of the tree as it allows us to share common
subtrees on SimplePlan structure.

SimplePlan tree

Objects of SimplePlan serves as nodes of be-tree and containers for plan rules.
Simple plan chooses its rule with holding releaser and highest priority and prop-
agates action selection to it. Rules use the same condition subsystem for their
releasers as SF-HRP plans. Condition structure is discussed below. Rules are
derived from class BaseRule and are of two types:

1Objects in virtual world, e. g. virtual axe or ball.

21

ActionRule class object contains sequence of action codes obtained via getAc-
tion() method of IEngineDescriptor interface. This object is effectively on
lowest position in whole structure of the SF-HRP ASM and represents leaf
of the be-tree.

PlanRule class object basically contains pointer to another SimplePlan class
object and passes action selection on it. This object represents internal
node of be-tree.

Conditions

We use conditions in form of doubly linked rooted trees consisting of elementary
conditions, which are understood and set to appropriate value by engine via
wrapper and SetCondition method of ASM object, and boolean operators and,
or and not. Elementary conditions represent leaves and operators inner nodes
of condition tree.

We use doubly linked tree in order to minimise cost of reevaluation of con-
dition tree. Single condition tree is reevaluated only when some of its elemental
conditions change its value. Such a change is propagated into parent nodes and
is stopped when does not change logical value of an internal node.

These condition trees are used both as top level releasers of SF-HRP plans
and releasers of rules in HRP plans. There is no need for distinguishing between
plan and rule conditions. It also ease construction of XML input file parser.

2.4.1 Public interface

Our library communicates with engine wrapper through defined interface in order
to hide implementation details and restrict source code dependencies. We describe
this interface and its intended usage separately from library internal structure.
Although classes in our library contain many public members, many of them are
not intended for direct use from within the wrapper. We decided to leave this
members public rather than implement them as private/protected and use C++
friend construct where necessary. This approach possibly allow further extensions
to our library, e. g. online be-tree modifications mentioned in [2]. We does not
mention these in description of public interface of our library. We also take closer
look at implementation of input file parser and discuss choice of used library.
Creation on SF-HRP planner from given input file is complex, multiple step
procedure as input file needs to be parsed and different objects of plan dynami-
cally instantiated and linked together. Our library provides factory for this task:

class CSFHRPFactory {
public:
static CSFHRPASMx* CreateASM(
std::string path,
IEngineDescriptor* engineDescriptor,
IInspector* inspector = null;
)
s

22

We have to provide this factory with path to input file specifying agents
behavior in XML format discussed below, engine descriptor object and ASM
inspector object. Although our library is engine independent, it must negotiate
some common context with engine it is collaborating with. For this reason it
must be provided with object implementing [EngineDescriptor interface:

class IEngineDescriptor {
public:

virtual int RegisterCondition (
std::string type,
std::vector< std::string> params
) = 0;

virtual int RegisterAction(
std::string type,
std::vector< std::string> params
) = 0;

virtual int GetIdleAction(
std::string type,
std::vector< std::string> params
) = 0

}s

Methods RegisterConditon and RegisterAction returns codes of conditions and
actions based on type and parameter textual identifiers loaded from input file.
RegisterCondition also informs engine which conditions does library expects to
be informed of. GetldleAction method provides code for idle action.

We use integer codes for conditions and actions in order to minimise data
transfer between engine and our library during plan execution. Textual iden-
tifiers are necessary only when initializing an agent. This also allows certain
abstraction of our SF-HRP ASM implementation which does not need under-
stand nor conditions from engine nor actions of agent and lays engine/wrapper
responsible for textual identifier representation thus those are not hard-coded in
library.

Factory may be optionally provided with inspector object. This object is in-
tended for propagation of information on changes of internal state of the planner,
regardless who is receiver of this information. It may be both engine itself as in
case of our implementation displaying these changes in developer console or
some third-party prototyping tool, e. g. Pogamut [10]. Expected informer object
must implement following interface:

class IInspector {
public:

virtual void
processEvent (int, std::string) = 0;

};

23

Implementation of IInspector is provided with code of event and id of element
in input file if available on which event occurred. We define following events:

COND_ACT when condition is activated

COND _DEACT when condition is deactivated

ACTION_SEL when action in action rule is selected for execution
RULESUCC_SEL when explicit success rule is selected for execution

