
CE,{u ∶ α}, h context⊢ cx ∶ θ
IE′sup = vs ∶̃ θ

IEsup = ∀α.Γα ⇒̃ IE′sup⟨CE,TE ∪ {u ∶ α},DE⟩ sigs⊢ sigs ∶ V Esigs

i ∈ [1, n] ∶ GE, IE ⊕ {vd ∶ Γα}, V E
method⊢ bindi ↝ fbindi ∶ V Ei

V E1 ⊕ . . .⊕ V En ⊆ V Esigs

α = uκ

Γ = Bκ

CE, IE ⊕ IEsup, CE,V E, cs
dinstDecls⊢ didecls↝ dibinds ∶ IEdi

CE′ = {B ∶ ⟨Γ, h, vdef ,α, IE′sup⟩}
V E′ = ∀α.Γα�⇒cV Esigs

GE = ⟨CE,TE,DE⟩
Jdict,vs,vdef fresh

GE, IE,V E
ctDecl⊢ class cx ⇒ B u where

sigs;
bind1; . . . ; bindn;
didecls;

↝
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

data Γ̂ = Jdict{ÎE′sup, V̂ Esigs,};
vdef ∶ (∀α.Γ̂α → Γ̂α)= Λα.λvd ∶ (Γ̂α).Jdictα{fbind1, . . .fbindn};
dibinds

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭∶ ⟨CE′,{},{}, IEsup ⊕ IEdi, V E′⟩
Figure 4.2: New semantics of class declarations

Rule 3 Select an instance Ii a such that for any other instance In a holds

In a ≺ Ii a
The motivation for the Rule 1 is to preserve backward compatible behavior, i.

e. to select existing instances, and to enable user to provide his own implemen-
tation of the instance. We propose to issue a warning when a proper instance is
selected over default instance.

The motivation for the Rule 2 is to decide between two instances that are not
superclass of each other. In this case we omit them both and try to select their
common ancestor. We expect the ancestor to be general–or abstract–enough to
provide sufficient default instance.

In the Rule 3 we have possibly several instances that are all either a superclass
or a subclass of each other. The ratio behind the rule is to select the instance
which is the least abstract, i. e. the most specific. We expect this instance to
provide possibly better implementation regarding the performance as it has the
most specific problem related information.

4.3.2 Semantics of the Extension

In this section we provide static semantics of our extension. Default instances
require a change on the ctDecl inference rule described in the Figure 4.2. This

46

i ∈ [1, n] ∶ CE
dinstCtx⊢ dinstDecli ∶ {Γi τi}

cx′ = cx+ ∖ {Γi τi . . .Γn τn}+
i ∈ [1, n] ∶ GE, IE,V E, cx′ dinstDecl⊢ dinstDecli ↝ bindsi ∶ IEi

GE, IE,V E
dinstDecls⊢ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dinstDecl1;
. . . ;
dinstDecln;

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ↝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
binds1;
. . . ;
bindsn;

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ∶ IE1 ⊕ . . .⊕ IEn

T ∶ χ ∈ TE
i ∈ [1, n] ∶ αi = uκi

i

C ∶ ⟨Γ, h, xdef ,α, IEsup⟩ ∈ CE

CE,{u1 ∶ α1}⊕ . . .⊕ {un ∶ αn}, context⊢ cx ∶ θ
i ∈ [1,m] ∶ GE, IE ⊕ vs̃∶θ, V E

method⊢ bindi ↝ fbindi ∶ V Ei

V Eops[χ α1 . . .αn/α] = V E1 ⊕ . . .⊕ V Em(∀α.Γ α⇒c V Eops) ⊆ V E(x1, . . . , xn) ∶̃ θsup = IEsup

IE ⊕ vs ∶̃ θ dict⊢ (e1, . . . , en) ∶ θsup[χ α1 . . .αn/α]
GE = ⟨CE,TE,DE⟩

IEinst = {vdict ∶ ∀α1 . . .αn.θ⇒ Γ(χ α1 . . .αn/α)
vs,vdict fresh

GE, IE,V E, cx
dinstDecl⊢ default instanceC (T u1 . . . uk)where

bind1; . . . ; bindm

↝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vdict;∀α1, . . . ,αk.θ̂ → Γ̂ (χ α1 . . .αk)= Λα1, . . . ,αk.λvŝ∶θ.
let rec vd ∶ Γ̂ (χ α1 . . .αk)= (xdef (χ α1 . . .αk)vd){

x1 = e1; . . . ;xn = en;
fbind1; . . .fbindn} in vd

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭∶ IEinst

Figure 4.3: Semantics of default instance declarations

change requires new inference rule dinstDecls.
The new inference rules dinstDecls and dinstDecl transform default in-

stances into the same representation as original rules transforms ordinary in-
stances. These rule are also modeled in a similar way to instDecls and instDecl

respectively.
The new inference rule dinstCtx gathers annotated class names from a default

instnace declaration.

4.4 Class Aliases

We propose to add a new syntax construct into the class definition as described
in the Section 1.4.3. Programmer may provide a class alias for several different
classes, e. g.:

classalias (Read a, Show a) ⇒ Textual a

47

C ∶ ⟨Γ, , ,α, ⟩ ∈ CE

CE
dinstCtx⊢ default instanceC (T u1 . . . uk) where

bind1; . . . ; bindm ∶ Γ τ

Figure 4.4: Semantics of default instance contexts

topdecl → classalias [scontext =>] tycls tyvar
scontext → simpleclass∣ (simpleclass1 , . . . , simpleclassn) (n ≥ 0)
simpleclass → qtycls tyvar

Figure 4.5: Class alias declarations

The class alias may be instantiated by usual instance declaration. Compiler
generates separate instances for Read and Show classes and distributes the class
method accordingly.

4.4.1 Syntax

Class aliases are new top level declaration. We present changes in formal syntax
in the Figure 4.5.

A class alias declaration has a general form:

classalias cx ⇒ D u

This introduces new class alias of the classes in the context cx. The class in
context are required to form an acyclic directed graph and must be all different.
The aliased classes may not contain methods with the same name.

The declaration of class alias may contain binding only for the class methods
of aliased classes. If no binding is given for some method default method in the
class declaration is used. It there is no such method the method of the instance
is bound to undefined.

4.4.2 Relation to The Superclass Default Instances

Note that the class aliases are not necessary for use of superclass default instances.
However, class aliases make some changes in class hierarchy easier and more
direct. Assume following classes in a library code

class C a where

...

class D a where

method ∶∶ a

and instance in a client code:

instance D MyData where

method = ...

48