RULEFAIL _SEL when explicit fail rule is selected for execution

User of the factory is responsible for destruction of returned object. Created
SF-HRP planner has following public interface:

class CSFHRPASM {
public:

void SetCondition (
int condition,
bool value

)

int GetAction () ;
};

Object of CSFHRPADMS expects engine to inform it of changes of elemental
conditions via SetCondition. Object provides action code via GetAction on de-
mand. Our library is deliberately designed in this manor not to restrict its use
to certain engine architecture. Collaborating engine may require both synchro-
nization of agent actions with its internal ticks or fetch agent action on demand?|
and it does not affects architecture of our library, only requires engine wrapper
to correctly pass requests of engine to our code.

2.5 3D environment

The aim of our thesis is to test SF-HRP concept in much more complex and
believable environment than the simple prototype in [2] is. We believe reasonable
choice for such a task is modern 3D game engine with modding support. There
are several game engines available, even with further development tools for easier
manipulation with many source files which such a complex piece of software needs
for its correct function, We were choosing between these development toolkits:

Source SDK and Source Engine by Valve Software [4], used in games Half Life
2, Left 4 Dead, Portal etc.

UDK, Unreal Developer Kit and Unreal Engine by Epic Games [5] used in
games as Unreal Tournament 3, Gears of War or BioShock Infinite.

20r even any other approach

24

Either of these two satisfies our demand on complex, visually attractive 3D
world with wide range of agent actions as a result of many different signals from
environment. Both are also quite well-documented by developer, with wide com-
munity of users on forums and mailing lists. They are equally written in the C++
programing language.

We have chosen Source SDK for following reasons:

e Unreal engine manages low level tasks as graphics, and use UnrealScript
language for authoring gameplay events as Al. Source Engine has no such
scripting layer and keeps this logic directly in compiled C++ source code,
therefore we believe it is more suitable for fast-running AI implementation
which is one of subjects of our thesis.

e Source Engine allows user to create mods| for existing Source game and
deploys many of the contents in ready to use state. Unreal on the other
hand is intended to create stand-alone games. As we do not intend to
develop game but rather test particular ASM concept we believe Source
Engine is more suitable as it leaves less unrelated game-development work
in our hands.

2.6 Wrapper

We have chosen Source Engine from Valve Sofware as virtual environment of the
implementation for reasons discussed in[2.5] Source SDK is distributed as binary
executable, the engine itself, a set of tools generating source code project - source
code of parts of game dedicated for modding - and tool working with used maps
and models of which the Hammer Map Editor is of our interest. Every mod is
based on existing game, using Source Engine, and provides access particularly to
its content, i. e. some of the C++4 source code of game entities, some game map
sources and some model sources.

We have used Half Life 2 Multiplayer as a base game for our mod. Half Life is
better documented by official Valve Developer Community [4] than other games
and Half Life 2 Singleplayer version was not available with our version of SDK.
C++ sources of our mod compiles into to dynamically linked libraries Server.dll
and Client.dll. The game is executed as original multiplayer binary with these
two dynamic libraries.

We have decided to incorporated SE-HRP ASM directly into Server.dll. Our
ASM is connected to agent entity in game through proxy class. This solution
minimises costs and latency of communication between agent and library as it is
the most direct way of communication between engine and library with no unnec-
essary maintenance overhead. It also does not introduce any issues unrelated to
subject of out thesis, as interprocess or network communication implementation
issues.

Source Engine original implementation of Al of non-player characters (NPC)
is based on schedules and NPC specific schedule selection method. Schedules con-
sists of tasks and specify interrupting conditions. NPC’s classes create complex,

3The "mod” is generally understood by community and used by Valve with respect to the
Source Engine as a game modification

25

multiple inherited hierarchy with shared task, implemented in upper levels of hi-
erarchy, common to all or only to specific NPC’s (e. g. actors, player companions,
enemy NPC’s, etc.).

Task registration and schedule specification is done entirely with preprocessor
macros, which is rather cryptic. It further complicates the situation that many
Al-related problems are detected as late as in run time or even not detected and
silently ignored (e. g. malformed schedules).

Tasks used in schedules also does not correspond observable actions on agent
nor corresponds level of abstraction we presume in Chapter|(l|. For example task
sequence

TASK_GET_PATH_TO_PLAYER

TASK_RUN_PATH
TASK_WAIT FOR_.MOVEMENT

TASK_DOG_FACE_PLAYER

TASK_FACE_IDEAL

corresponds action "Go to player”. Situation is further complicated with
model animations, which require dedicated task in order to play animation and
any other necessary computations must be done in separate task. This actions
are also poorly documented, which hardens extending NPC’s capabilities beyond
those already present in source code.

Conditions in terms of Source Engine are divided into non-explicit changes of
internal properties of NPC’s and explicit input functions and output properties.
Input functions and output properties are exported via textual metafile describing
their interfaces into Hammer Map Editor, where designer connects game entities
through them.

In light of these facts we decided to represent agent’s atomic actions in terms
of SF-HRP as short, uninterruptible schedules in terms of Source Engine. Con-
ditions are hard-coded on appropriate places in source code [We present our
sample wrapper as modification of original final NPC class in NPC hierarchy,
thus inherited from base NPC classes and incorporated into hierarchy for bet-
ter cooperation with engine. Textual action and condition related identifiers are
translated into Source internally used enums by helper class.

Our agent - wrapper is based on a Dog entity which appeared in Half-Life 2
Singleplayer. Dog provided with SDK has only limited capabilities, i. e. move-
ment, which is inherited from parent classes of entity, and capabilities regarding
object catching and throwing. Adding new activities of the Dog demands changes
in Dog’s entity model and their propagation into source code which is beyond the
scope of this thesis. However are Dog’s limited capabilities problematic capa-
bilities of the other NPC entities are similarly limited or limited only to the
movement thus choice of another entity as base for the wrapper is not solving it.

4As their are already hard-coded by design.

26

2.7 Profiler

We provide only simple implementation of the profiler. More advanced implemen-
tation which collaborates with external tools is beyond the scope of the thesis.
Our implementation displays information on execution of agent’s behavior in de-
velopers console which is built-in textual output within source engine. Processed
events are:

e activation of a condition
e deactivation of a condition

e selection of either action rule or explicit success rule or explicit fail rule

The instance of profiler is unique within library and with single global point
of access. This implementation ensures that every object has access to the (same)
instance of profiler without the burden of passing that instance around. We use
ClnspectorHolder class similar to Singleton pattern [15] for access to the profiler
instance. The class is not intended for instantiation as Singleton, it provides
static interface for event processing instead.

27

3. Scenarios

We presented SF-HRP ASM concept in Chapter [I] and implementation thereof
in Chapter [2} In this Chapter we present scenarios and address issues related to
the process of their creation.

The capabilities of the SF-HRP driven agent in our application are limited
due to reasons described in Section [2.6] This decreases the complexity of pos-
sible scenarios thus presented examples are demonstrating only basic features.
However this basic scenarios are sufficient to demonstrate certain bottlenecks.

The both of are scenarios are based on NPC called the Dog, object called ball
and its manipulation through physgun - weapon capable of picking, catching and
throwing of objects. All the items are pictured on Figure Installation of the
implementation and execution of the scenarios is described in Appendix [C]

3.1 Scenario A

The scenario presents basic features of SRP. The Dog tries to grab the ball. When
the Dog grabs the ball it throws the ball to the player. When the player gets the
ball and throws it to the Dog, regardless if he caught it or picked it from ground,
the Dog waits for catch. When the Dog catches the ball it throws it back. When
the Dog miss the ball, it attempts to grab the ball from the ground and throw it
to the player. The scenario then continues allowing to test different combination
of player - Dog catches and misses of the ball. Source XML file of the scenario is
included in Appendix

3.1.1 Conclusion

Given the conditions "dog has ball” and ”ball is in the air” and actions for
grabbing, catching and throwing the ball the design of Dog’s behavior is rather
straightforward as sees on included example. The only glitch is ever satisfied
guard rule performing idle action.

Figure 3.1: In-game screenshot

28

Besides the straightforward design of the behavior we identify two issues in
this Scenario. The Dog in scenario seem lazy, it takes observable delay before
it goes for the missed ball though profiler displays both corresponding condition
activation and rule selection simultaneously. After further inspection of the prob-
lem we have found the delay is caused by the way Source Engine manipulates the
Al According to the documentation [4] the engine calls methods resolving agent
actions - lets the agent think - every one second. Originally used AI does not
suffer this problem as it works on much lower version of abstraction. Actions we
consider atomic are in this representation sequences of tasks usually ended
with suggestion on following sequence of actions.

The second issue is more technical and harder to observe. In some cases of
manipulation with the ball and interaction with the player the Dog gets stuck idle
though profiler is signalling proper condition states and proper action selection.
After the further debugging of the source code we have found the Dog is unable to
complete some task of which the Dog’s action consists, e. g. thrown ball has col-
lided with the Dog and interrupted the catching. In the original Al this problem
is solved with task sequence interruptions on the lower level of abstraction than
are the tasks. This is conceptual problem as the SE-HRP ASM does not address
handling of low level events which is in Source Engine originally implemented as
part of Al

3.2 Scenario B

The scenario presents stateful features of SF-HRP ASM - the phases. In initial-
ization phase the Dog grabs the ball. The execution phase is simple. If the Dog
has the ball it attempts to throw the ball to the player and waits. When the ball
hits the ground execution phase ends with failure. If player catches the ball the
execution phase end with success. In termination phase the dog "dances” in case
of success. In case of failure the Dog runs towards ball to see where the ball hit

the ground. Source XML file of the scenario is included in Appendix

3.2.1 Conclusion

Given proper conditions and action similar to the condition and action in the pre-
vious example the design of Dog’s behavior is still straightforward. The behavior
is clearly divided into sections which we consider contributory. The complexity
of execution phases is low in comparison to the Scenario A.

The problems are same as in previous example. Agent is particularly unre-
sponsive and may get stuck occasionally.

29

Discussion

We believe the behavioural input format helps to decrease complexity of design
of agent’s behavior, because it reflects the SF-HRP concept with well-defined
mapping of concept’s primitives e. g. conditions, plans, rules, etc. to the XML
elements.

The concept has proven simple from implementation point of view. The imple-
mentation of action selection mechanism is straightforward, the primitives of the
concept are relatively separated and communication among them limited which
simplifies the design. Used algorithms restricts to those described in the thesis
and to the C++ Standard Template Library. Input file format allows parser to
use libxml’s SAX2 API resulting in lesser parsing time and smaller representation
in memory than DOM APIL.

The library is in our implementation used synchronously. In every cycle are
set elementary conditions and then requested appropriate action. For n being
maximal count of elementary conditions in a condition and m number of ele-
mentary conditions changing its value is time complexity of conditions setting
O(log(n)*m). Action selection uses STL maps for accessing primitives according
to priority. With n being number of SF-HRP plans, m maximal count of HRP
plans in an execution phase an o maximal count of rules in a HRP plan is due
to fixed number of phases in SF-HRP plan resulting time complexity of action
selection O(log(n) * log(m) * log(0)).

Although the profiler was helpful with designing the agent’s behavior more
advanced implementation possibly communicating with external tools would be
appropriate to evaluate the revenue.

The most disappointing has show the choice of virtual environment. Features
of Source Engine with respect to Al reimplementation were unsatisfactory. Limits
in available actions of the agent significantly restricts possible scenarios. Such
scenarios does not test the SF-HRP concept in a manor we hoped for.

We have not found bottlenecks neither in implementation nor in timely fashion
of the concept nor in use with testing scenarios. Although the lack of bottlenecks
connected with scenarios is probably be caused by only very limited scenarios
which are not testing SF-HRP capabilities properly.

30

Conclusion

We have designed input behavioural format. We provided implementation of
SF-HRP ASM connected to 3D environment and example scenarios in the input
format which can be tested with the implementation.

We have shown that the concept and the input format allow description of
agent’s behavior in simple, understandable way. State-Full extension of HRP
concept has proven contributory in reducing HRP complexity.

However the choice of virtual environment has proven problematic. The en-
gine limits available action of the agents and addition of the actions exceeds
modifications of provided source codes. It restricts possible scenario to combi-
nations of only a few actions. Another problem was that SF-HRP ASM concept
is much more abstract than original Al mechanism which is closely related the
engine implementation details.

The profiling of SF-HRP plan, even as simples as presented implementation
is, has proven worthy both in design of the agent’s plan and in addressing the
engine issues.

31

Future work

We identify as the most significant task in future to overcome the limitations of
chosen engine. Though we have shown contributions of SF-HRP ASM and input
format with respect to the agent’s design, believability of a behavior produced by
the concept is still undetermined. It is uncertain whether the problem is related
only to the chosen engine or is the feature of the concept. The implementation of
the wrapper above SF-HRP library with different engine should give satisfactory
answer.

There is also possibility of extending implementation of profiler for commu-
nication with external tools. Such an implementation would answer the question
of full revenue of the profiler.

Presented implementation does not take all features of SF-HRP presented
in [2] in account. Our library could be extended with some of these features, e.
g. online modifiable be-trees.

32

Bibliography

1]

[11]

Browm, Cyril. Hierarchical reactive planning: Where is its limit?. In Proceed-
ings of MNAS - Modelling Natural Action Selection. Edinburgh, Scotland,
2005.

PLcH, Tomas. Action Selectin for an Animat. Prague, 2009. Diploma thesis.
Charles university in Prague.

RUSSEL, Stuart; NORVIG, Peter. Artificial Intelligence: A Modern Approach.
3e. Prentice Hall, 2010.

Valve Developer Community [online]. 2011 [2011-08-03]. WWW: <http://
developer.valvesoftware.com>

Unreal Development Kit [online]. 2011 [2011-08-03]. WWW: <http://www.
udk . com/>

The XML C parser and toolkit of Gnome [online]. 2011 [2011-08-03]. WWW:
<http://xmlsoft.org/>

BRYSON, Joanna J.; STEIN, Lynn Andrea. Modularity and Design in Reac-

tive Intelligence. In Proceedings of the 17th international joint conference on
Artificial intelligence. San Francisco, CA, USA, 2001.

The Sims 3 [online]. 2011 [2011-08-03]. WWW: <http://www.thesims3.
com/>

MATEAS, Michael. Interactive Drama, Art and Artificial Intelligence. Pitts-
burgh, PA, USA, 2002. Thesis. Carnegie Mellon University.

GEMROT, Jakub; KADLEC, Rudolf; BIDA, Michal; BURKERT, Ondfej; PI-
BIL, Radek, HAVLICEK, Jan; ZEMCAK, Luk&as; SiMLOVIC, Juraj; VANSA,
Radim; STOLBA, Michau; PLcH, Tomas; BrRoM, Cyril. Pogamut 3 Can As-
sist Developers in Building Al (Not Only) for Their Videogame Agents. In
Agents for Games and Simulations. LNCS 5920, Springer, 2009.

GONZALEZ, Pedro. P., NEGRETE, José; BARREIRO, Ariel; GERSHENSON,
Carlos. A Model for Combination of External and Internal Stimuli in the
Action Selection of an Autonomous Agent. In Proceedings of the Mexican
International Conference on Artificial Intelligence: Advances in Artificial
Intelligence. London, UK, 2000.

FRIEDLANDER, David; FRANKLIN, Stan. LIDA and a Theory of Mind. In
Proceeding of the 2008 conference on Artificial General Intelligence 2008:
Proceedings of the First AGI Conference. Amsterdam, Netherlands, 2008.

PFEIFER, Rolf; SCHEIER Christian. Understanding Intelligence. MIT Press,
2001.

Extensible Markup Language (XML) 1.0. W3C, 2008. WWW: <http://
www.w3.org/TR/xml/>.

33

http://developer.valvesoftware.com
http://developer.valvesoftware.com
http://www.udk.com/
http://www.udk.com/
http://xmlsoft.org/
http://www.thesims3.com/
http://www.thesims3.com/
http://www.w3.org/TR/xml/
http://www.w3.org/TR/xml/

[15] SHALLOWAY, Alan; TROTT, James. Design Patterns Explained: A New Per-
spective on Object-Oriented Design. 2e. Addison-Wesley, 2004.

34

List of Figures

(1 SimsJ3 in-game screenshot|o 0oL 3
(I.1 SRP plan diagram| 7
(1.2 HRP plan diagram| 8
[1.3 state diagram of SF-HRP| 11
(1.4 termination phasel L 12
(1.5 cleanup phase] o 13
[2.1 ~ Architecture of the implementation 16
[3.1 In-game screenshot| oL 28

35

List of Abbreviations

AT Artificial Intelligence

ASM Action Selection Mechanism

DTD Document Type Definition

HRP Hierarchical Reactive Planning, Section [I.1.2]

SF-HRP State-Full Hierarchical Reactive Planning, Section
SRP Simple Reactive Planning, Section [I.1.1]

XML Extensible Markup Language

36

A. XML input format

A.1 Document type declaration

<!DOCTYPE

agent SYSTEM "sfhrp.dtd">

A.2 Document type definition

<!DOCTYPE
<!ELEMENT
<!ELEMENT
<IELEMENT
<IVATTLIST
<!ELEMENT
<!ELEMENT
<!'ELEMENT
<IELEMENT
<IELEMENT
<!ELEMENT
<!ELEMENT
<!VELEMENT
<IELEMENT
<IELEMENT
<VATTLIST
<!ELEMENT
<IVATTLIST
<!ELEMENT
<VATTLIST
<IELEMENT
<!ELEMENT
<!ELEMENT
<VATTLIST
<IELEMENT
<IELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<IELEMENT
<IELEMENT
<IELEMENT
<!ELEMENT
<!ELEMENT
<IVATTLIST

agent [

agent (sfhrplan+)>

sfhrplan (cond, init, hrplan,
cond (elem|and|or|not)*>

cond id ID #IMPLIED>

elem (type, paramx)>

and EMPTY>

or EMPTY>

not EMPTY>

type (#PCDATA)>

param (#PCDATA)>

init (list?)>

list (object+)>

object (#PCDATA)>

hrplan (plan+)>

hrplan entry IDREF #REQUIRED>
plan (rule+)>

plan id ID #REQUIRED>

rule
rule id ID #IMPLIED>
prio (#PCDATA)>

weight (#PCDATA)>

exec (#PCDATA|action)*>

exec type (success|faillplan|action) #REQUIRED>

action (typelparam+)>

flags (stickylrelsafe|intersafe)*>
sticky EMPTY>

relsafe EMPTY>

intersafe EMPTY>

sttout (#PCDATA)>

term (succ,fail)?>

succ (#PCDATA)>

fail (#PCDATA)>

cleanup EMPTY>

term,

cleanup) >

(prio,weight ,cond,flags,exec,sttout?)>

cleanup enabled (truelfalse) #REQUIRED>

37

B. Input examples

B.1 Scenario A

<?7xml version="1.0" encoding="utf-8"7>
<!DOCTYPE agent SYSTEM "sfhrp.dtd">
<agent>
<sfhrplan>
<cond id="do-catch-throw">
<elem>
<type>COND_DOG_CATCH_THROW</type>
</elem>
</cond>
<init>
</init>
<hrplan entry="onlyone">
<plan id="onlyone">
<rule id="rule-catch">
<prio>3</prio>
<weight>1</weight>
<cond id="dog-has-not-ball">
<elem>
<type>COND_DOG_HAS_BALL</type>
</elem>
<not />
<elem>
<type>COND_BALL_IN_AIR</type>
</elem>
<and />
</cond>
<flags></flags>
<exec type="action">
<action>
<type>ACTION_DOG_CATCH_BALL</type>
</action>
</exec>
</rule>
<rule id="rule-get">
<prio>2</prio>
<weight>1</weight>
<cond id="dog-has-not-ball">
<elem>
<type>COND_DOG_HAS_BALL</type>
</elem>
<not />
</cond>
<flags></flags>
<exec type="action">
<action>
<type>ACTION_DOG_GET_BALL</type>
</action>
</exec>
</rule>
<rule id="rule-throw">
<prio>1</prio>
<weight>1</weight>

38

<cond id="dog-has-ball">
<elem>
<type>COND_DOG_HAS_BALL</type>
</elem>
</cond>
<flags></flags>
<exec type="action">
<action>
<type>ACTION_DOG_THROW_BALL</type>
</action>
</exec>
</rule>
<rule id="rule-fallback">
<prio>0</prio>
<weight>1</weight>
<cond id="true">
<elem>
<type>COND_TRUE</type>
</elem>
</cond>
<flags></flags>
<exec type="action">
<action>
<type>ACTION_DOG_IDLE</type>
</action>
</exec>
</rule>
</plan>
</hrplan>
<cleanup enabled="true" />
</sfhrplan>
</agent>

B.2 Scenario B

<?xml version="1.0" encoding="utf-8"7>
<!DOCTYPE agent SYSTEM "sfhrp.dtd">
<agent>
<sfhrplan>
<cond id="plan-state-full">
<elem>
<type>COND_DOG_CATCH_THROW</type>
</elem>
</cond>
<init>
<list>
<object>ball</object>
</list>
</init>
<hrplan entry="onlyone">
<plan id="onlyone">
<rule id="rule-throw">
<prio>3</prio>
<weight>1</weight>
<cond id="dog-has-ball">

39

<elem>
<type>COND_DOG_HAS_BALL</type>
</elem>
</cond>
<flags></flags>
<exec type="action">
<action>
<type>ACTION_DOG_THROW_BALL</type>
</action>
</exec>
</rule>
<rule id="rule-succ">
<prio>2</prio>
<weight>1</weight>
<cond id="player-has-ball">
<elem>
<type>COND_PLAYER_HAS_BALL</type>
</elem>
</cond>
<flags></flags>
<exec type="success" />
</rule>
<rule id="rule-fail">
<prio>2</prio>
<weight>1</weight>
<cond id="ground-has-ball">
<elem>
<type>COND_BALL_ON_GROUND</type>
</elem>
</cond>
<flags></flags>
<exec type="fail" />
</rule>
<rule id="rule-guard">
<prio>1</prio>
<weight>1</weight>
<cond id="ever-satisfied">
<elem>
<type>COND_TRUE</type>
</elem>
</cond>
<flags></flags>
<exec type="action">
<action>
<type>ACTION_DOG_IDLE</type>
</action>
</exec>
</rule>
</plan>
</hrplan>
<term>
<succ>ACTION_DOG_REJOICE</succ>
<fail>ACTION_DOG_SHAKE</fail>
</term>
<cleanup enabled="false" />
</sfhrplan>

</agent>

40

C. Installation

The implementation requires licenses of Source Engine game as Source SDK is
available only with these games. The installation process is:

1. install Steam client application, installation package and official support is
available at

http://store.steampowered.com/

Do not be afraid nor to read the manual nor to contact the official support
in any case of trouble.

2. run Steam client

3. install ”Source SDK Base 2007” from tools section (select Library section,
filter TOOLS, find ”Source SDK Base 2007” in list of tools, right click and
select "Instal Game...” from context menu)

4. copy directory "bepoc” from included DVD into

"C:\Program Files\Steam\SteamApps\sourcemods\"

where

"C:\Program Files\Steam\"

is Steam installation directory

5. create batch file with content (or edit properly the batch file included on
DVD)

@"C:\Program Files\Steam\AteamApps\<account>\Source SDK
Base 2007\hl2.exe" -dev -game "C:\Program Files\Steam\
bcpoc" -allowdebug %1 %2 %3 %4 %5 %6 %7 %8 %9

where

"C:\Program Files\Steam\"

is Steam installation directory and

"<account>"

is the name of used Steam account.

6. run the game via the batch file, in any case of trouble run ”Source SDK
Base 2007” either from Steam client or system tray Steam context menu.
(system tray, right click Steam icon, select ”Source SDK Base 2007”) and
try to run the game again

The scenarios are started via Create server — select Map — Start from main
menu as seen on following picture. Each map corresponds a scenario.

41

Console

FIND SERVERS

CREATE SERVER

OPTIONS

QuIT

bcpoc_ct - Scenario A

bcpoc_sf - Scenario B
Player holds physgun used for manipulation with the ball. The ball is pulled,

grabbed and caught with right mouse button. The ball is thrown with right
mouse button.

42

	Introduction
	Motivation
	Thesis Structure

	State-Full Hierarchical Reactive Planning
	Reactive Planning
	Simple Reactive Planning
	Hierarchical Reactive Planning
	Improvements of Hierarchical Reactive Planning

	State-Full extension to HRP
	Initialization phase
	Execution phase
	Termination phase
	Cleanup phase
	Finish phase
	Switch out
	Switched
	Switch in
	Emergency

	Implementation
	Architecture
	Input format for behaviour specification
	Conditions
	Initialization phase
	Execution phase
	Termination phase
	Cleanup phase

	Input format parser
	ASM Implementation
	Public interface

	3D environment
	Wrapper
	Profiler

	Scenarios
	Scenario A
	Conclusion

	Scenario B
	Conclusion

	Discussion
	Conlusion
	Future work
	Bibliography
	List of Figures
	List of Abbreviations
	XML input format
	Document type declaration
	Document type definition

	Input examples
	Scenario A
	Scenario B

	Installation

